
HAL Id: hal-00618073
https://sorbonne-paris-nord.hal.science/hal-00618073v1

Submitted on 16 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Relational Extension of the Notion of Motifs :
Application to the Protein Common 3D Substructures

Searching Problem
Nadia Pisanti, Henry Soldano, Mathilde Carpentier, Joël Pothier

To cite this version:
Nadia Pisanti, Henry Soldano, Mathilde Carpentier, Joël Pothier. A Relational Extension of the
Notion of Motifs : Application to the Protein Common 3D Substructures Searching Problem. Journal
of Computational Biology, 2009, 16 (12), pp.1635-1660. �hal-00618073�

https://sorbonne-paris-nord.hal.science/hal-00618073v1
https://hal.archives-ouvertes.fr

For Peer Review

Journal of Computational Biology: http://mc.manuscriptcentral.com/liebert/jcb

A Relational Extension of the Notion of Motifs : Application to the Protein

Common 3D Substructures Searching Problem

Journal: Journal of Computational Biology

Manuscript ID: JCB-2008-0019.R1

Manuscript Type: Original Paper

Date Submitted by the
Author:

24-Sep-2008

Complete List of Authors: Pisanti, Nadia; University of Pisa, Computer Science
Soldano, Henry; Université Paris 13, LIPN-UMR 7030 CNRS;
Université Paris VI, Atelier de BioInformatique
Carpentier, Mathilde; université Pierre et Marie Curie-Paris6, Equipe
de Génomique Analytique
Pothier, Joël; Université Pierre et Marie Curie-Paris6, Atelier de
BioInformatique

Keyword:
strings, algorithms, combinatorics, protein motifs, PROTEIN
STRUCTURE

Abstract:

Geometrical configurations of atoms in protein structures can be
viewed as approximated relations between them. Then, finding
similar common substructures within a set of protein structures
belongs to a new class of problems that generalizes that of finding
repeated motifs. The novelty lies in the addition of constraints on
the motifs in terms of relations that must hold between pairs of
positions of the motifs. We will hence denote them as
\emph{relational motifs}. For this class of problems we give an
algorithm that is a suitable extension of the KMR paradigm and, in
particular, of the KMRC as it uses a degenerate alphabet. The
algorithm contains several improvements with respect to KMRC that
become especially useful when---as it is required for relational
motifs---the inference is made by partially overlapping shorter
motifs, rather than concatenating them.
The efficiency, correctness and completeness of the algorithm is
ensured by several non-trivial properties that we prove in this
paper. Finally, we give some examples in the important field of
protein common 3D substructures searching. The methods
implemented have been tested on several examples of protein
families: serine proteases, globins and cytochromes P450. The
detected motifs have been compared to those found by multiple
structural alignments methods.

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

For Peer Review

Page 1 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
A Relational Extension of the Notion of Motifs :

Application to the Protein Common 3D

Substructures Searching Problem

Nadia Pisanti∗‡ Henry Soldano∗� Mathilde Carpentier◦ Joel Pothier�

‡ Dipartimento di Informatica, Università di Pisa,

Largo B. Pontecorvo, 3 I-56127 Pisa, Italy, pisanti@di.unipi.it
∗ LIPN - UMR 7030 CNRS - Université Paris 13,

Av. JB-CLément, F-93430 Villetaneuse, France, henry.soldano@lipn.univ-paris13.fr
� Université Pierre et Marie Curie-Paris6, Atelier de BioInformatique,

12 rue cuvier, 75005, Paris, France, jompo@abi.snv.jussieu.fr
◦ Université Pierre et Marie Curie-Paris6, Equipe de Génomique Analytique, INSERM511

91, bd de l’Hôpital 75013 Paris, France, mathilde@abi.snv.jussieu.fr

September 24, 2008

keywords :

Abstract

Geometrical configurations of atoms in protein structures can be viewed
as approximated relations between them. Then, finding similar common
substructures within a set of protein structures belongs to a new class of
problems that generalizes that of finding repeated motifs. The novelty
lies in the addition of constraints on the motifs in terms of relations that
must hold between pairs of positions of the motifs. We will hence denote
them as relational motifs. For this class of problems we give an algorithm
that is a suitable extension of the KMR (Karp et al., 1972) paradigm and,
in particular, of the KMRC (Soldano et al., 1995) as it uses a degener-
ate alphabet. The algorithm contains several improvements with respect
to (Soldano et al., 1995) that become especially useful when—as it is
required for relational motifs—the inference is made by partially overlap-
ping shorter motifs, rather than concatenating them like in (Karp et al.,
1972). The efficiency, correctness and completeness of the algorithm is
ensured by several non-trivial properties that we prove in this paper. The
algorithm have been applied in the important field of protein common
3D substructures searching. The methods implemented have been tested
on several examples of protein families: serine proteases, globins and cy-
tochromes P450. The detected motifs have been compared to those found
by multiple structural alignments methods.

1

Page 2 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

1 Introduction

Finding repeated subsequences and substructures in biological (resp. sequential
and structural) data is having growing importance for various different appli-
cations in molecular biology. Among them we can mention the detection of
trasncription factors binding sites as repeated gapped motifs in the upstream
regions preceeding genes, or the prediction of RNA secondary structures as com-
plementary reversed repeated subsequences, the detection of common fragments
of genomic sequences as a starting point of measuring genomic distances, etc. In
this paper we focus on yet another biological application, that is the detection
of common substructures in 3D proteins. In a preliminary version of this paper
(Pisanti et al., 2005) we have designed an algorithm for the inference of repeated
motifs under the new framework of relational motifs which results particularly
suitable for this purpose. The present paper extends this work, presenting all
the related theoretical results, and discussing our experiments about the above
mentioned repeated structural fragments extraction problem.

Motifs inference in biological applications requires a certain degree of ap-
proximation in establishing whether a biological object is basically the same as
another one. For this reason, the possibly huge size of solutions in the search
space makes the algorithmical solution tricky. It is very difficult to find the right
balance between the sensitivity of a motif inference tool and its efficiency when
an exhaustive algorithmical approach is suited. Most of the difficulty comes
from the unavoidable noise of biological data which causes an explosion of in-
termediate candidates (typically, shorter motifs to be extended or composed to
make longer ones). Hence, it is very important that the inference tool offers
a way to refine the query in order to minimize this noise. We define a new
class of problems that extends the traditional inference of repeated motifs. The
latter is a well-known problem that consists of finding frequent patterns in a
given input text, or, equivalently, patterns shared by several input sequences.
This problem has applications in several data mining tasks where data can be
represented by a text. For many such applications it is indispensable that a
certain degree of approximation is allowed among different occurrences of the
same motif. For a survey on combinatorial algorithms for finding approximate
repeated motifs, see for example Chapter 5 of (Lothaire, 2005) or Chapter 4
of (Jones and Pevzner, 2004), or (Parida, 2008). A general observation is that
when approximate motifs are sought, the problem becomes computationally
critical as there can be an exponential number of motifs satisfying the required
frequency. Such exponentiality is not with respect to input size, but rather on
the length of the sought motifs (or in their allowed degree of approximation,
somehow often proportional to the length itself), hence the problem is fixed
parameter tractable. Nevertheless this drawback can even lead to unfeasibility
and, in ”better” cases, to a very noisy output. For this reason there have been
attempts in the literature to refine the query in the direction of specifying the
structure of the motifs (Marsan and Sagot, 2001) or of defining slim generators
for the complete set of the motifs (Pisanti et al., 2003). The refinement of the
former has clear motivations in molecular biology in inferring transcription fac-

2

Page 3 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

tors binding sites, while the latter—to the best of our knowledge—still misses
a convincing application.

