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OPTIMIZED SCHWARZ WAVEFORM RELAXATION AND
DISCONTINUOUS GALERKIN TIME STEPPING FOR
HETEROGENEOUS PROBLEMS.

LAURENCE HALPERN *, CAROLINE JAPHET !, AND JEREMIE SZEFTEL?

Abstract. We design and analyze Schwarz waveform relaxation algorithms for domain decom-
position of advection-diffusion-reaction problems with strong heterogeneities. These algorithms rely
on optimized Robin or Ventcell transmission conditions, and can be used with curved interfaces.
We analyze the semi-discretization in time with discontinuous Galerkin as well. We also show two-
dimensional numerical results using generalized mortar finite elements in space.

Key words. Coupling heterogeneous problems, domain decomposition, optimized Schwarz
waveform relaxation, time discontinuous Galerkin, nonconforming grids, error analysis.

AMS subject classifications. 65 M 15, 65M50, 65M55.

1. Introduction. In many fields of applications such as reactive transport, far
field simulations of underground nuclear waste disposal or ocean-atmosphere coupling,
models have to be coupled in different spatial zones, with very different space and time
scales and possible complex geometries. For such problems with long time computa-
tions, a splitting of the time interval into windows is essential, with the possibility to
use robust and fast solvers in each time window.

The Optimized Schwarz Waveform Relaxation (OSWR) method was introduced
for linear parabolic and hyperbolic problems with constant coefficients in [@] It was
analyzed for advection diffusion equations, and applied to non constant advection,
in [@] The algorithm computes independently in each subdomain over the whole
time interval, exchanging space-time boundary data through optimized transmission
operators. The operators are of Robin or Ventcell type, with coefficients optimizing
a convergence factor, extending the strategy developed by F. Nataf and coauthors
[B, [F. The optimization problem was analyzed in [f}, [[J.

This method potentially applies to different space-time discretization in subdo-
mains, possibly nonconforming and needs a very small number of iterations to con-
verge. Numerical evidences of the performance of the method with variable smooth
coefficients were given in [@] An extension to discontinuous coefficients was intro-
duced in [ﬂ], with asymptotically optimized Robin transmission conditions in some
particular cases.

The discontinuous Galerkin finite element method in time offers many advantages.
Rigorous analysis can be made for any degree of accuracy and local time-stepping, and
time steps can be adaptively controlled by a posteriori error analysis, see [@, @,

In a series of presentations in the regular domain decomposition meeting we presented
the DG-OSWR method, using discontinuous Galerkin for the time discretization of the
OSWR. In [, [[l], we introduced the algorithm in one dimension with discontinuous
coefficients. In [[L(], we extended the method to the two dimensional case. For the
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space discretization, we extended numerically the nonconforming approach in [E] to
advection-diffusion problems and optimized order 2 transmission conditions, to allow
for non-matching grids in time and space on the boundary. The space-time projections
between subdomains were computed with an optimal projection algorithm without
any additional grid, as in [E] Two dimensional simulations were presented. In [@]
we extended the proof of convergence of the OSWR algorithm to nonoverlapping
subdomains with curved interfaces. Only sketches of proofs were presented.

The present paper intends to give a full and self-contained account of the method
for the advection diffusion reaction equation with non constant coefficients.

In Section 2, we present the Robin and Ventcell algorithms at the continuous level
in any dimension, and give in details the new proofs of convergence of the algorithms
for nonoverlapping subdomains with curved interfaces.

Then in Section 3, we discretize in time with discontinuous Galerkin, and prove the
convergence of the semi-discrete algorithms for flat interfaces. Error estimates are
derived from the classical ones [@]

The fully discrete problem is introduced in Section 4, using finite elements. The in-
terfaces are treated by a new cement approach, extending the method in . Given
the length of the paper, the numerical analysis will be treated in a forthcoming paper.
We finally present in Section 5 simulations for two subdomains, with piecewise smooth
coefficients and a curved interface, for which no error estimates are available. We also
include an application to the porous media equation.

Consider the advection-diffusion-reaction equation in Q = RY
Ou+V-(bu—vVu)+cu=f inQx(0,7), (1.1)
with initial condition
u(0,2) = up(x) x € Q. (1.2)

The advection and diffusion coefficients b and v , as well as the reaction coefficient c,
are piecewise smooth, the problem is parabolic, i.e. ¥ > vy > 0 a.e. in RV .

THEOREM 1.1 (Well-posedness and regularity, [B]) Let Q = RY. Suppose
bec (Whe( )N, v e Wh>(Q) and c € L°°(Q). If the initial value ug is in H'(),
and the right-hand side f is in L2(0,T; L*(S2)), then there exists a unique solution u
of (L), (L2 in H'(0,T; L)) N L>(0,T; H'(2)) N L*(0, T; HX(Q)).

We consider now a decomposition of {2 into nonoverlapping subdomains €2;,7 €
[1,1], as depicted in Figure [.. In all cases the boundaries between the subdomains
are supposed to be hyperplanes at infinity.

Fic. 1.1. Left: decomposition with possible corners (Robin transmission conditions), right:
decomposition in bands (Ventcell transmission conditions)

Problem ([L.1)) is equivalent to solving I problems in subdomains €2;, with trans-
mission conditions on the interface I'; ; between two neighboring subdomains €2; and
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Q;, given by the jumps [u] = 0, [(¥Vu —b) - n;] = 0. Here n; is the unit exterior
normal to €;. As coefficients v and b are possibly discontinuous on the interface, we
note, for s € I'; j, v;(s) = lim.0, v(s — en;). The same notation holds for b and c.
To any i € [1,m], we associate the set N; of indices of the neighbors of ;.
Following [é, E, E, we propose as preconditioner for (D, E), the sequence of
problems

atuf +V- (biui-€ — uiVuf) + ciué€ =fin Q; x (0,7), (1.3a)

(Viani - bz 'ni) uf + Smuf = (Vja,,,i — bj -ni) uf_l + Smuf_l on Fi,j, j S M
(1.3b)

The boundary operators S; ;, acting on the part I'; ; of the boundary of ; shared by
the boundary of (2; are given by

Sijp = Pijp + (0o + Vi, ;- (Fijo — i Vri;0)). (1.4)
Vr and Vr- are respectively the gradient and divergence operatorson I'. p; ;, @; 5, Si,;
are functions in L>(I; ;) and 7;; is in (L°°(I;;))V~1. The initial value is that
of up in each subdomain. An initial guess (g; ;) is given on L?((0,T) x I; ;) for
i € [1,1],7 € N;. By convention for the first iterate, the right-hand side in (@) is
given by g; ;. Under regularity assumptions, solving () is equivalent to solving

Owu; +V - (blul - uiVui) + ciu; = f in Q; X (O,T),
(l/iani — bl nl) u; + Smui = (Vja,,,i — bj nl) Uy + Si,juj on Fi,j X (0, T),_j S M,
(1.5)

for ¢ € [1,I] with u; the restriction of u to ;.

2. Studying the algorithm for the P.D.E. The first step of the study is to
give a frame for the definition of the iterates.

2.1. The local problem. The optimized Schwarz waveform relaxation algo-
rithm relies on the resolution of the following initial boundary value problem in a
domain O with boundary I':

Ow+ V- (bw —vVw) +cw = fin O x (0,T),
vopw—b-nw+Sw=gonT x(0,T), (2.1)
w(+,0) = ug in O,

where n is the exterior unit normal to @. The boundary operator S is defined on
I' =00 by

Sw=pw+q 0w+ Vr - (rw— sVrw)). (2.2)

The domain O has either form depicted in Figure E, left for ¢ = 0, right otherwise.

The functions p, q and s are in L>(T'), and r is in (L>°(I"))V~1. Either ¢ = 0, and
the boundary condition is of Robin type, or we suppose ¢ > gg > 0 and the operator
will be referred to as Order 2 or Ventcell operator. In the latter case, we need the
spaces

H(0) ={ve H(O),vr € H(I')}, (2.3)
which are defined for s > 1/2, and equipped with the scalar product

(w, U)H;(O) = (w, U)Hs(o) + (qw, U)Hs(l"). (2.4)
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We define the bilinear forms m on H'(O) and a on Hi(O) by

m(w,v) = (w,v)r2(0) + (qW, v)r2(r), (2.5)
and
1 1
a(w,v) := / (z((b- Vw)v — (b- Vv)w)) dz +/ vVw-Vvdx +/ (c+ =V -b)wvdz
o2 o o 2
b-n ¢ q
+ [ (p— 5 + §Vp ST wu + Q(VF - (rw)v — Vr - (rv)w) + ¢sVrw - Vo) do,
r
(2.6)
By the Green’s formula, we can write a variational formulation of (2.1):
7 M(w,v) + a(w,v) = (£, v)12(0) + (9, V) 22(r).- (2.7)

The well-posedness is a generalization of results in [E, El, @] It relies on energy
estimates and Gronwall’s lemma.

THEOREM 2.1. Suppose v € WL>(0), b € (WH*(O))N, ¢ € L>®(0), p €
L>T), g€ L>*T), r € (WhoD)N-1 s € Whe(T') with s > 0 a.e.