We introduce here a new type of refinement which consists of requiring that
also relations between pairs of positions in the motifs are conserved, hence we
talk about relational motifs. This apparently complicates the problem, but we
will exhibit an algorithm that uses a very efficient representation of the motifs
and which — thanks to some non-trivial properties we prove in this paper
— results in an efficient inference: linear in the input size and ”really” fixed
parameter tractable. Indeed, refining the query on the motifs reduces the output
size and also the explosion of the number of candidates. Moreover, relations
allow one to constraint the motifs so that more specific properties are satisfied
and thus a more sensitive tool can be conceived. The framework we suggest in
this paper is very general, and its solution we exhibit is for the most general case.
However, depending upon the specific application, some constraints concerning
conservation may be relaxed and hence further efficiency achieved. In Section 7
we will focus our attention on the application in structural molecular biology,
that is finding repeated substructures in 3D protein structures, using as relations
the distances between the α-carbons in the protein structure. Notice that this
data differs from that used in (Feng et al., 2005; Parida and Zhou, 2005) where
the authors propose a combinatorial pattern discovery technique to investigate
protein folding trajectory data from simulated experiments: the data used there
is not the amino acids sequence of the protein primary structure, nor just the
final configuration of the protein, but the various reaction coordinates of key
intermediate states of the folding process of the simulation. These data are
then combined and represented by (normal, that is non relational) patterns
that are suitably inferred and clustered, allowing to extract structures that
were overlooked in previous work.

The inference of motifs with relations introduced in the present paper can
find application in many tasks such as music research (detecting scales or just
tunes that are in different keys by using the relation that indicates the difference
of keys), extracting motifs in trees (where being an ancestor or a father can
be explicited by means of relations) or in any sort of structured data such as
XML/HTML files (or any other source code), finding geometrical motifs (using
points in a plane/space as elements and topological relations among them),
studying RNA secondary structures (requiring a Watson-Crick or Hoogsteen
complementarity as relation among fragments of motifs), etc... Each one of
these applications has its own peculiarities that can lead to a specific instance
of the framework of relational motifs. This specificity is in general driven by a
suitable balance between the sensitivity and the efficiency required.

We will use two input-defined degenerate alphabets for the description of
the motifs (one for the motif elements and one for the relations) thus allowing
in general the maximum freedom of approximation. Given that we refer to the
paradigm of the KMR algorithm (Karp et al., 1972), we will have to deal with
the degenerate alphabet like in KMRC (Soldano et al., 1995). In particular, we
will restrict our attention to maximal motifs for a notion of maximality which
is the same as in (Soldano et al., 1995). The choice of dealing with relational

3

Page 4 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

motifs implies the fact that motifs will be inferred by means of an incremen-
tal construction by partially overlapping two shorter motifs. By doing so, we
substantially differ from (Karp et al., 1972) in the same direction as (El-Zant
and Soldano, 2004) where relations in motifs had been introduced for the first
time. In (El-Zant and Soldano, 2004), however, several properties were unno-
ticed and thus unbearable drawbacks introduced. In this paper we will prove
some properties that will allow to improve the time and space complexity of
(El-Zant and Soldano, 2004) by decreasing of an exponential factor the amount
of candidates generated at each step that we prove to be redundant. We will
present various propositions, lemmas and theorems whose detailed proofs are
left in the Appendix (section 9).

2 Preliminary definitions

Our goal is to find approximate relational motifs on a input text that is a
sequence over an alphabet Σ. In this section we formalize the way we express the
approximation, and the motifs we want to infer according to this. For a simpler
explanation, we start with defining some concepts omitting the relations, that
we will integrate in the paradigm later.

Let the input text be a sequence t over the alphabet Σ. We assume that
it has length n and we denote this by |t| = n. The letter at position p in t is
denoted by t[p], and therefore we have that t = t[1]t[2] · · · t[n] where t[i] ∈ Σ for
all 1 ≤ i ≤ n.

Definition 1 Given the alphabet Σ, a cover on Σ is a set G = {G1, G2, ..., G|G|}
with Gi ⊆ Σ for 1 ≤ i ≤ |G|, such that ∪iGi = Σ and there are no 1 ≤ i, j ≤ |G|
with i 6= j such that Gi ⊆ Gj. The sets Gi’s are said groups.

The alphabet Σ of the input sequence is implicitly given by means of the
sequence itself, while that of the motifs is explicitly given by a cover on Σ
defined as above and given as input. The alphabet used to describe the motifs
will be that of the groups of such cover, which we will also refer to as degenerate
alphabet.

Definition 2 A k-pattern is a k-long sequence on the alphabet of the groups.
A k-pattern x = x[1]x[2] · · ·x[k] with x[i]∈G for 1≤ i≤k occurs in t at position
p if t[p + i − 1]∈x[i] for all 1≤ i≤k. In this case p is said to be an occurrence
of x. We will denote with extent the complete set of occurrences of a pattern.

We are interested in frequent patterns, that are patterns that occur more
than a certain number of times. Notice that, due to the degenerate alphabet,
different patterns may occur at the same position and that, even more, different
patterns may have the very same extent. This is the case when the patterns
differ in positions that in the occurrences correspond to letters that belong to the
intersections of distinct groups. Hence, given a pattern x, its extent is unique,
but this latter may be the extent of other patterns different from x.

4

Page 5 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Definition 3 Let k, q be integers and t a sequence on Σ. A s motif of size k
for t is a k-pattern that occurs in t at least q times. Given an extent LI, the
k-motif I is the set of s motifs x of size k that have extent LI. In this case we
say that x is an s motif of I. The parameter q is named quorum.

When unnecessary or clear from the context, we will omit the k and simply
talk about pattern and motif.

Definition 4 A k-motif I of t is said to be maximal if its extent LI is not a
proper subset of LJ for any other k-motif J . It is non maximal otherwise.

Example 1 Let us consider the input sequence t̃ = xbxcxaxbxc on Σ = {a, b, c, x}
and the cover G={C1 ={a, b}, C2 ={b, c}, C3 ={x}}. Assuming q =2, we have
that C3C3C3, C1C3C1 and C1C3C2 are all 3-patterns. Nevertheless, the first
never occurs in t̃, the second occurs only at position 6 and thus is not an s motif
either, while the third occurs in 2, 6 and 8 and hence it is an s motif of size 3.
Moreover, the 3-motif with extent {2, 8} is not maximal in t̃ because that with
extent {2, 6, 8} is the extent of another 3-motif; this latter is maximal as well as
that with extent {1, 5, 7}.

We will say that a k-motif I is a duplication if LI = LJ for any other k-motif
J with J 6= I. Notice that if I is a duplication of J , then J is a duplication of
I, as the relation is symmetrical (and transitive). If a k-motif is maximal and
it is a duplication, we will say that it is a maximal duplication.

The problem we address is to find the extents of all maximal k-motifs, and
it can be formally stated in the following way.

Problem 1 Finding maximal k-motifs:

INPUT: The input sequence t, the cover G, and the length k.
OUTPUT: The extents of all maximal k-motifs.

As stated so far, the problem has been solved in (Soldano et al., 1995) by
extending the method of (Karp et al., 1972) to the case of maximal motifs which
are approximate in that they are expressed using the degenerate alphabet. Ba-
sically, in (Soldano et al., 1995) like in (Karp et al., 1972), maximal k-motifs
are obtained in O(log k) steps where at each step the length of the motifs is
doubled by means of concatenation of shorter motifs, with the difference that
in (Soldano et al., 1995) only maximal motifs are kept and hence, in particular,
each step is concluded with an exhaustive search of extents included into others
in order to detect non-maximal motifs and discard them. The set inclusions
detection results to be a sensible bottleneck of the algorithm. In other words,
each step of (Soldano et al., 1995) is different from that of (Karp et al., 1972)
as it deals with approximate and maximal motifs, but the two algorithms share

5

Page 6 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

the fact that an `-long motif is obtained by a concatenation of two (`/2)-long
motifs that occur in the input sequences at distance `/2 and in the same relative
order. Only if the length k of the sought motifs is not a power of two, there
is a final step where the motifs of length k are generated by overlapping two
motifs of length k′ such that k′<k<2k′ and k′ is a power of two. We call such
a generation an overlap step, and the previous ones concatenation steps. If the
size of an overlap (that is, the length of the string fragment that the two words
share) is o, then we will talk about o-overlap.

The goal of this paper is to further extend the method of (Soldano et al.,
1995) to the case in which O(k) steps are overlap steps. In particular, we are in-
terested in o-overlaps with o ∈ Θ(`) where ` is the length of the motifs involved
at a generic step. In other words, we infer motifs of growing length where at
each step such growth is of a constant factor only instead of doubling the size as
in (Soldano et al., 1995). In this way, the inference of repeated k-motifs requires
Θ(k) overlapping steps while O(log k) concatenations steps would have sufficed.
The need of this apparently useless drawback is motivated by the fact that we
introduce relations, as we will show in Section 3.2.

Finally, notice that an obvious variant of the algorithm presented in this
paper can solve the problem of finding the maximal motif(s) of maximum length.
This can be done by going on incrementing the length until no maximal motif
is found, and then possibly finding back the right length with a binary search.

3 Relational motifs

The idea is that in some applications (such as the one we will show in Section 7)
it can be useful to extract - not just repeated substrings - but rather substrings
that appear approximatively repeated and, moreover, they mostly appear some-
how arranged in the same relative way. For example, the elements can have
positions on a plane or space and the relations can be topological relations, or
the elements are numbers and the relations are arithmetical binary relations,
etc. In molecular biology one can consider RNA secondary structures where
the required relation is Watson-Crick complementarity. More in general, our
framework allows relations that are independent from the elements themselves.
An instance of this that we will show in Section 7, concerns the application to
finding 3D substructures in tertiary structures of a set of proteins. We consider
the protein sequence of amino acids as symbols of the sequence, and relations
such as the distances between the α-carbons within k-long subsequences in their
3D structure. Notice that in this case the relations are completely independent
from the symbol that appear in the sequence (the amino acid) as they only
depend from the positions involved. This allows to actually represent and infer
3D common structural patterns.

6

Page 7 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

3.1 Definitions

This section will formalize the notion of relational motifs starting with some
basic definitions concerning relations and relational motifs that integrate those
already given earlier in this paper. In particular we still assume there is an
input string t ∈ Σn whose pth position is denoted by t[p] and a cover G on
Σ. On this string we seek k-motifs which—so far—are sets of strings x ∈ Gk

represented by their complete extents Lx ⊆ {1, . . . , n − k + 1}. When taking
into account relations, the input string is enriched with the relations that hold
between each pair of distinct positions. Notice that there is no need to give
relations between positions that are more than k symbols apart as far as we
want to infer relational motifs of length k only.

Definition 5 Let R = {r1, . . . , r|R|} be the relations alphabet and r ∈ R a
relation. The relational input string t is a n long string on the alphabet Σ where
for each pair (p1, p2) of positions 1 ≤ p1 < p2 ≤ n such that |p1 − p2| ≤ k − 1,
it is given the unique (symmetric) relation r ∈ R that holds between position p1

and position p2. We will also denote this with r(p1, p2) and with (p1, p2) ∈ r.

Hence, the input size is no longer n, but rather n × k.
Also for the relations we want to allow a certain degree of approximation that
makes the framework more general and flexible.

Definition 6 Let GR = {CR1, . . . , CR|GR|} with CRi ⊆ R for 1 ≤ i ≤ |GR|
be a relations cover on R where the CRi’s are denoted as relations groups and
none of them is included into another.

Notice that there is no need to explicitly give the alphabet of the relations
as this will be implicit in the relational input sequence. On the other hand, a
relations cover such as that we just defined is given as input parameter.
The notion of pattern is also enriched with relations and therefore that of motifs
and occurrence as well. Formally:

Definition 7 A relational k-pattern is a k-pattern plus a relation group per
each pair of its distinct positions. A relational k-pattern x with relations groups
CR1, . . . , CR|GR| (where for each CRi ∈ GR it is indicated the set of pairs
(u, v) such that (u, v) ∈ r ∈ CRi for some 1 ≤ i ≤ |GR|) is said to occur in t at
position p if the pattern x occurs at position p of t and for all pairs (u, v) ∈ CRi

we have that r(p + u, p + v) for r ∈ CRi. Finally, given the quorum q, a
relational s-motif of size k is a relational k-pattern that occurs at least q times,
and a relational k-motif is the set of relational s-motifs of size k that share an
extent.

Indeed, we will still denote with extent the complete set of occurrences of a
relational pattern and, moreover, a relational k-motif IR is said to be maximal
if its extent LI is not a proper subset of LJ for any other relational k-motif JR.
Given that there is one (and only one) relation per each pair of positions of the
pattern, an extent, together with the length k, denotes again a relational motif

7

Page 8 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

that would be unique if it weren’t for the degenerate alphabet that holds for
relations too.

Example 2 Let us consider as input sequence our running example of t̃ =
xbxcxaxbxc with in addition the alphabet of relations R = {r1, r2, r3} with its
cover GR = {CR1 = {r1, r2}, CR2 = {r2, r3}}, and such that ({(i, i + 1) | 1 ≤
i ≤ k−1}∪{(1, 4), (2, 5), (3, 6), (2, 6), (4, 8)}) ∈ r1, and {(1, 3), (3, 5), (5, 7), (7, 9),
(4, 7), (7, 10), (1, 5), (3, 7), (5, 9), (6, 10)} ∈ r2, and all other pairs of positions
1 ≤ i, j ≤ k are in relation r3. We have that all 2-motifs are relational 2-
motifs because the relations between consecutive positions is always the same
and thus definitely conserved. On the other hand, the 4-motif with extent {2, 6}
is not a relational motif because in its two occurrences the relations between the
first and last positions are different and in different groups (because (2, 5) ∈
r1 ∈ (CR1 \ CR2) and (6, 9) ∈ r3 ∈ (CR2 \ CR1)). Moreover, the maximal
4-motif with extent {1, 5, 7} has two occurrences, 1 and 7, where the relation
between the first and last positions is in CR1 (respectively there are (1, 4) ∈ r1

and (7, 10) ∈ r2), and again two occurrences, namely 5 and 7, where such
relation is in CR2 because (5, 8) ∈ r3 and again (7, 10) ∈ r2. Hence, this 4-
motif corresponds to two distinct relational 4-motifs.

Summing up, the problem we actually aim to solve is the following:

Problem 2 Finding maximal relational k-motifs:

INPUT: The input relational sequence t, the cover G, the relations cover GR,
and the length k.
OUTPUT: The extents of all maximal relational k-motifs.

3.2 Overlap Steps

In order to take into account relations during the inference phase, each time
a candidate k-motif is considered, the conservation of its relations has to be
investigated. In this section we count the amount of comparisons that have to
be made in order to verify whether relations are conserved in a candidate motif.
We do so for three different general ways to perform the inference. The goal
of this section is to show that doing overlapping steps is the best choice. The
analysis we make here ignores the degenerate alphabet; indeed, the fact that
motifs are approximated affects the number of comparisons to do, but this effect
is independent from that resulting from taking into account relations, as we will
see later Section 4. Finally, for the purposes of this section, we ignore the fact
that we seek maximal motifs only, because this has no influence in the results
we prove here.