If =0, if f is in H(0,T; L*(0)), ug is in H*(O) and g is in H(0,T; L*(T))N
L>®(0,T; HY?(T")), satisfying the compatibility condition vdpug — b - nug + pug =
g , the subdomain problem (R) has a unique solution w in L>(0,T; H2(O)) N
WLee (0, T; L2(0)).

If ¢ > q > 0 ae., if fis in HY0,T;L%(0)), uo is in H3(O), and g is
in HY((0,T); L2(T")), problem (R]) has a unique solution w in L>(0,T; H2(O)) N
WLoo(0,T; L2(O)) with dew € L=(0,T; L2(T)).

Proof. The existence result relies on a Galerkin method like in [l§, [9]. In the
sequel, «, 3, --- denote positive real numbers depending only on the coefficients and
the geometry. The basic estimate is obtained by multiplying the equation by w and
integrating by parts in the domain. We set [|w| = ||w||z2(0) and ||w||r = [Jw| £2(r)-

With the assumptions on the coefficients, we have
Case g = 0.
2 1 2 b-n, ,
alw,w) = vIVwlPPde + [ (c+ sV -bw’de+ | (p— —)w’do
o o 2 r 2
> of||Vwl® = B(Jlw]* + [|w]?)
@

> FIVel =llw]?,

the last inequality coming from the trace theorem
[wlif < Cl[Vwl|l||wl]. (2.8)

We obtain with the Cauchy-Schwarz inequality

salwl? + §1vel? < allwl®+ (1117 + llglif)-
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We now have with Gronwall’s lemma

t
(6%
[w@l + 5 [ (Val)Pds <
6277T(||“0||2 + 25(||f||2L2(0,T;L2(O)) + ||g||%2(O,T;L2(F))))'

We apply (2.9) to w;:

lee)]? + / |Van(s)2ds <
M (lweoll* + 25(]| fl|7 + [lgell7 )
0 tllL2(0,75L2(0)) T 19tllL2(0,1322(1) ))-

Thanks to the compatibility condition, w;y can be estimated, using the equation, by
[weoll < C([[uoll 20y + 11£(0,-)]]) , and we obtain

lwe®)]? + / Ve (s)|%ds <

HeznT(H“OHH?(O (||f||H1(O,T;L2(O)) + ||g||§{1(O,T;L2(F))))'

Case ¢ > qo >0 a.e.

1
a(w,w) = /V|Vw|2d$+/(c+—v-b)w2d$
o

b-n
+/((p*7+ =Vr - r)w? + gs|Vrw|*) do

(||Vw||2 +[IVrwl|E) = Bm(w, w),

Y

and by the Cauchy-Schwarz inequality

[ wydzt [ (g, do < )+ 50171 + ol
r
Collecting these inequalities, we obtain
sam(w,w) + o|[Vol? +[|Vrwlf) < (8 +y)m(w,w) +5(|fII* + lgll2)-

We now integrate in time and use Grénwall’s lemma to obtain for any ¢ in (0,7")

t
m(w(t), w(t)) + 2@/0 (IVw(s)” + [ Vrw(s)|f)ds <
e(ﬁJr'Y)T(m(“Oa“O) + 25(||f||2L2(0,T;L2(O)) + ||g||%2(O,T;L2(F))))'

We apply ) to wy:

(2.10)

t
m(w(t), we(t)) + 204/0 (IVwe($)[I” + [IVrwe(s)[[E)ds <
eI (m(wig, wio) + 26(||ft||%2(0,T;L2(O)) + ||9t||2L2(o,T;L2(r))))-

We now use the equations at time 0 to estimate m(wsq, wtg). From the equation in
the domain, we deduce that

weoll < Clluoll 20y + I1£(0, ),
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and from the boundary condition that

lweolle < nllluollmz0) + 19(0, )lIr),

which gives altogether

m(wy(t), we(t)) + 2@/ (IVwe(s)[* + [ Vrws(s)|[F)ds <
0
96(5+V)T(

(2.11)
||Uo||§qg(o) + HfH%{l(O,T;LZ(O)) + ”gH%{l(O,T;LZ(F))))'

We can now apply the Galerkin method. When ¢ = 0, we work in H*(0,7; H'(0O))
N Whee(0,T; L?(0)) , while if ¢ > qo > 0 a.e we consider H(0,T; Hi(0)) N
W00, T; L2(0)) N W00, T; L3(T)). This gives a unique solution w. The regu-
larity H? is obtained for ¢ = 0 by the usual regularity results for the Laplace equation
with Neumann boundary condition, since

—Aw = (f —w; — V- (bw) + Vv - Vw) € L>=(0,T; L*(0)),

1
Opw = ( n—plw+—ge L0, T; H/2(I)).

tlH

In the other case, we have that

1
—Aw = ;(f —w — V- (bw) + Vv - Vw) € L=(0,T; L*(0)),
1 1
vOp — qsArw = ;(b m—p—qO@+Vr-r—(Vr-s)Vp)))w + ~9€ L>=(0,T; LA(T)),

and we conclude like in 1§, [.9]. O

2.2. Convergence analysis for Robin transmission conditions. We sup-
pose here the coefficients g; to be zero everywhere. Given initial guess (g; ;) on
L2((0,T) x Ty ;) for i € [1,1], 5 € N;, the algorithm reduces in each subdomain to

Ol +V - (bjul — v, Vul) + coul = fin Q; x (0,7), (2.12a)

(ViOn, — bi - ;) uf +p; jul = (vjOn, —b; ;) u;?_l + pij uf_l onl;;,j€EN,.
(2.12b)

The well-posedness for the boundary value problem in the previous section permits
to define the sequence of iterates. We now consider the convergence of this sequence.

THEOREM 2.2. For coefficients p; ; such that p; ; + p;; > 0 a.e., the sequence

(uF)ken of solutions of (R13) converges to the solution u of problem ([L.1)).
Proof. By linearity, it is sufficient to prove that the sequence of iterates converges

to zero if f =wug = 0.
We multiply () by u¥, integrate on (2;, and use the Green’s formula. We
obtain

1d

1
thH k( a')||%2(9 (VZVU VU )LZ(Q-) +((ci+ V- b) Uj s Z)LZ(Q)

2
- Z/ ula,,luf—l% Mubdo =0. (2.13)

JEN;
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We use now

(uza,,lul —b; -nuf + pi ju; )2 — (uzamul —b; -nu pmuk)2 =
bi n;
T“?)uf + (pij +p3.i) (Pij — pji — bi - ma) (uf)?. (2.14)

We replace the boundary term in ()7 and integrate in time. Since the initial value
vanishes, we have for any time t,

2(pij + pji) (ViOn,ui —

t
||u?(t)||2L2(Qi) + 2/ ((uqu Vuy )2 + ((ei+ 5 V bi)u; )LZ(Q ) dr

+ Z// 1/1<9muz b; - 'n,zu — Djil; ) do dr

JEN: ; Dij +p_],
1
— Z// 7(1/18,,1% b; - nZu + i ju; ) do dr
JEN; ; Pij + Pji
+Z// (pj.i — iy — bi -m)(ul)?do dr.
JEN;

Since the coefficients are all bounded, the last term in the right-hand side can be
handled by the trace theorem ) to be canceled with the terms in the left-hand side
like in the proof of Theorem gWe further insert the transmission condition in the
right-hand side:

IO / VU2 drt S / / (Vi 0 —bsmiti—p; ) dor dr

JEN: 5 Dig Pij + P pJ,

Z/ / 8nluj —b; nzu +p”u ) dUdT+C1/ (|l ||L2(Q)

JEN: ; Dig Pij + P Pji

We sum on the subdomains, and on the iterations, the boundary terms cancel out
except the first and last ones, and we obtain for any ¢t € (0,7T),

S5 (@l [ IVl r) <atrren 35 [ ki,

ke[1,K] ie[1,I] ke[1,K]ie[1,I]
(2.15)

with

Z Z//szw—i—pj, (9n1u] b; nzu er”u)dodT

i€[1,1] JEN;:

We now apply Gronwall’s lemma and obtain that for any K > 0,

Yo > uf0lia,) < (D)™,

ke[1,K]i€[1,I]

which proves that the sequence u¥ converges to zero in L2((0,7) x €2;) for each i, and

concludes the proof of the theorem. O
REMARK 2.3. In the case V -b =0, if pj i —pij —bi -n; =0 and ¢; > ag > 0,
then C1 =0 in () and we conclude without using Grénwall’s lemma.
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2.3. Order 2 transmission conditions.

THEOREM 2.4. Assume p;; € WhH®(Q), pij +pji > 0 ae., ¢; = q > 0,
b, € (Wl’OO(QiDN, v; € Wl’OO(Q), Tij € (Wl’oo(Qi))Nil, with Tij = Tji ON Fiyj,
855 € Wheo(Q,), si,; > 0 with s; 5 = 55, on I'; j, and the domain is cut in bands as
in Figure B, right. Then, the algorithm (E) converges in each subdomain to the
solution u of problem ([L.1).

Proof. We first need some results in differential geometry. For any i € [1, I], For
every j € NV;, the normal vector n; can be extended in a neighbourhood of I';; in Q;
as a smooth function n; with length one. Let t; ; € C>(€Y;), such that $;; =1in
a neighbourhood of T'; j, ¥; ; = 0 in a neighbourhood of I'; ;, for k € N, k # j and
ZjeNi ;5 > 0 on §;. We can assume that n; is defined on a neighbourhood of the
support of 1; ;. We extend the tangential gradient and divergence operators in the
support of 1; ; by:

611-;,]‘90 = Vgﬁ - (aﬁnw)ﬁ'lv 611-;,]‘ = V- (()0 - (‘p ' lﬁ’l)lfh)

It is easy to see that (%pi’j O)re; = Vr, ;¢ (613.’]. “P)r
X with support in supp(t; ;), we have

= Vr,, - ¢ and for ¢ and

©J

/ (%Fm ) xdx = —/ tp-ﬁpmxdm. (2.16)
Q; Q;

Now we prove Theorem P.4 We consider the algorithm (L) on the error, so we

suppose f = ug = 0. We set [lolli = llellz2.), el = v Vel:, lellio =
i,j P40
ol Lo ()5 N1lli1,00 = [l@llwroe () and B j = 4/ Bz,

The proof is based on energy estimates containing the term
t
2
/ / (Vi(?niuf —b; niuic + Siyjuf) do dr,
0 JT;

and that we derive by multiplying successively the first equation of (E) by the terms
B2 uk, ok, Vr,, - (wijri7juf) and —Vr, , - (wﬁjsm Vr., uk).

K3
We multiply the first equation of ) by % uf, integrate on (0,t) x €; and
integrate by parts in space,

1 t t
St @2 + [ st 1 dr— [ [ b V)l e

t 1 t

Jr/ / (ci+—V~bi)ﬂ?(u§)2d:chf// 1/1-|Vﬂi|2(uf)2dzd7'
o Jou 2 o Jou
t b -n,
—// Bﬁj(uianiuf—%uf)ufdadT:& (2.17)
0 Jri;

We multiply the first equation of ) by O;uf, integrate on (0,¢) x €; and then
integrate by parts in space,

t 1 ¢ t
/ ||8tuf||fdT+—|||uf(t)|||f+/ / (ciuf+v~(biu§))8tuf dx dT—/ / Vi(?niuf 8tu§ dodr = 0.
0 2 o Ja, o Jr,;
(2.18)
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We multiply the first equation of ([L.3) by %pm - (@7 7 jul) integrate on (0,t) x €
and integrate by parts in space:

¢ ¢
/ Dl Vr, e (Q/J?jri7jui'c) dz dr —|—/ V- (bul) Vr, e (wfjrm»uf) dz dr
o Jo, ' ' 0 Jo ' ’
¢
+/ / cuf Vr, - (V7 1 juy) do dr

¢ ¢
+/ / viVuy-VVr, ;- (7 jri juy) do dT—/ / ViOn,uf Vr, ,(ri juf) do dr = 0.
0 Jo, 0 Jri,
(2.19)

We observe that

t
/ / v Vuf - Vv, , - (z/Jijrmuf) dx dr
0o Jau

t t
:// Vivuf'V(Vrm-(¢zjri7j)u§)dxdT—i—// viVul-V (7 1 5V, ul) dzdr,
0 JQ; 0 JQ;
(2.20)

with

t
/ / viVul - V(7 i -V, uf) dedr
0o Ja, ’
1 t . t
> =5 [ Wisymse Ve, ubizar—c [ [ (19akiE + ) dedr. - (220)
0 0 JQ;
Replacing (2.21) in (2.20) and then (224) in (R-19), we obtain
t o~ o~ ~
/ / (&Uerm (W rigug) + V- (biug) Vir, - (97 i juf) + ciuf Vi, - (ﬁ,ﬂi,juf)) dz dr

o Jo,

1t _ t
—Z/ [¥s,5\/Visi; VVT,, uf)H? dr — / / Viﬁniuf Vr, ;- (r”uf) do dt
0 o Jr,,

t
<c [ [ Qvemvati + |t ) dodr.
0 Jo,
(2.22)
Now we multiply the first equation of ([.3) by —=Vr, ;- (7515 Vr, u¥) integrate on
(0,t) x Q; and integrate by parts in space:

1 - ¢ - -
§|\¢z‘,j\/sz‘,j Vr,, uf (0|7 — / / V- (buf) Vr,, - (V285 Vr, , ul) de dr
0 Q;

t t
+/ / V55V, (cuf) - Vr, , uf d:chf/ / viVug - V(Vr, - (¥ si; Vr, , uf)) dedr
o Jo; 0 JQ,;

t
+/ / ViOn,uf Vr, , + (855 V., ul)dodr =0. (2.23)
0 Jr;
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We have,
t ~ ~
—/ / ViVuf -V(Vr,, - (wijsi,j A\ uf)) dx dr
o Jo,
1 t . t
> 5 [ Wy Vo dizar - [ vatiEan @2y
0 0
Replacing (£.24) in (£.:23) leads to
1 = 2,
S ¥is/5ii Ve, ug (O[IF + ||¢w visiy VVr,, uf)|? dr
¢
—|—/ / wfjsi7jci|vr”ui“2dxd7'+/ / uzanlul Vr, ;- (si,; V T, Z)dadr
/ / r (V2805 Vi, u Z)d:cdwc/ Izt |2 dr.  (2.25)
Q

Multiplying ), () and () by ¢, and adding the three equations with (),

we get

(Bt 12 + a1 k) E s 555 ¥, @) + [ W ) I

DN =

t t
v [ Woadizar + 2 [ o v 99, b ar
/ / B2 (1O, ul —u uf)ul do dr
t
— q/ / Viﬁniuf (atuf +Vr, ;- (r”uf) —Vr,, - (s, Vr, uf)) dodr
1 k k k
< Q(§||bz'||z',1,oo + ||7’z',j||i,1,oo)/0 (g [l M| Ovui ||s d7
t
+ q(|bil]i,00 + ||ri,j||i,oo)/ Vg s |10 ||i dr
0
t
q o~ ~
+ §||bi||i,oo/0 IVullli (| Ve, , - (V7 65 Vi, ul)ll dr
1 ! k — 2 o k
a5 1billi100 + lleillioo) ; lwilli Ve, ;- (5,805 Vi, ug)|lidr
t t
q
+ L0l + leslio @12 + € ([ 180t 2ar g [ Ivmvatipar).

We bound the right-hand side by

1 t t .
5 (& [ 1oadipar+ & [ oy s T, ubl? dr
2\ 2/, A 3
t t
q
b 20l + el b O + € ([ 150 B ar +a [ |vmvatizar).
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We simplify the terms which appear on both sides, and obtain

1
5 (I8t O + 110 1 a5 e, b O1F) + [ ot 12 ar
t t
3 [ oadipar+ 2 [ s ymes v, b ar
/ / B2 (VO uf — bi -1 uf) uf do dr
t
- Q/O /r vl/ianiuf (Opul + Vi, , - (rijul) — Vr,, - (sij Vr,, ul)) dodr
»J . .
<o ([ Ipadizar+a [ Ivavaipar). @20
0 0
Recalling that s; ; = s;; onI'; ; and r; ; =r;; on I'; ;, we use now:

(l/z(?muz b; - nZu + S; juy )2—(1/18nluZ b; -n;u k Sjﬁiuff

=4 (ﬁf’j(m&”uf _ bz an k)u, + quaﬂ.le (Btul + VF (’I‘Z ]ul) VF (Si,j VFLJ uf)))

+2q(pij — pji — 2bi 1) (Opuf + V., - (rijul) — Vo, - (i Vr, , ul))uf
+ (pij + P (i — pii — bi-mi)(u))?. (2.27)
Replacing (P.27) into (2.26), we obtain

1
B (HﬂiUf(t)H? +a I uf(t) 17 +allvi /505 Vi, uf / 5w (7, ) |7 dr
g [ 1t
+—/ HatufodT—i——/ / (uia,,.uf—bi.ni - S, iu; ) dodr
1,7
t ~ 1 t
JF%/ H"/’i,j\/l/i Sij VVFM. Uf”de < Z/ / (Ijl(rﬂnluiC —bi n; uf +S¢1ju§)2 do dt
0 0 JI';;
[ ] i) gyt bem) b do dr o S0+ el O
o
4 (=pij+pji+2bi-n)(Oeul +Vr, - (ri jub)—Vr, -(si; Vi, ub))uf dodr
2 o Jr Pi,j TDPji ot t g T 4,5 Wq Lij i, Vi W 3
2,3

t t
o[ 1sutizarva [ IvAvitizar). @2
0 0

In order to estimate the fourth term in the right-hand side of ), we observe that

1
/ / (_Pi,j + P+ 2b; 1’),1)’ui€ Gtuf dodr = 5 / (_pi,j +pji+ 2b; nl)uf(t)2 do.
0 T, T