Given that each pair of positions of a k-motif has to be in a specific rela-
tion, we have that O(k2) relations have to be checked. Since motifs are built by

8

Page 9 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

extending shorter ones, some relations are ensured by the fact that the shorter
were already relational motifs, while others have to be checked at the time of
the generation of the new motif, and per each one of its occurrences that can
be as many as n. Those that have to be checked are the relations involving
positions that were not belonging to the same shorter motif involved in the
overlap (or in the concatenation or extension). In the literature, there are ba-
sically two general ways in which a k-motif can be inferred from shorter ones.
Let us consider the (virtual) trie of all k-patterns that are the candidates whose
frequency has to be tested. In order to perform a lossless search for k-motifs,
the inference must (virtually) perform a, hopefully partial, visit of this trie.
This can be done by attempting to extend the most possible a single candi-
date at a time and then backtrack to attempt patterns with different prefixes
in lexicographical order (i.e. with an in depth visit) like in (Marsan and Sagot,
2001). We will name this in depth inference. Another way is to consider at
each steps all patterns that are at the same level of the trie (i.e. with an in
width visit) like in (Karp et al., 1972). This is what we call an in width inference.

Remark 1 We point out that, in an input string of length n, the total number
of possible occurrences of exact motifs of fixed length are at most n because the
extents of distinct exact motifs cannot intersect. This holds independently from
the quorum q.

In a generic intermediate step of an in depth inference, a (`−1)-long motif
is extended by checking the possible conservation of, say, one extra position
on its right end and its corresponding relations. The following result counts
the maximum number of comparison required in this case in order to check
the conservation of the relations for all candidates motifs whose extension is
attempted.

Proposition 1 In a in depth inference of all relational k-motifs in a sequence
of length n, there are overall O(k3n) relations to be checked.

Let us now make the same counting for the in width inference starting with
the KMR case of concatenation steps.

Proposition 2 In a in width inference of all relational k-motifs in a sequence
of length n that makes use of concatenations steps, there are overall O(k2n)
relations to be checked.

Notice that the result of Proposition 2 holds also when a constant number of
overlap steps replace as many concatenations, and when a non constant number
of concatenations are replaced by o-overlap steps with o ∈ O(1). The following
result, instead, shows what happens with an in width construction that performs
a non constant number of o-overlap steps where o is not fixed.

Proposition 3 In a in width inference of all relational k-motifs in a sequence of
length n that makes use of O(k) overlap steps, there are overall O(kn) relations
to be checked.

9

Page 10 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

As a result of Propositions 1, 2, and 3, we have that when inferring rela-
tional k-motifs, performing O(k) overlap steps is the best choice. Hence, in next
sections we will focus on solving the problem of finding all maximal k-motifs by
means of overlap steps only.

Performing overlap steps requires some care because an overlap step can
overgenerate non maximal motifs. In particular, we will see in Section 4.3 that
in the case of maximal approximate motifs, an overlap step of two maximal
motifs can generate extents that do not correspond to any motif and that will
be detected and discarded as they are properly included into extents of motifs
that are generated. This redundant generation causes extra work in the already
costly phase of the detection of non maximal motifs. We will characterize this
class of extents and show that, fortunately, there is a way to avoid generating
them that will be shown in Section 5 and that makes use of some non trivial
properties we prove in this paper. This drawback was unnoticed in (Soldano
et al., 1995), but there it was not so relevant because there was only one overlap
step. In the case of a series of overlap steps such as those we have here, the
absence of this optimization step could result in catastrophic effect for several
interesting applications.

4 Properties of (Maximal) k-Motifs

4.1 On the cardinality of maximal k-motifs

In this section we prove some properties of maximal motifs that will result useful
to set an upper bound on the cardinality of candidate motifs we will have to
deal with. Again, we will first exhibit results and examples omitting relations,
and we will later integrate them and consequently extend the results.

Let us start by reminding that several s-motifs may have the same extent
due to the adoption of the degenerate alphabet, and that we will implicitly
represent them all with a motif that is actually their extent. Formally, for the
input sequence t, a cover G, and a length k, the extent L represents the following
set of patterns of length k (that is a k-motifs if |L| ≥ q where q is the quorum):

{x = x[1] . . . x[k] | x[i] ∈ G such that t[p + i − 1] ∈ x[i] ∀ 1 ≤ i ≤ k ∀ p ∈ L}.

Example 3 In our running example t̃ = xbxcxaxbxc with G = {C1 = {a, b}, C2 =
{b, c}, C3 = {x}} we have that for k=3 the extent {2, 8} (the substring bxc oc-
curs at both positions) represents both C1C3C2 and C2C3C2.

Independently from the input sequence and the quorum, the set of distinct
patterns of length k can theoretically be as large as the set of different k-long
words on the alphabet G, which has size |G|k. In the following example we show
a sequence where this is the case.

10

Page 11 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Example 4 Let σ ∈ Σ occur in all groups of G. In the input sequence σn every
string in Gk is an s-motif of size k for 1 ≤ k ≤ n−1 (this holds for any quorum
1≤q≤n−k+1).

Hence, the upper bound happens to be tight. And indeed, although an
input sequence such as σn above is quite improbable, in practical cases an ex-
plicit representation of all motifs of a given length is unfeasible. On the other
hand, observe that the exponential number of k-motifs shown above can be
represented by an unique extent L = {1, 2, . . . , n − k + 1}, that is, in linear
space. This is a first intuitive motivation of why our algorithm actually deals
with extents only. In fact, the above mentioned motifs of the sequence σn can
all be represented by an unique extent because they are all maximal duplica-
tions of each other. It is easy to observe that, when representing maximal motifs
by means of their extents only, duplications are clearly a redundant information.

Unfortunately, although a single extent can represent an exponential number
of k-motifs, keeping only the extents does not suffice to avoid the exponential
upper bound, not even if we restrict to maximal and non duplicated motifs.
Indeed, we give below an example where we exhibit |G|k maximal and non
duplicated (hence with different extents) k-motifs in a string of length n = |G|·k.

Example 5 Let the cover be G = {G1, G2, . . . , G|G|} with Gi = {σi, σ} for
1 ≤ i ≤ |G| (hence |Σ| = |G| + 1). Let us consider the input sequence σ̃′ =
σkσ1σ

k−1σ2σ
k−1 · · ·σiσ

k−1 · · ·σ|G|σ
k−1 where each σi occurs at position ik + i.

Each string x ∈ Gk occurs at position 1, and in k more positions. Namely, for
each 1 ≤ j ≤ k, x occurs in position ik + i − j + 1 for x[j] = Gi. Since each
x has exactly k + 1 occurrences, none of them can be non maximal. Moreover,
given that for different x there are different occurrences, then they cannot be
duplications of each other. Given that there are |G|k such x’s that are k-motifs
in σ̃′, then there can be as many as |G|k maximal and non duplicated (hence
with different extents) k-motifs in a string of length n = |G| ·k, (for any quorum
1 ≤ q ≤ k + 1).

Besides the theoretical possibility shown in the example above, in practical
applications we are fortunately very far from such worst case, as we will show
in Section 7. However, the example points out the crucial role that the cover G,
which indicates how much the motif can be approximated, plays in the possible
explosion of the number of candidates. Indeed, if exact motifs are sought, then G
should trivially coincide with Σ (and it is actually useless to talk about groups).
If G 6= Σ then we are allowing an approximation in the way the motifs match
their occurrences. We now formalize the degree of such approximation.