(2%

By the trace theorem in the right-hand side, we write:

t
/ / (=pij + Dy + 2b; - mi)uk Bl dordr < Clluk ()3 V7V (D),
0 Fi,j
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¢ ¢ 3 ¢ 3
oz =2 [ [ <atu§>u§s2(/0 ||atuf|?) ( / |uf|$) L (229)

we obtain

and

t
g / / (=pij + pji + 2bi - m)uy Opuy do dr
0 Jri;

t t
q q
<2 [1oatiar+ Lo 1 +o ([ hoatizar). (230

Moreover, integrating by parts and using the trace theorem, we have

t
q
2 / / Ve, o (8ig Ve, wl)(=pig + i + 2bi - miuf do dr
0 JTi;

=16
Using (R.29), we estimate the third term in the right-hand side of (R.2§) by

t t t
<4 / 037555 V¥r,, w2 dr + O / 1%, , ub|dr + / Bt 2 dr). (2.31)

t t
q q
200l + Nl O < £ [ N0t ar+C [ hpadiar. (232

Replacing (R.31)), (.30) and (£.39) in (.29d), then using the transmission conditions,
we have:

1 q =~

5 (1Buf @12 + 2 1k (8) 12 +allvi i Ve, wk (0)12)
t t t

+ [ gk 1 ar 4 [ o a4 [ sy Ve b ar
0 0 0

1 t
+—/ / (l/ianvuf—byniuff‘sjiuff do dr
4 O Fl’] K3 )

1 t
< Z/ / (l/janiu;fl —b;-n; u;“l + Sm-ué?fl)Q do dr
0 JIi;

t t
o ([isabizar+ 4 [ 1vmodtizar) .
0 0

We now sum up over the interfaces j € N, then over the subdomains for 1 <4 < I,
and on the iterations for 1 < k < K, the boundary terms cancel out, and we obtain
for any t € (0,7,

t
DS <|ﬂi,juf<t>||$+q|ﬁ-wf(m?m / ||v<ﬂi,ju§>|$d7)

ke[l,K]ic[1,1]

t t
<a+C X5 ([ 1sdipar+o [ 1mviiar). @

ke[l,K]ie[1,1] YO 0

with
1 ¢ 2
at) = 1 Z Z /0 /F | (vjOnu) —b; -niul + S jul)” dodr. (2.34)
i€[1,I] JEN; 7

We conclude with Gronwall’s lemma as before. O
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3. The discontinous Galerkin time stepping for the Schwarz waveform
relaxation algorithm. In the following sections, in order to simplify the analysis,
we suppose that ¢ + %V b>ap >0 a.e in .

3.1. Time discretization of the local problem: discontinuous Galerkin
method. We suppose that the coefficients are restricted to p — b'T" +4Vr-r >0
a.e.onI', ¢ >0 a.e. and s > 0 a.e.. This implies that the bilinear form a defined in
(R.6) is positive definite on H!(O) when ¢ = 0, and positive definite on H}(O) when
qg>qo>0a.e.

We recall the time-discontinuous Galerkin method, as presented in [L4]. We are
given a decomposition T of the time interval (0,7T), I, = (tn,tn41], for 0 <n < N,
the mesh size is k, = t,+1 — t,. For B a Banach space and I an interval of R, define
for any integer d > 0

d
Py(B) = {p: 1B, ot)=)Y @t ¢ € B},
1=0
Pa(B,T) = {p:1—=8B, ¢, €Py(B), L<n< N}

Let B = H}(O) if ¢ > 0, B = HY(O) if ¢ = 0. We define an approximation U
of u, polynomial of degree lower than d on every subinterval I,,. For every point
tn, we define U(t;) = limy_, —o U(t), and note U(t,}) = limy—4, 40 U(t). The time
discretization of (P.7) leads to searching U € P4(8B,T) such that

U(O, ) = Uog,

WV ePUBT): [ (mU.V)+aU. V)t (3.1)

m(U () = Ult Vi) = [ L)
In

with L(V) = (f,V)r2(0)+ (9, V) r2(r). Since I,, is closed at t,, 1, U(t, ;) is the value
of U at t,,4+1. Due to the discontinuous nature of the test and trial spaces, the method
is an implicit time stepping scheme, and U € P4(B, T) is obtained recursively on each
subinterval, which makes it very flexible.

THEOREM 3.1. Ifp — b'T" +4Vr-r >0 ae onT, ¢g>0ae ands >0 a.e.,
equation (@) defines a unique solution.

Proof. The result relies on the fact that the bilinear form a is definite positive.
It is is most easily seen by using a basis of Legendre polynomials. U € Py(H{(Q),T)
is obtained recursively on each subinterval. We introduce the Legendre polynomials
L,, orthogonal basis in L?(—1,1), with L, (1) = 1. L, has the parity of n, hence
L,(—1) = (=1)". A basis of orthogonal polynomial on I, is given by L, x(t) =
Lk(%(t - %)) Choose V (t,z) = Ly, ;(t)®;(x) in B.1) with ®; € H(Q), and
expand U on I, as U(t,x) = ZZ:O Uk(x) Ly 1 (t). Suppose U to be given on (0, ,].
In order to determine U on I,,, we must solve the system: for any ®; € H{ (),

d
> / <Ln,kLn,jm(Uk,<1>]—)+Ln,kLn,ja(Uk,<1>j)> dt
k=0 7 In
d

3 Lk Ly (£ (U, @) :/ Lo, L(®,) dt.
k=0 I
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It is an implicit scheme. We calculate the coefficients

/ Lok Ly = 60| L I
I

. 0 k<
/ Ln,kLn,j - 1 k+j . .
I - (_1) if k > 7,

{(1Vﬂ' if k < j

[ B+ Last) s 6) = | .

In
which leads to
[ LnsIPa(Us, @) + m(Us, ;) + (=1 m(Ux, @5) + > m(Uy, @ :/ Ln; L(®;) dt.
k<j k>j In

It is a square system of partial differential equations, of the type coercive + compact.
By the Fredholm alternative, we only need to prove uniqueness. Choose now ®; = Uj,
and obtain

ZHLnJHQ a(U;,U;) —l—Zm U;,Uj) +QZ Z m (U, Uj) =0,

k+_] even

and since a is positive definite, we deduce that U = 0. O
We will make use of the following remark ([L6]). We introduce the Gauss-Radau
points, (0 < 71,...,74+1 = 1), defined such that the quadrature formula

d+1

/f t)dt =~ qu (1)

is exact in Py, and the interpolation operator Z,, on [t,,t,+1] at points (t,,t, +
Tikn, sty + Tas1kn). For any x € Py, X = Z,x € Pai1.

Let Z : Pg(B,T) — Pay1(B,T) be the operator whose restriction to each subin-
terval is Z,, and satisfies ZU (¢;7) = U(t;;). By using the Gauss-Radau formula, which
is exact in Paq, we have for all 9; ; € Py

dLx dx B v
[ G e [ G = (006~ 3 ),

As a consequence, we have a very useful inequality:

d 1 _ _
| G @t = 56— b 6 (32)
Also, equation () can be rewritten as
7z
/ (m( % V) +a(U, V) dt = / L(V)dt, (3.3)
ITIr I’Vl

or in the strong formulation:
H(IZU)+ V- (bU —vVU) +cU = Pf, in Q x (0,T),

(VO —b-n)U +pU +q(8,(ZU) + Vr - (rU — sVrU)) = Pgon I x (0,7T). (34)
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Here P is the projection L? in each subinterval of 7 on Py.

THEOREM 3.2 (Thomee, [Rd]). Let U be the solution of (B.1]) and u the solution
of (EI) Under the assumptions of Theorem @, the estimate holds

v —=UllLoo(1,,02(0)) < deJrl”ag-i_luHLz(O,T;H;(Q))v (3.5)

with k = maxo<n<N kn

3.2. The discrete in time optimized Schwarz waveform relaxation al-
gorithm with different subdomains grids. In this part we present and analyse
the discrete non conforming in time optimized Schwarz waveform relaxation method.

The time partition in subdomain €;, is 7;, with N; + 1 intervals I, and mesh size
ki In view of formulation (B.4), we define interpolation operators Z* and projection
operators P’ in each subdomain, i.e. P? is the projection L? in each subinterval of 7T;
on P,, and we solve

O(T'UF) +V - (b;UF — v;VUF) + ¢;UF = Pif in Q; x (0,7), (3.6a)
(Viani — bi nl) Uzk + Si,jUik = Pi((l/jani — bj -ni) Uv]]-v_1 + gi,jUf_l) on Fi,j,j S M
(3.6b)

Here the operators are different on either part of the ”equal” sign:

iU =pij U+ qi; (O(Z°U) + Vi, - (ri U = si;Vr, ,U))

- ’ ’ 3.7
SiﬁjU:piJU%’qihj ((9,5(I]U)+Vpi’j . ("'i,jU*Si,iji,jU))- ( )
Formally, the sequence of problems (@) converges to the solution of
0(T'U) + V- (b;U; — v;VU) +¢c; Uy = Pif in Q; x (0,T), (3.8a)
(1/1-8,” —b; 'n,z) U; + SiﬁjUi = ]Dz((l/janZ — bj nz) U]‘ + giijj) on Fiﬁj,j S M
(3.8b)

We present the analysis first with Robin transmission conditions (e.g. ¢;; = 0) and
general decomposition, and then with order 2 transmission conditions and decompo-
sition in strips.

3.2.1. The Robin case. We consider here a general decomposition of the do-
main, possibly with corners. We solve (B.4) with gi; =0,ie. S;;U=5;,U=p;;U.

THEOREM 3.3. Assume ¢;; =0, pj ;i —pij—bi-n; =0, p; ; — l% > 0. Problem
(B.8) has a unique solution (U;)icr , and U; is the limit of the iterates of algorithm
(B.9)-

Proof. We first write energy estimates on (B.6) for f = 0 and uy = 0. We start
like in the proof of Theorem @ We multiply (B.64) by UF, integrate on (2;, then
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integrate on the interval (¢}t _ ) and use (B-2) and (R.14):
Uty )22,y = IUF )20
+ 2/_ (YU}, VU 12,y + ((ei + 5 V b)UF, UF) 20, dr
, ' 2
+ / / ———(VOp,uf = b; - UF — p; ;UM do dr
jEZN 1 Jr,; Piyj +pj,i( ! )

— (40, Zul —b; - nZUk—i— iU ) dodr
// pz]+pjz( " Pij )

+Z// (pj.i — pij — bi - i) (UF)?do dr.

JEN;

]EN

We can not use Gronwall’s Lemma like in the continuous case, due to the presence of
the global in time projection operator P7 in the transmission conditions. Therefore
we have to assume that p; ; —p; j —b; -n; = 0 everywhere, which cancels the last term.
We sum up over the time intervals, using the fact that the errors vanish at time 0:

T
|UHT) 26, + 2min(ve, a0) / U200 dr

(vi0 ok —b; - UF — p; ;UF) do dr
/ / ngergz " » )

Z/ / ulamuz —b; nZUk—i—p”U ) do dr.

JEN: pz]+p]z

jGN

We now insert the transmission conditions
i T
. k
JUE(T) 220, + 2 min(vo, ao) / 1UE 20 g d

+ Z/ / ulaniuz b; - nlUk p;,:U; ) do dr

5 Pig +pjz

2
P (vj0, U™ —bj - nUF +p; ;U ) dodr.
Z/ / pzj+pjz( (VJ " ! ! TP ) 7

JEN;

We use the fact that the projection operator is a contraction to obtain:
T
k .
[UE(T) 30, + 2min(vo, o) / 10135,y

+ Z/ / ulaniuz b; - nlUk p;,:U; ) do dr

JEN; ; Pij +pj’b

k-1 k—1 k—1\2
z_/\:[ / / ; Pij +p“ VJanjUj _bj .njUj _pi,jUj ) do dr.
JE

We sum up over the subdomains, we define the boundary term

Z / / Vzanluz b; -n;UF — pHU)dodT

i€[1,1] JEN; Ly, Pij +p],
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we obtain

T
> (I\Uf(T)II%zmi)+2min(vO,ao)/0 1UFI o,y dr) + BX < B*1 (3.9)
i€[1,I]

We first apply this inequality to prove the first part of the Theorem. (@) is a
square discrete system, and proving well-posedness is equivalent to proving unique-
ness. Dropping the superscript in (@) gives the result. As for the convergence,
we proceed as in the continuous case by summing (@) over the iterates to obtain

that >-,cr1 7 HUZC(T)H%Q(QI_) and 3, g foT HUikH%{l((zi) dr tend to zero as k tend to
infinity. O

3.2.2. The Order 2 case. We restrict ourselves to a splitting of the domain
into strips with parallel planar interfaces.

THEOREM 3.4. We assume that p;j; =p >0, ¢;j =q >0, s;,; =5>0,b; =0
and r; ; = 0. Problem@) has a unique solution (U;)icr, and U; is the limit of the
iterates of algorithm (B.4)

Proof. We consider the algorithm (@) on the error, so we suppose f = ug = 0.
As in the continuous case, the proof is based on energy estimates containing the term

/ / (ui&,,iuf + Si7jUf)2 do dr,
w Il

and that we derive by multiplying successively the first equation of (@) by the terms
Uf, 0u(T'Uf), and —Ar, ; UF. We set [[o[ll? = lv/75 VollTaq,) + IvE ol 72 (q,)- We
multiply the first equation of (@) by UF, we integrate on I’ x ; then integrate by
parts in space and use (B.9):

1 1
NG+ [ Ok ar— [ [ vtk UF dodr < ORI,
I w /T
(3.10)

We multiply the first equation of (| by 0,(Z'UF), integrate on I} x €; and then
integrate by parts in space and use (B.2)

1 - i i 1 -
S [ o @ vbzar—[ [ wonutozvt)doar < SIUEIE
' ' (3.11)

Now we multiply the first equation of (@) by —Ar, ; UF integrate on I x ; and
integrate by parts in space and use (@)

1 _
S1Vr, UK + [ Ve, Uk 12
1
+// Vianiui-cApi,jude'dTS§||Vpi’jUik(t;>H?, (3.12)
n Il

where we have used the fact that Ar, ; is a constant coefficient operator. Let

n p iy— q i\ — 5q iy—
E (UZ“)=§||UZ-’“((%) )||?+§IH Ur((t,) )III?+§HVHJU5((%) )7
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Multiplying (B.10) by p, (B.11)) by ¢ and (B.1J) by sq, and adding the three equations
with (B.10), we get

B UP) +/_ [ UF ) F +allde(ZRUNE + sq lll Ve, UF ()17 ] dt
- Z/ / ViOp,uk S;;UFdzy dt < E™(UF).
JEN;

It can be rewritten as

E"H(UF) +/_ NUEE D NE +allo@RUNF + sq lll V., UFE I dt
+7 Z/ / (ViOn,ul — S;;UF)? < E"(UF) + Z/ / (ViOn,uf + Si;UF)?.
JEN;

We now sum in time for 0 < n < N, and use the transmission condition. Since
EO(UF) = 0, we obtain

ENTHUF) + /[IIIU’“( VE +allZLUDNZ + sq lll Vr, ,UF (8 )] dt

+7 Z/ / Vzan%uZ Sszk dt < — Z/ / PZ —v;j "]Uk 1+ SZ]Uk 1)) dt.

JGN geN

We sum up over the subdomains and use the fact that the projection is a contraction.
Since we are in the case where p;; = p, ¢;; = q, r;; = 0 and s;; = s, we have SU =5;.
Thus, we can sum up over the iterates, the boundary terms cancel out, and we obtain

K I T
> <EN“ Uh) + / LNTEE ) E +alloe@URIE + sl Vri,jUf(t')lllf]dt)

k=1 1i1=1 0
1< [T
42/ / (0, 0¥ — S;UK)? SZZ/ / (vi0, U} — S;;U})?.

We conclude as in the proof of Theorem @ a
We now state the error estimate in the Robin case.

3.3. Error estimates in the Robin case. THEOREM 3.5. IfV -b =

Dij — buni i — 5t =p >0, and q;; = 0, the error between u and the solution
U; of (@) is estimated by:
I
Z l|u— UiH%OO(O,T,LQ(Qi)) < Ck2(d+1)|\321+1U||2L2(0,T;H2(Q))' (3.13)
i=1

Proof. We introduce the projection operator P, as
Vn € [1,N;], P € Py(Ik),

P p(thn) = plthan). Yoy € Pans(D), [ (o= @050 dt =0
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We define W; = P (ulg,), ©; = U; — W; and p; = W; — u|q,. Classical projection

2

estimates ([2d]) yield the estimate on p;:

I
D o leill i, 2200y < CRVNOF Ul a0 12 (0 -
=1

Thus, since U; = 0, + p;, it suffices to prove estnnate () for ©;. Now,
thanks to the equatlons on v and U;, and the identity 7 d Il = Pid O, satisfies:

dt >
0(Z'0;)+b-VO;, —vAO, +cO; = —b- Vpi + vAp; — cp;
+(1 — PY)(dpu — f) in Q; x (0,T),
(I/Z 8,, —b; - nz)@ + Dij 0, = Pi((l/j 8m. — b]‘ nz)@j + pij ®]>
—(1 = P))((¥j O, —bj - )W; +pij W;) on Ly; x (0,T), j € Ni.
Multiply the first equation of (B.14) by ©;, integrate on (¢!, t/, +1) X €4, using B3
and integrate by parts in space. Terminate with Cauchy Schwarz inequality:

b -n;
IO+ [ 10 12 = [ [ (00,00 = 2500 it

(3.14)

< SIOEIE+C [ ot .