Definition 8 Given a cover G = {G1, G2, ..., G|G|} on Σ, the degeneracy g of
G is the maximum number of distinct groups to which a same σ ∈ Σ belongs to.

In other words, g measures indeed how much degenerate is the alphabet of
the motifs. For exact motifs we have G = Σ and hence g = 1, but when an

11

Page 12 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

approximation is sought, we have in general g > 1 which is somehow a measure
of the degree of such approximation. In theory, g can be as large as |G| like in
Example 5. Should this be the case, the output motifs would not be significant
(and too many). Hence, in practical cases it will not be the case, and this is
the reason why the upper bound of Example 5 is not met in practice. Given
that we deal with a degenerate alphabet like (Soldano et al., 1995), it can be
useful to view the upper bound on the number of k-motifs also in terms of g.
In (Soldano et al., 1995) it is proved the following1.

Proposition 4 In an input sequence in Σn, given a cover G of Σ having de-
generacy g, for a fixed k the total size of the extents of all the k-motifs is at
most min(|G|k, ngk).

In Section 3.2 we have counted the number of relations to be checked ignoring
the degenerate alphabet. If we use the upper bound of Proposition 4 instead of
that of Remark 1, the results of Propositions 1,2, and 3 can trivially be extended
to the case of approximate motifs obtaining new upper bounds where instead
of n we have ngk.

4.2 Compositionality of maximal motifs

Since we infer motifs of growing length, it is useful to know that at each step we
only need to store maximal motifs because these are enough to produce longer
ones. This is possible thanks to the following result.

Lemma 1 Each maximal k-motif I has an s-motif m whose `-long prefix and
`-long suffix (∀ 0 < ` < k) are s-motifs of maximal `-motifs.

Notice that the result of Lemma 1 actually holds for any substring and not
just for prefixes and suffixes as the proof does not depend at all from the fact
that the substring is a prefix or a suffix.
Given an extent L and an integer d, we denote with L + d the set {x + d |
∀x ∈ L}. Lemma 1 has the following consequence.

Theorem 1 The extents of all maximal k-motifs can be computed from the
extents of maximal `-motifs for a fixed ` such that k/2 ≤ ` < k.

As a consequence, the set of all the extents of maximal motifs of a fixed
length ` is sufficient to generate any (hence possibly all of them) maximal motif
of length ` + d provided ` > d. Therefore, we have that in our incremental
construction of motifs, at each intermediate step we only need to keep extents
of maximal `-motifs in order to generate longer ones up to the required length
k.

1In (Soldano et al., 1995) the result is stated for maximal motifs. However the very same
proof works for motifs in general.

12

Page 13 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4.3 Pseudo-motifs

We now show that, even when dealing with extents only and with maximal
motifs of fixed length, in general an overlap of two `-motifs can generate quite
more than just (` + d)-motifs. We will show why, and also that our algorithm
avoids this drawback. Let us start again with a simple example that anticipates
the definition.

Example 6 Let us consider again the running example t̃ = xbxcxaxbxc, q = 2,
and G = {C1, C2, C3} with C1 = {a, b}, C2 = {b, c} and C3 = {x}. Let us
consider the extent {1, 7} and length k = 3, corresponding to the substring xbx.
This latter is repeated 2 times as requested by the quorum and it corresponds to
C3(C1 ∩ C2)C3, which does not match our definition of pattern. Notice that its
extent is different from that of C3C1C3 (that is {1, 5, 7}) and C3C2C3 (that is
{1, 3, 7}) that are both maximal 3-motifs. On the other hand, (C1 ∩ C2)C3C2,
which also occurs twice (at 2 and at 8) and it is not a k-pattern, has the same
occurrences as the s-motif C2C3C2.

Definition 9 A k-pseudo-pattern is a k-long sequence on the alphabet of the
subsets of the groups whose extent is not the extent of a k-pattern. We name
it a k-pseudo-motif if it occurs at least q times and we name pseudo-extent its
complete list of occurrences.

In Example 6 for k = 3 we have that {1, 7} is a pseudo-extent for the
pseudo-motif C3(C1 ∩ C2)C3 while (C1 ∩ C2)C3C2 is not a pseudo-motif and
thus {2, 8} is not a pseudo-extent because {2, 8} is also the extent of the motif
C2C3C2. Our concern on pseudo-motifs is motivated by the fact that, given
a cover G, there can be O(2|G|k) distinct pseudo-motifs of length k because
there are as many pseudo-patterns as the number of distinct k-long strings on
the alphabet of the subsets of G which are not k-patterns, that is 2|G|k − |G|k.
Notice, however, that a pseudo-extent can never be an extent of a maximal
motif because it is always included into the extent of a k-motif. Namely, if
the pseudo-motif is, say, x = C1 · · · (Ci ∩ Cj) · · ·Ck with extent L, then by
definition the k-motif m = C1 · · ·Ci · · ·Ck has an extent which is different from
L and it must necessarily include it because m occurs wherever x does. Hence,
due to Theorem 1, pseudo-motifs are not necessary to generate longer maximal
motifs. On the other hand, the overlap of two maximal motifs can generate a
pseudo-motif, as shown in the following example.

Example 7 In our running example L1 = {2, 6, 8}, L2 = {2, 4, 8}, L3 =
{1, 5, 7}, and L4 = {1, 3, 7, 9} are the extents of maximal 2-motif. If we perform
a 1-overlap of m3 and m2, we obtain the extent {1, 7} corresponding exactly to
the pseudo-motif exhibited in Example 6. The same happens overlapping m4

and m1.

Hence, when overlapping maximal motifs we can generate pseudo-motifs.
And not only generating pseudo-motifs would be useless, but they would even

13

Page 14 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

introduce a serious drawback on the performance of the method. Indeed, given
how many the pseudo-motifs can be (and how many they are in practice as
we shall see in Section 7), generating them all at each step postponing their
detection and elimination to the exhaustive search of included extents would
result very inefficient, and mostly unfeasible. More precisely let us suppose
that, in the worst case, we have computed the ngk maximal k long motifs, and
that we compute the k + d long motifs using a k − d-overlap step. This will
result in possibly generating ng2k among motifs and pseudomotifs. As there
cannot be more than ngk+d k + d long motifs, the rest, i.e. ngk(gk − gd) are
pseudomotifs. Note that if k = d, i.e we make concatenation steps, then there
are no pseudomotifs at all. We will see in Section 5 a necessary condition on
motifs that will allow us to avoid generating pseudo-motifs.

4.4 Properties of relational motifs

In this section we extend to the case of relational motifs all the definitions and
properties we have given in Sections 4.1, 4.2, and 4.3.

Similarly to the case of the cover G on the alphabet Σ, a relations degeneracy
gR notion exists on GR (defined in the obvious way analogously to Definition 8),
and this represents the degree of approximation on the relations in the very same
way as g does on the symbols’ alphabet Σ.

As we have seen in Example 2, in general to an extent X of a non relational
motif may correspond several distinct extents Xi’s of relational maximal motifs
(being them different subsets of X). This can be the case when in different
occurrences hold different relations. Moreover, the higher gR, and higher is the
theoretical possibility that the Xi’s can even overlap, giving rise to a further
combinatorial explosion of their number. Should these extents be at least as
large as q and maximal, we have to retain them all. Therefore, we have to
review the upper bound given in Proposition 4 in order to take into account
(approximate) relations as well. We point out that what we are seeking is not
simply the maximum number of motifs of fixed length, but rather an upper
bound of the total amount, over all the extents of relational `-motifs, of text
positions that appear in these extents. This will result in the maximum amount
of data we have to store at a generic step of the algorithm.