Rewriting the boundary integral using ), we obtain

S1O:((th4) H+/IW) mdﬂ~—§j/”/ (Vi ©1— b 10— 10,)? dara dt

JEN;
S5 2 L @ ObnOupiy 0 dra SOUE) IC [ e Mo
JEN;

Using the transmission condition in (B.14) together with the fact that P* and 1 — P'
are orthogonal to each other and have norm 1, we get by a trace theorem

104t ) I +/ 0t ||\Zdt+—2// (110, Oi—biiOs—p; 404)? das dt

g5 2 L om0 b mi0; 00 e+ SO

]EN

+c[mmmw@mmﬁ+c[uufp

Classical error estimates ] imply:

T T
A o, mmm>w+/ 1A=P)(la) (1 s o) < CREEHD O )2, 0 1 s

Summing (B.1) in 4 and n, and using the previous equation yields (B.13). O

4. Space-time nonconforming algorithm. In this section we describe the
implementation of algorithm (@), especially in the cases d = 0 and d = 1. We start
from the semi-disrete in time scheme and use finite elements for the space discretiza-
tion in each subdomain. In order to permit non-matching grids in time and space on
the boundary, we extend the nonconforming approach in

We describe first the implementation of algorithm (B.6) at the semi-discrete in
time level, and then at the space-time discret level.

ule)(t )l o) dt- (3.15)
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4.1. Time discretization. We recall the subdomain scheme in time, and give it
in details for d = 0 and d = 1. Then we describe the computation of the transmission
conditions in algorithm (B.4).

4.1.1. Interior scheme. We consider the subdomain problem in the algorithm
(B.9) at iteration k in © = Q,. Let B; = H}(Q;) if ¢ > 0, B; = H'() if ¢ = 0. We
set U = UZ-’C € Py(B;, Ti), and we omit the subscript 7 for the local time scheme to
simplify the notations :

O(ZU) +V - (bU —vVU) +cU = Pf in O x (0,T)

(Vn —b-n)U + pU + q(d,(TU) + Vi - (rU — sVpU)) = Pg on T x (0,7). V)

Case d =0
In the case d = 0, the approximating functions are piecewise constant in time then

U(t)=U"" = U} in I, we have Z,U = U™+ t tn n (Ut _pn), P¢ = ¢ L f] s)ds
and the method reduces to the modifed backward Euler method

UnJrl

" 1
+V~(bU"+1—VVU”+1)+cU"+1:Z—+—/ f(-,8)dsin O
. n
(V8n7b~n)U”+1+pU"+l+q(
" 1
:qg—nJrE Ing(~,s)dsonF.

n+1

+Vr - (rU —sVpUY))  (4.2)

n

Case d=1

In that case, for piecewise linear functions of ¢, using a basis of Legendre poly-
nomials we may write, U(t) = Ut 4 201/ t"“/z U"Jrl on I}, with 4y = 25t
U™ = Ul(t,), and we have on I} :

1 t—1,
In(Z Z(5(7(T)l+1 UinJrl Un) (Ug)erl UinJrl Un>( p +1/2)
n n n t thrl 2\2
F3(-UPt UM 4+ U )(71% 2)2,

and P€ = & +27+12¢; with

{ o= %fln SSE s)ds (43)

&= [, T s)ds
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Thus, we obtain for the determination of US’H and U{’H the system

1 uroo1
k—(Ug*1 + UMY 4 V- (UST —vVURTY) 4 U = Tt / f(-,8)ds
k—(—U{}“ + UMY+ V- (U —uVUP) Ut

= 3U —/ 7"+1/2 ,8)ds in O
(Va —b- n)UnJrl +pUn+1 4 q(k Un+1 + UnJrl) 4 VF (rUg)lJrl _ SVFUg)ﬂrl))

ur1 [
—g— 4 — . 8)d
qkn +k7n Ing(,S) °

3
(VOp —b-n)UM +pUPT + q(k—(—U{fH + UMY + V- (pUT = sVRUTH)

n T 7t77,
:*QBIZL +%/I 27 Inti/2 kn+1/29(-,s)ds onT.

(4.4)
Multiplying the first equation of ({.2) by v € B; (resp. the first equation of @)
by v € B; and the second equation of ({.4) by w € B;), integrating by parts on O,

and using the boundary conditions, the variational formulation is:

Case d = 0 (Variational formulation)
m(U™ ™ 0) + kpa(U™ 0) =
m(U™,v) +/

i
n

(f(-,8),v)ds + /Z (9(-,s),v)rds, Yv e B, (4.5)
Case d = 1 (Variational formulation)
m(U§*,v) + kna(UGH, v) + m(UP,v)
=m0+ [ (760 0ds+ [ (gs)0rds,
(U ) U ) ¢ U )

:_m(Un’v)+/1 w(ﬂ"s)’w)d‘s

n n

2(s —t,
+/ W@L,s),mpds, Vo, w € B (4.6)
I, n

REMARK 4.1. Equationﬁ) and ([.§) can be derived directly from (B-1)). How-
) )

ever we will need formulas and ( in the space nonconforming case.

We now discuss the computation of the right-hand side on the interface I'; ;% (0,T")
for j € N; in the algorithm (B.6).

4.1.2. Transmission terms. Let (g; ;) be a given initial guess in Py(L*(T; ;), Ti),
for 1 <i < 1I,j € N;. Then, at iteration k > 1, we solve the subdomain problem in
Qi :

H(T'UF)+V - 0;UF —v;VUF) +¢; UF = Pif in Q; x (0,7), (4.7a)
(viOn, —bi-m;) UF + 8 ;UF =g, j € Nyon Ty 5 x (0,T), (4.7b)
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The function gf’ j is defined for k > 2 by
95 = P'G5
with gﬁi, k > 2, defined by
35 = (~(V;0n, — b -ny) UF" + 8, ;U ).
We remark that, for k£ > 2,
3= =gy + S U + 5, U
— k-1 . k-1 . NG (TIUEY
95i T (pi,j +Pji) i T (gi,5 + 4,1) 0 ( j )
+i; (Vr,, - (iU =5V, US4 50 (Vo - (rjaUF =55V, UFY).
Once g}f , 1s computed from Uf_l, we obtain gﬁ ; from (@) as follows : we introduce

the basis functions (¢}, ,)o<a<d of polynomial of degree lower than d on subinterval
I, then

d
(g8 i = (P'gy i = Z GiEh o
a=0

with G5k, € L*(I; ;) solution of the system

d

D e W L )
i I

a=0 n n

Thus, the computation of gl’f ; on each I needs the computation of terms in the form

/ Gt g ds, (4.9)
I7/

n

for 8 € {0,...,d}. Recall that g¥; is defined on I'; ; x I and g, € Pa(L*(Ty;),T;).
Thus, we first write the integral in ([.9) as an integral over I : let @7, , be the function
defined on I, equal to @fz,a on I! and equal to zero on I\I:. Then

/_ Gy, ds = /éﬁi@;,ﬂ ds. (4.10)
I I

We now decompose g}f , on the basis functions (@%,a)ogagd of polynomial of degree
lower than d on each subinterval I7, :

d
5k - E ik 0
(gj,i)‘jfn - Gm,a@m,av

a=0

with Gk, € L*(T'; ;) solution of the system

d
ZGZ;W/F gaﬂmagafn”@ds:/ﬂ il . Befo,. . d}
a=0 m m
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Introducing the function ®J, . defined on I, equal to <pm , on I7 and equal to zero
on I\I7,, we have

g_;v,z Z ZGma m,a (411)

m=0 a=0

Replacing ([.11) in ({£.10) leads to
Ny d
JRCTERTED DDA KA
I I

m=0 a=0

Let M®# be the projection matrix defined by
(M) 41 g1 = /@g‘n’aqﬂﬂ ds. 0<,n<N;,0<m<N;.
I

Then we have, for 0 < n < N;,
d

/1 G pds = 3 (MEAGER),

a=0
S A k =7,k
with GLF = (Géa,...,vajya)t.
In the special cases d = 0 and d = 1, we obtain :

Case d=0

In that case there is one basis function ¢}, ; = 1 on I}, and
ki ~k =,k
/_ gj,i‘piz,o ds = / gj;ds = (MO’OGé Jns
I I

With(M’)n+1m+1—f11p 1 ds, Gmo—k] fp g“ds 0<,n<N;,0<m<N;.

Case d=1
. . s—th .
In that case there are two basis functions ¢y, o =1, ¢;, 1 = 2&;%/2 on I, and
kg Sk Sk
ffl; gf,i@:z,o ds = (MO’OGJO + Ml’OG]l )ns
ki Ak Sk
flib gﬁi@%,l ds = (MOJGJO + MLlG]l Jns
with, for 0 <,n < N;, 0 <m < IV,
0,0 1,1 s—tan/Q S_tn+1/2
(M ngtmer = [ 1 1pds, (M )ny1imir =4 ;i o L ds,
1 _ 1 km n

s—t’ s—t
+1/2 +1/2
(Ml’o)n_;’_l,m_;’_l =2 / 77” / 1Ij 1[1‘] dS, (M071)n+1,m+1 =2 / 1Ij 7”2 / 1[1’ dS,
I kgn m n I m k n

G2, defined by

~j7k _
G k] f]J g]z

f]J m+1/2 ~k dS

and G7F

m,0?



24 L. Halpern, C. Japhet, J. Szeftel

The projection matrices M®# are computed by a simple and optimal projection al-
gorithm without any additional grid (see [],[H]).

We now discuss the space dicretization using finite elements.

4.2. Space discretization. We suppose that each subdomain ; is provided
with its own mesh 7%, 1 <i < I, such that

ﬁi - UTGT,;LT

For T € T}, let hy := sup, ,er d(7,y) be the diameter of 7" and h the discretization
parameter

h = max h;, with h; = max hy.
1<i<T TeT;

Let P1(T) denote the space of all polynomials defined over T of total degree less than
or equal to 1. Then, we define over each subdomain the conforming spaces V' by :

Vhi = {’U@h S Co(ﬁi), 'Ui,h‘T € PI(T)’ AFAIS 7;;}

In what follows we assume that the mesh is designed by taking into account the
geometry of the I'; ; in the sense that, the space of traces over each I'; ; of elements
of V}/ is a finite element space denoted by V7. Let n®/ be the dimension of V;7 and
(X?';l)lgégni,j the finite element basis functions of V,i’j.

"We consider two cases : when the grids in space are conforming, and the case of
nonconforming space grids.

- 4.2.1. Conforming case. In the case of conforming grids in space, we have
V! = V)", We can replace B; by V}! in the variational formulation. We set :

a;(u,v) :/ (%((bi.Vu)v—(bi~Vv)u))d:ch/ I/Z-VwVvder/ (ci+%v.bi)uvdx,
(4.12)

and

< Cjju,v >T,;= fFM ((pi,j - I%) uv
N +qi; (0c(T'u) + Vr, ; - (1 ju))v — siijpi’jqui,jv) do,
< Ciju,v>r;= Jp, ((pig = 25) ww

+qi,j (6t(IJu) + va’ . (’l"@jU))U — smvpmuvpmv) do.

We introduce the discret algorithm : let (gz1 j, 5) be a given initial guess in Pd(V}il’j ,T0),
for 1 <i <1, jeN;. Let UF, be the approximation of u¥ in Pyq(V}{,7;). Then, at
iteration k£ > 1, we solve the subdomain problem in €2;:

/ (at(IiUi]Th)Ui,h + di(Ui]fhan,h)) der+ < Ci,jUiIfh,Ui,h >ri7j
Q;

:/ Pifvi,hdac—i—/ gfyjﬁhvi,h do, in (0,T), Vv, c Vi, (4.13)
Q ;

2y

For k > 2, v, € V,i’j, we define

/ 9t jnvn do = Pi/ ¥ pon do, (4.14)
Ty i

¥
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with

/ g;ﬁi,hvhda::_/ g;ihvhda+<cgz h1+CaJU]h , Uh >1"
Dij Dij

In equation (.14 - ) we used the fact that the space of traces over each I'; ; of elements
of Vji is the same as the space of traces over each I'; ; of elements of V] For the

computatlon of the rlght hand 51de in -) we follow the same steps as in section
, where we replace g¥; with g 5. n €Vy’ defined by

~k _ ~ %, ~ %, t
9jin = (/ 95,,h X1 h do, ,/ 95,4,h X pisi h dU) s
T Tij

i
and we replace G” k with GZ k an € Vh’J solution of

d
G}];l]?a,h /Ij (pgm,a(p}]n,ﬁ ds = /Ij g?,i,h(p?mﬁa ﬁ € {Oa ad} (415)
a=0 m m
The discrete formulation in the cases d = 0 and d = 1 are obtained from @) and
(@), by replacing B; by V..

When the space grids are nonconforming, following [E], we cannot replace directly
B; by the finite element space V)’ in the variational formulation. We have to consider

equation (1) (ie. (3) for d =0, and ({4) for d = 1).
4.2.2. Nonconforming case. In this section we extend the nonconforming ap-
proach in | E] We consider the mortar spaces Wh asin | E] Let m™J be the dimension

of W7 and (wk h)1<k<m1 ; the ﬁnlte element basis functions of W,/. We introduce
the discrete algorithm : let (Ul no Qi MUY € Pa(VET:) x Pa(Wi7 | T;) be a discrete

approximation of (Uik_l,uianiUik D 'in Q; at step k — 1. Then (Ufh,Qifh) is the
solution in Pg(Vyi, T7) x Pa(W} 7, T;) of

d

dt (IlUk}”'Uz h) + &i(Uil?hﬂ U h)'

b i X
+/ ( ﬁh L Ukh)vlhda = (P fyvin)i, in (0,T), Yv,p € Vyy,
r

(2%

/ (Q —b; -nU, i, h +pi; U, )whd do
Fl,]

irrk k i (4.16)
+ (¢1.;(OU(Z'UL) + Vo, - (ragUSOY + 63,3865V e, ,UE Ve, 037 do

Fi,j
:/ Pi=Q8 = by - n U + iy U )ui do
Fl,]

+/F Pqij (0 TUS) + Ve, - (i USTONY + ¢iysii Ve, Ul 'V, 437) do
2y

n (0,7), Y7 e W7, jeN;.

We give first the interior scheme for d = 0 and d = 1 and then the computation of
the right-hand side in the transmission condition of )
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Interior scheme. The discrete problem in subdomain O = ; in (.16)) is defined
as follows : find (Up, Q) := (Ui’fh,Qﬁh) in Pa(Vi{, ;) x Pa(W, 7, T;) solution of

d .
E (IUh, ’Uh) + a(Uh, ’Uh) +/
I

/ (Q =b-nUn + pUn + q(0:(ZUs) + Vr - (rUn)))¥n + ¢sVrUnr Vi) do
F ~ .
= [o(Pg)¥ndo, on (0,T), Voo, € W,7.

In the cases d = 0 and d = 1 we obtain

b-n . i
(Qh _ TUh)UhdU = (Pf, ’Uh), mn (O,T), Yoy € Vh’

Case d=0

In that case, the approximating functions are piecewise constant in time: Uy(t) =
Ut Uy and Qp(t) = Z’H = Qp , on I, and the discrete problem reduces to
find (U7, Qp) € Vi x W, solution of

]’;lJrl ~ n+1 n+1 b-n n+1
k ,’Uh) + a(Uh avh) + /F(Qh - TUh )’Uth’
ur 1 )
:(_havh)+_/ (f(-,8),vn) ds, Yo, € V3.,
kn kn J1

(

Un-?-'l
/F (@i =b- U™+ p UL 4 g(—— + Vr - (rU ) n + gsVrUp ™ Vo) do

unr 1 r 34,5
:/q—hq/;h da+—/ /g(s)z/;h do ds, Yy € Wy
r kn kn Ji1, Jr

Case d=1

In that case, we write U(t) = U&Zl + Qt_t;‘%/zU{fZl and Qp(t) = ngll +
2%‘%/2@’1%1 on I, U = Up(t,), and the discrete problem reduces to find (U&Zl, g:};l)
and (U7, Q141 in Vi x WZ] solution of the system

1 n+1 n+1 ~ n+1 n+1 b-n n+1
k_(UO,h + U7 vn) +a(Ugy, on) + F( 0h *TUO,}L Yop, do
un 1 )
= (—wn) + —/ (f,on)ds, Vo €V,
kn kn J1,

3

3 n n ~/rn n b-n n
E(_Uo,zl + Ul,;zrl’ wp) + a(ULZl, wp) + F( O,Jlrzl T 9 Uo,;zrl)wh do
3Un 6 [ls—t, _
7( 7wh)+ _/ 12 (fawh)dsa Vu}h S Vhfv
kn kn I, kn

—

Qi =b-mU + UG + 2o (UG + UL + gV - (UG ) n do

un 1 -
+/qupU5‘;§1prh da:/q—z/zh da+—/ /gwh dods, Y, € W7,
r ’ r kn K, I, JT

3
JQuE —bnU UL PR UL + ¥ (UL do

30" 6 [ s—tn .y
Jr/quFUfZlVFChdU:f/q Ch da+—/ J/g@dods, V¢, € Wi
r ’ r kn kn Ji,, kn r

Transmission terms. Let (U),,Q7,) € Pa(V},Ti) x Pa(W,;7, T;) be a given
initial guess, for 1 <+¢ < I. Then, at iteration & > 1, we solve the subdomain problem
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in Qz

d
dt (IZUZ ho Vi h) + QZ(Uz ho Ui h)

b i ,
+/ ( ﬁh N Ukh)vlhda = (P'f, vin)i, in (0,7), Y, € Vi,
r

(2%

/F (Q —b;,-n; Zthpm )w,;]do (4.17)
+ / (4.5 OUZUL,) + Vro, - (s UE DL + igsiy Vi, Ul Ve, 07 ) do
PG Q5 ), on (0,T), el € Wi, € A
with, for k£ > 1,
an((U, = Jr., ( Q+b; n;U+p;;U)pdo
(4.18)

+ / qm-@t TV + Ve, - (ray U6 + qogs0, Ve, UV, ) do.
T

@]

For the computation of the right-hand side in (), we follow the same steps as in
section , where we replace 5;?, ; with

ij ~ - - i, t
g],zh (gh((Ukh1562§7 1) 1,Jh)ﬂ"-5gh((U]]‘fh15Q;hl)aw,mji,j,h)) )

and we replace G” k with GZ k o € W” solution of

d
~5k J J _ ~k J
Gm,a,h/. PrnaPm.p ds = / 95in¥Pmp BE {0, ...,d}. (4.19)
a=0 ES 17,
. ~k . k—1 ot g k-1 _
For the computatlon of g5, n, we write (U}, )‘Fm = D=1 U Xy and Q0 =
: k=1 _ (_h h toprk=1 _ (,,h h t
Ze 1 zj 51/14 n» and introduce Q7" = (27, ...,zjﬁmj,i) LU =Wy, ...,ujﬁnj,i) , and

the projection matrices, for 1 <k < m®i, 1 <1 <md? and 1 < ¢ < nh?,
Vi _ 0,5 1,050 7]
(M7 )kt —/F Y0y, do, )k, —/ d’k hxéh
i