Theorem 2 Given a length `, a cover G (resp. GR) with degeneracy g (resp.
gR) for the alphabet Σ (resp. R), in a given relational input sequence of length

n, the total size of all extents of relational `-motifs is at most n(g`.g
`(`−1)/2
R).

Again, this is the only theoretical upper bound we can give, but it is far
from being tight in practical cases, as we shall see in Section 7.

The compositionality of maximal motifs holds also for the relational case,
as the proofs of Lemma 1 and Theorem 1 can straightforwardly be extended to
prove the following.

14

Page 15 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Theorem 3 The extents of all maximal relational k-motifs can be computed
from the extents of maximal relational `-motifs for k/2 ≤ ` < k.

Finally, also the definition of relational pseudo-motif is a natural extension
of Definition 9. Namely, a relational k-pseudo-pattern is a k-long sequence on
the alphabet of the subsets of the groups in G, with a subset of the groups
in GR per each pair of positions 1 ≤ p1 < p2 ≤ k, whose extent is not the
extent of a relational k-pattern. A relational k-pseudo-pattern is a relational
k-pseudo-motif if it occurs at least q times. We omit examples of relational
pseudo-motifs as the notation can result heavy and, however, the concept is the
very same as that shown in Example 6. The overlap of two relational motifs
can generate a relational pseudo-motif (this can be seen adding any relation
between the two positions of the motifs of Example 7). Finally, notice that
by definition, also relational pseudo-motifs cannot be maximal. We omit the
counting of how many relational pseudo-motifs there can be in theory, as we
shall see in Section 7 how many occurrences of them we have in practice that
we actually avoid to generate as we prove in the next section.

5 The algorithm

5.1 The idea

Once again, we will begin with the simple case of non-relational motifs, and we
will point out later in Section 6 the peculiarities of the algorithm that guarantee
conserved relations as well.

As we have anticipated earlier, our algorithm performs an incremental in-
ference of maximal motifs of growing length, from short ones to those of the
required length, avoiding an explicit enumeration of all motifs. Indeed, we only
deal with their extents, resulting in a more compact and efficient representa-
tion. In this way, we sensibly decrease the phenomenon of the combinatorial
explosion of candidates. Their extents contain all the information we need for
filtering maximal motifs and generating longer ones by overlapping them. Only
a limited amount of additional information per each maximal extent will allow
us, as we will show, to avoid generating pseudo-motifs.

Our algorithm infers maximal k-motifs by incrementally extending maximal
motifs by means of pairwise overlaps, until the length k is reached. Roughly, for
a given constant d, it performs O(k/d) steps where in each one of them pairs
of maximal `-motifs undergo a (` − d)-overlap starting the set of all maximal
`0-motifs, with `0 being the smallest power of two greater than d (as no (`− d)-
overlap would be possible for ` < d). Hence, there is a first phase of O(log d)
steps where maximal motifs of growing length are generated with a constant
number of concatenations steps as in (Soldano et al., 1995), until the length
`0 > d is obtained. In a second phase, there are O(k/d) steps where in each one
of them pairs of maximal `-motifs undergo a (`−d)-overlap and generate (`+d)

15

Page 16 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

-motifs. Each one of these steps is concluded by a detection of non maximal
motifs that are then discarded. Finally, the very last overlap step might possibly
involve a d′ < d in case k − `0 is not a multiple of d. The parameter d will be
input defined and its choice will actually depend upon the application. More
details will be given in Section 6. In the next section we describe more formally
the algorithm whose correctness and completeness is partly due to Theorem 1,
but also to further results that will be proved in Section 5.3.

5.2 Pseudocode

Let us now describe in a more detailed way the O(k/d) overlap steps. At step
i (i ≥ 0) we have the extents of all maximal `i-motifs with `i = `0 + id, with
which we:

(i) Perform all possible pairwise (`i − d)-overlaps of two `i-motifs, computing
the extents of the resulting `i+d-motifs and storing from which pair of `i-motifs
they have been obtained.
(ii) Keep only those whose extents have size at least q.
(iii) Eliminate non-maximal and duplicated extents.

After these three steps we are left with all maximal and non duplicated
`i+1-motifs. This is iterated as long as `i < k. After that, if `i = k then we
have completed the task, and otherwise we perform a final (2`i − k)-overlap.
We now describe how we intend to minimize the amount of extents generated
at step (i) and thus also to speed up the filtering of step (ii), and especially
of step (iii) which otherwise would be an unbearable bottleneck. The idea is
that for each ordered pair I and J of maximal `i-motifs the extent of the `i+d

motif obtained by overlapping I and J is computed, and the fact that I is its
prefix and J its suffix is stored. Later on, whenever a motif X ′ is discarded
in phase (iii) because its extent is included into that of X , X ′ is eliminated
and X adds the prefix(es) and suffix(es) of X ′ to its. If this is the case, we
say that X inherits X ′. This storage of data about which maximal prefixes
and suffixes a motif comes from, and their inheritance for eliminated motifs is
motivated by the fact that actually the generation of a new motif will be con-
ditioned by whether or not a simple property concerning this data holds. This
condition, that we will refer to as prefix-suffix condition, will actually allow us
to be guaranteed not to generate any pseudo-motif, as we will see in next section.

At step i an `i-motif I is described by the following data: the identifier #I,
the extent LI , and a pair (PI , SI) of lists indicating the set PI of prefixes in
terms of identifiers used in step i−1 (omitting the #), and the set SI of suffixes
in terms of identifiers used in step i−1. For an efficient computation and for
ease of notation, we will also make use, at step i, of a vector Vi of length n such
that Vi[p] = {#I | p ∈ LI at step i}. The algorithm is the following.

// Initial Phase //

16

Page 17 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

1. Create an identifier for each Gi ∈ G occurring in t and compute its extent;
2. Compute V1;
3. `0 := 1;
4. while `0 ≤ d do begin
5. for each maximal `0-motif I do for each x ∈ LI do
6. for each #J ∈ V1[x + `0] do
7. LIJ := LIJ ∪ x;
8. Eliminate non-maximal extents and duplications;
9. `0 := 2`0; end

// Overlap Phase //
i := 0;

10. repeat
begin

11. Compute Vi;
12. for each maximal `i-motif I do for each x ∈ LI do
13. for each #J ∈ Vi[x + d] do
14. if SI ∩ PJ 6= ∅ then begin LIJ := LIJ ∪ x; PIJ := I; SIJ := J end;
15. Detect and eliminate extents below quorum, non-maximal extents and duplications;
16. for each eliminated non-maximal or duplicated I ′ do

begin
17. choose one I such that LI′ ⊆ LI with I maximal;
18. PI := PI ∪ PI′ ; SI := SI ∪ SI′

end;
19. i := i + 1; `i := `i + d

end
20. until `i > k − d;

// Final Step //
21. if `i < k then same as lines 11 − 15 with d = k − `i;

Notice that the pseudocode could be written in a much more compact way
grouping the three phases into a unique cycle parametrizing the size of the
overlap. We chose to display in this form for ease of exposition. We denote with
LIJ the set LI ∩ (LJ − d) which is the extent which is possibly generated at
lines 12-14 by overlapping the two maximal motifs I and J (in fact, lines 12-14
are executed for each x ∈ (LI ∩(LJ −d))). The condition of line 14 is the prefix-
suffix condition. Although not explicitly processed (due to complexity reasons),
it is clear that a motif IJ obtained by an (`−d)-overlap of I and J inherits their
composition in the following way. If I (resp. J) was a duplication, it definitely
represents several s-motifs; let G1 . . .Gd . . . G` (resp. G′

1 . . .G′
`−d . . .G′

`) be any
s motifs of I (resp. J). We also denote this with I[i] = Gi (resp. J [i] = G′

i).
Then we have that IJ = G1 . . . Gd(Gd+1 ∩ G′

1) . . . (G` ∩ G′
`−d)G

′
`−d+1 . . . G′

`.
Therefore, IJ will be a motif only if for all such s motifs of I and J we will
have that for all 1 ≤ d ≤ `− d the intersection (Gd+i ∩G′

i) restricted to the set
LIJ + d + i is equal to Gd+i or to G′

i. In other words, definitely IJ [i] ∈ G for
1 ≤ i ≤ d and (` + 1) ≤ i ≤ (` + d), but for all positions where the occurrences
of I and J overlap, whether IJ is a motif is in general an open question whose

17

Page 18 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

answer is relevant in terms of complexity issues and it is addressed in the next
section.