(MZ’,%)k,Z = /F (=bj -m; + pw)wk hxé h da

@, J
(B ke = / Vo, (rigxy )i, doy (K3)ke = / Gi,j5ii VT, X0 VT, 00, do
Ty Dij

Then
5o = —MIIQE + 0, (TMLIURLY) + (M), + Bl + KE UM, (4.20)

The projection matrices are computed using the projection algorithm in [H]

5. Numerical Results. We have implemented the algorithm with d = 1 and
P; finite elements in space in each subdomain. Time windows are used in order to
reduce the number of iterations of the algorithm. For the free parameters defining
S;,; and S’m—, we chose ; ; to be the tangential component of the advection, s; ; the
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value of the diffusion in the domain §2;. The optimized parameters p; ; and ¢; ; are
constant along the interface. They correspond to a mean value of the parameters
obtained by a numerical optimization of the convergence factor [H]

We first give an example of a multidomain solution with discontinuous variable
diffusion, for two subdomains and one time window. The advection velocity is also
discontinuous, taken normal to the interface in one subdomain, and tangential to the
interface in the other subdomain. The latter case of a flow tangential to the interface
is difficult when the interface conditions are not related to the convergence factor of
the domain decomposition method (see for example [12)).

The physical domain is = (0, 1) x (0, 2), the final time is 7' = 1. The initial value
is ug = 0.25e100((@=0.55+(u=1.1%) 4nd the right-hand side is f = 0. The domain
2 x (0,2) is split into two subdomains 7 = (0,0.5) x (0,2) and Q3 = (0.5,1) x (0, 2).
The reaction c¢ is zero, the advection and diffusion coefficients are by = (0, —1), v1 =
0.001,/y, and by = (—0.1,0), 2 = 0.1sin(zy). The mesh size over the interface and
time step in Q; are h; = 1/32 and k; = 1/128, while in Qs, ho = 1/24 and ko = 1/94.
In Figure @, we observe, at final time T' = 1, that the approximate solution computed
using 3 iterations (right figure) is close to the variational solution computed in one
time window on a time conforming finergrid (left figure).

Monodomain solution, At time t=T=1 DG-OSWR Solution, At time t=T=1

e
e
i
=
i
v
1
i
e
o
e

NNV

Fic. 5.1. Variational (left) and nonconforming (right) DG-OSWR solutions

We analyze now the precision in time. The space mesh is conforming and the
converged solution is such that the residual is smaller than 1078, We compute a
variational reference solution on a time grid with 4096 time steps. The nonconforming
solutions are interpolated on the previous grid to compute the error. We start with
a time grid with 128 time steps for the left domain and 94 time steps for the right
domain. Thereafter the time step is divided by 2 several times. Figure E shows
the norms of the error in L°°(I; L?(€2;)) versus the number of refinements, for both
subdomains. First we observe the order 2 in time for the nonconforming case. This
fits the theoretical estimates, even though we have theoretical results only for Robin
transmission conditions. Moreover, the error obtained in the nonconforming case, in
the subdomain where the grid is finer, is nearly the same as the error obtained in the
conforming finer case.
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T T
—— conforming finner grid
conforming coarser grid
—+— nonconforming —domain 1|
107%L —+—nonconforming —domain 2}
J—y

Error

10" . . . . .
1 15 2 25 3 35 4

Number of refinements

Fic. 5.2. Error between variational and DG-OSWR solutions versus the refinement in time

The computations are done using Order 2 transmission conditions. Indeed, the
error between the multidomain and the variational solutions decrease much faster with
the Order 2 transmissions conditions than with the Robin transmissions conditions
as we can see in Figure @, in the conforming case.

Error

10710 L L
0 5 10 15 20
Iterations

Fic. 5.3. Convergence history for different transmission conditions

We now consider the advection-diffusion equation with discontinuous porosity w:
wou + V - (bu — vVu) = 0.

The physical domain is Q@ = (0,1) x (0,2), the final time is T = 1.5.  is split
into two subdomains. The interface I' is parametrized with a Hermite polynomial
(3+((25=1)°+2(25 = 1)+ (25— 1)1 +((25—1)*=2(25 = 1)*+ (25— 1)) 1;51), 0 <
s < 1, see Figure p.4. The advection, diffusion and porosity coefficients are

by = (—sin(Z(y—1))cos(m(z—1)),3cos(Z(y—1))sin(r(z—13))), v1 = 0.003, w; = 0.1,
b2 = b1, Vo = 001, Wy = 1.



30 L. Halpern, C. Japhet, J. Szeftel

F1G. 5.4. Domains Q1 (left) and Q2 (right)

We first consider a conforming grid in space. The time step in Q; is k; = 1/180,
while in Q9, ks = 1/100. In Figure @, we observe, at final time T = 1.5, the
approximate solution computed using ten time windows and 5 iterations in each
time window. It is close to the variational solution computed in one time win-
dow on the conforming finer space-time grid as shown on the error, in Figure @

DG-OSWR solution after 10 FiaG. 56 Erlmr with @amatz.onal §olutwn
after 10 time windows and 5 iterations per
window

FiGc. 5.5.
time windows and 5 iterations per window

We analyze in Figure @ the precision versus the time step. The converged
solution is such that the residual is smaller than 1072, A variational reference solution
is computed on a time grid with 7680 time steps. The time nonconforming solutions
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are interpolated on the previous grid to compute the error. We start with a time grid
with 120 time steps for the left domain and 26 time steps for the right domain and
divide by 2 the time steps several times. Figure @ shows the norms of the error in
L (I; L3(£2;)) versus the time steps, for both subdomains.

--—Slope 22
L*(0,T,L (Ql)) Error

B 2
L7(0,T.L (QZ)) Error

—SJope 3
L%(Q.) Error at time t=T|
— 1 I

LQ(QZ) Error at time t=T

Error

10°
Time step

Fic. 5.7. Error curves versus the refinement in time

We observe the order 2 in time for the nonconforming case that fits the theoretical
estimates. In Figure .7 we show also the norms of the error in L?(€;) at final time
t = T versus the time steps, for both subdomains. We observe the order 3 for the time
nonconforming case. This corresponds to the superconvergence behavior described in

3.

We now consider nonconforming grids in space as well. The mesh size and time
step in ©; are hy = 0.032 and k1 = 1/120, while in Q9, ho = 0.048 and ko = 1/26. In
Figure @ we observe, at final time 7" = 1.5, that the approximate solution computed
using 5 iterations in one time window is close to the solution computed with the
conformal in space grid in Figure @, left. In Figure @ and we observe the
precision versus the mesh size. The converged solution is such that the residual is
smaller than 10712, A variational reference solution is computed on a time grid
with 960 time steps and a space grid with mesh size h = 3.51073. The space-time
nonconforming solutions are interpolated on the previous grid to compute the error.
We start with a time grid with 60 time steps and a mesh size h; = 0.056 for the left
domain and 20 time steps a mesh size ho = 0.11 for the right domain and divide by 2
the time step and mesh size several times. Figure @ shows the norms of the error in
L?(I; L*(9Q;)) versus the time steps, for both subdomains. We observe the order 2 for
the nonconforming space-time case, even though we have theoretical results only for
the time semi-discrete case. Figure displays the norms of the error in L?(;) and
in H'(Q;) at final time ¢t = T versus the mesh size, for both subdomains. We observe
the order 2 for the L? error, and the order 1 for the H' error for the nonconforming
space-time case.
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VWA
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r 10.025

r 10.015

0.005

Fic. 5.8. DG-OSWR solution after 5 iterations, in one time window

—— Slope 2
—+—Relative L? error, Domain 1
—e—Relative L error, Domain 2|

10 -

10° 107
Mesh size

F1c. 5.9. Relative L? error in
space

fsiope 2

L (Ql) error at t=T
2 -
L (Qz) error at t=T

- - I{.)pe 1
H (Ql) error at t=T||

H](Qz) error at t=T|

time and

time

Fic. 5.10. L?

10
Mesh size

and H' errors at the final

6. Conclusion. We have proposed a new numerical method to solve parabolic
equations with discontinuous coefficients. It relies on the splitting of the time interval
into time windows, in which a few iterations of an optimized Schwarz waveform relax-
ation algorithm are performed by a discontinuous Galerkin method in time, with non
conforming projection between space-time grids on the interfaces. We have shown
theoretically in the Robin case that the method preserves the order of the discon-
tinuous Galerkin method. Numerical estimates of the L2(I; L?(€2;)) error and the
H' error at final time have shown that the method preserves the order of the space
nonconforming scheme as well. The analysis of the fully discrete scheme will be done

in a further work.
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