5.3 Correctness and Completeness

We here prove that the algorithm we just introduced is correct (that is, it outputs
only maximal k-motifs) and complete (it outputs all of them). Correctness
requires that only k-long motifs are output and among them only maximal
ones. The latter is guaranteed by line 15 of the pseudocode where non maximal
motifs are discarded. The former comes directly from the condition of line 20
and the setting of d at line 21. Completeness would be a direct consequence
of Theorem 1 should not be for the prefix-suffix condition SI ∩ PJ 6= ∅. In the
remaining of this section we show that this condition, together with the settings
of lines 16-18, does not affect the completeness of our method. To this purpose,
in particular, we need to show that this condition does not discard any maximal
and non duplicated motif, which is proved by the following theorem.

Given an `-motif I with extent LI in an input sequence s, we denote with I[p]
the set of groups that occur at position p of I. That is, I[p] = {g ∈ G | s[x+p] ∈
g ∀x ∈ LI}.

Theorem 4 Let q be the quorum and let I and J be maximal `-motifs such that
SI ∩ PJ = ∅ and |LIJ | ≥ q with LIJ = LI ∩ (LJ − d). Then we have that LIJ

is either a pseudo-extent or a duplication for length ` + d.

Theorem 4 guarantees that no maximal and non duplicated motif is discarded
(or, actually, not even generated) because of the prefix-suffix condition. The
next result concerns discarded non maximal motifs, and shows that it suffices
that only one motif inherits it. As a consequence, the total number of prefixes
and suffixes inherited by `-motifs does not exceed the number of maximal motifs
of length ` − d. Moreover, this does not have to be a particular motif, but just
any maximal motif (e.g. the first detected). whose extents cover the one that
is discarded.

Theorem 5 Let LM1
, LM2

, LM ′ be three extents of `-motifs generated at step
i > 2 such that LM ′ ⊆ LM1

and LM ′ ⊆ LM2
and both M1 and M2 are maximal.

If (wlog) M1 inherits M ′ and M2 does not, then completeness is preserved.

Finally, observe that a recursive application of Theorem 5 shows that if the
list of extensions of a non maximal motif is included into those of p > 2 (not
necessarily all maximal) ones, then even in this case it is enough that one of
them inherits it. Summing up, we have thus proved the following result.

Corollary 1 At all steps i > 2, let p + 1 extents LM1
, LM2

, ..., LMp
and LM ′

of `-motifs be generated such that LM ′ ⊆ LMi
for i = 1, 2, ..., p. If only one of

the p motifs inherits M ′, then the resulting set of maximal (` + d)-motifs is the
same as if all of them (or a part of them) inherit M ′. •

18

Page 19 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

5.4 Complexity

The algorithm consists of O(k) steps. The cost of step i depends from the
amount of motifs that have to be overlapped (at most as many as the maxi-
mal `i-motifs) and above all from how many extents they generate before the
elimination of non-maximal motifs takes place. We now show a crucial property
ensuring that no pseudo-motif is generated at any step.

Theorem 6 Let IJ be a (` + d)-long pseudo-motif that could be obtained by
overlapping two maximal `-motifs I and J . Then we have that SI ∩ PJ = ∅.

Hence, no pseudo-motifs are generated at lines 12-14 due to the prefix-suffix
condition and Theorem 6. As a consequence, at each step it is enough to store
the extents of all generated motifs, and later on only those of all maximal
motifs with their list of prefixes and suffixes (which are at worst as many, given
that each eliminated motif leaves a constant size prefix and suffix information).
Therefore, the space complexity is the size of the former for which Proposition 4
gave us an upper bound of O(n·gk). Time complexity in the worst case coincides
with the cost of the overlapping phase. The repeat starting at line 10 is done
O(k/d) = O(k) times and its dominant parts are the nested for cycles of lines
12−14 and the inclusions detection of line 15. The former take O(n ·gk) because
this is the maximum number of motifs it generates, and the latter takes O(n·g2k)
assuming it is made like in (Soldano et al., 1995). Therefore, overall the time
complexity is in O(k(ngk + ng2k)) = O(kng2k). Notice that it is linear in the
input size.

6 Inferring Relational Motifs

We now show how the algorithm of Section 5 can be extended in order to take
into account also relations and how its correctness and completeness is pre-
served. We name this new algorithm KMRoverlapR. As we have anticipated,
the novelty starts with the fact that the input sequence is enriched with rela-
tions that hold between pair of distinct positions. The inference phase will use
this information in order to ensure that relations are conserved as well. Indeed,
we still manage the inference storing extents only. These now represent not
just repeated motifs, but rather repeated relational motifs. The overlap of two
relational submotifs of length ` that occur at distance d at least q times and in
the same relative order necessarily results into a (` + d)-motif (as before) that
also has conserved all relations between pairs of position that are at distance
at most ` and that come from the same submotif. The only new relations that
need to be checked are those between pairs of positions that belong to the two
different d-long non overlapped ends of the new motif. In other words, when
two `-motifs I and J are overlapped, the relations whose repetitions have to be
checked are those between a symbol at the ith position of I for all 1 ≤ i ≤ d
and a symbol at the jth position of J for all ` − d + 1 ≤ j ≤ ` for a total
of O(d2) checks to be done. Hence, at each step i, whenever the vector Vi is

19

Page 20 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

checked (at lines 6 and 13 that is, when the occurrences of two `i-patterns are
detected at distance d so that their overlap is a (`i + d)-pattern), these O(d2)
comparisons are also made. In order to do so, we use a n × d matrix Wi that
stores in Wi[j, q] the relation groups CR’s whose relations hold between position
j and position j + `i− q of the input sequence. This is the only kind of relations
to be checked at step i. There are two possible results of these O(d2) checks
for the relations. In a first case we can have that in at least q occurrences of
the motif the relations are conserved as well, and then a new extent is created
per each distinct conserved relation group (this is the case of the 4-motif with
extent {1, 5, 7} in Example 2). In a second case, no relation is conserved at least
q times and the motif is discarded (like the 4-motif with extent {2, 6} in Exam-
ple 2). For all other features of the algorithm, everything can be left unchanged.

It remains to show that the prefix-suffix condition on relational motifs keeps
on ensuring that all and only relational pseudo-motifs are discarded. This is
stated in the following result.

Theorem 7 The following results hold:

1. Let q be the quorum and let I and J be maximal relational `-motifs such
that |LIJ | = |LI ∩ (LJ − d)| ≥ q and SI ∩PJ = ∅. Then we have that LIJ

is either a relational pseudo-extent or a duplication.

2. Let LM1
, LM2

, LM ′ be three extents of relational `-motifs generated at step
i > 2 such that LM ′ ⊆ LM1

and LM ′ ⊆ LM2
and both M1 and M2 are

maximal. If (wlog) M1 inherits M ′ and M2 does not, then completeness
is preserved.

3. At all steps i > 2, let p+1 extents LM1
, LM2

, ..., LMp
and LM ′ of relational

`-motifs be generated such that LM ′ ⊆ LMi
for i = 1, 2, ..., p. If only one

of the p relational motifs inherits M ′, then the resulting set of maximal
relational (` + d)-motifs is the same as if all of them (or a part of them)
inherit M ′.

4. Let IJ be a (` + d)-long relational pseudo-motif that could be obtained by
overlapping two maximal relational `-motifs I and J . Then we have that
SI ∩ PJ = ∅.

Summing up, the correctness and completeness of the algorithm introduced
in this section, are based on the following result.

Proposition 5 A k-pattern is a relational k-motif if, for any 1 ≤ d < k/2:
(i) Its (k − d)-long prefix I is a relational motif (from Theorem 3).
(ii) Its (k − d)-long suffix J is a relational motif (from Theorem 3).
(iii) Its relations between all d2 pairs of positions (l, r) with 1 ≤ l ≤ d and
(k − d + 1) ≤ r ≤ k are conserved in at least q of its occurrences.
(iv) It satisfies the quorum (by definition).
(v) SI ∩ PJ 6= ∅ (from Theorem 7).

20

Page 21 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

where condition (iii) is ensured by the way we have extended the algorithm
to the case of relational motifs as described earlier in this section.

From part 4 of Theorem 7, we know that the prefix-suffix condition does
not allow to generate any relational pseudo-motif. Hence, we still have that the
total size of all the extents of motifs that can be generated at each step is at
most as much as the upper bound given in Theorem 2. Hence, the complexity
of KMRoverlapR changes with respect to that of Section 5 because now also
the degeneracy gR of the relations has to be taken into account. Assuming that
d is a constant and thus the cost of the O(d2) relations tests is negligible, the
time complexity of KMRoverlapR can be computed as in Section 5.4, except
that here the upper bound on the number of maximal motifs of fixed length is
that given by Theorem 2. Therefore the time complexity of KMRoverlapR is in
O(kn(g2kgk2

R)). Reminding that in KMRoverlapR the input size is no longer n
but rather n · k, the complexity is again linear in the input size.

7 Searching common substructures in a set of

3D protein structures

A promising area of application of KMRoverlapR is the search for repeated
motifs in mono or multidimensional signals or series. In the case of protein
structures we have in general a sequence of points in a multidimensional space.

We define the relation between two points xp and xq by discretizing the
Euclidian distance d(xq , xp). Then a relational value represents a distance be-
tween two points, and thus the motifs’ occurrences are insensitive to translations
and rotations. This method has been implemented (in C language) in order to
search for structural motifs in protein structures. Each backbone Cα is a point
in the three dimensional space. The amino acid sequence may be ignored or
not: in addition to relations a cover on the amino acid alphabet can be set. For
example a cover of the alphabet may be the groups of non polar amino acids
(ACFGILMPTVWY), polar amino acids (DEHKNQRSTYC) and small amino
acids (ADGNPSTV).

There are many methods to build a multiple alignment of protein structures,
but very few are designed to find structural motifs.

Most of multiple alignment methods are built on the same blueprint: i) all
pairwise structural alignments are computed, ii) a dendogram is built based on
the pairwise alignment scores, iii) all structures are multiply aligned in the or-
der given by the previous tree. The differences between this kind of methods lie
in the pairwise alignment algorithm and the dendogram calculation algorithm
(mostly UPGMA). Some well known pairwise structural alignment methods
have been adapted to multiple structural alignment. For example CE-MC (Guda
et al., 2001) is an adaption of CE (Shindyalov and Bourne, 1998), POSA (Ye
and Godzik, 2005) of FATCAT (Ye and Godzik, 2003), and MALECON (Ocha-
gavia and Wodak, 2004) of Boutonnet et al. algorithm (Boutonnet et al., 1995).

21

Page 22 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

The methods COMPARER (Sali and Blundell, 1990), MATRAS(Kawabata,
2003) and MAMMOTH (Ortiz et al., 2002; Lupyan et al., 2005) have also been
adapted to multiple structural alignment. MUSTANG (Konagurthu et al., 2006)
is a recent method using the same procedure of progressive pairwise heuristic.
Pairwise structural alignment methods are well described in in several reviews
(Brown et al., 1996; Eidhammer et al., 2000; Taylor et al., 2001; Carpentier and
Pothier, 2007). Some other methods are using one structure as pivot and align
other structures using this pivot as a reference (Gerstein and Altman, 1995;
Gerstein and Levitt, 1996, 1998; Wu et al., 1998b,a; Ye and Janardan, 2004;
Escalier et al., 1998; Leibowitz et al., 1999, 2001). The algorithm developed
by Crandell and Smith (Crandell and Smith, 1983), and implemented by Brint
and Willet (Brint and Willett, 1987) use a graph in order to represent protein
atoms. This method was the first to align several protein structures by using
graph algorithms. Since other methods have been implemented (Koch et al.,
1992, 1996; Cook and Holder, 1994; Su et al., 1999; Dror et al., 2003b,a). The
method of Koch et al. search for common secondary structures by representing
protein with a graph of secondary structures.

Our method is not designed to find a multiple structural alignment. Rather
it finds multiple structural motifs. The extents of a motif may contain several
occurrences in the same protein. However we have to test the relevance of the
found structural motifs. Therefore we compared our motifs to those obtained by
some multiple structural alignment programs. The aim is to determine wether
we find the evolutionary conserved motifs. We have also studied the features of
the motifs found by the method. To test our method we chose to compare the
well known globin structures, that are often used when testing multiple struc-
tural alignment methods. For example it has been used to test the MUSTANG
program (Konagurthu et al., 2006). We chose also to compare our results with
those obtained for the serine protease family (also from this article). We also
run our algorithm on the structure of cytochromes P450 multigenic superfamily
(CYP, P450). These proteins are involved in many oxidations of various and nu-
merous hydrophobic substrates (see Estabrook (2003) for an historical review).
lTheir amino-acids primary sequences are dissimilar in spite of their structural
similarities. All PDB codes are given in table 1.

First we studied the effects of varying algorithm parameters on structural
motif lengths and number. Second we compared motifs obtained for the ser-
ine proteases to the manually curated alignments and MUSTANG’s alignments.
Third we compared the globin structural motifs to MUSTANG and POSA align-
ments. We chose the latter two families because they are widely studied: serine
protease mainly contain beta strands and globins are made of α helices. At last
we studied more carefully the motifs found for those families. For the P450 fam-
ily two structure sets were used : one containing all P450s in the PDB cluster 50
set (protein structures sharing less than 50% of amino acids sequence identity)
and the other set made of all SCOP (Murzin et al., 1995) domains sharing less
than 40% of sequence identity (extracted from ASTRAL (Brenner et al., 2000)

22

Page 23 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

list2).

Table 1: Protein structure data sets

Data Set Number of structures PDB/SCOP codes and chain
Globins
Set 1 5 1hho A 1hho B 1mbd A 2dhb A 2dhb B
Set 2 9 1eco A 1hbg A 1hho A 1hho B 1mbd A 2dhb A 2dhb B

2lh7 A 2lhb A
Set 3 11 1dlw A 1eco A 1hho B 1mbd A 2dhb B 4vhb A 1dly A

1hho A 1idr A 2dhb A 2lh7 A
Serine proteases
Set 1 7 1ppb H 1ton A 2pka B 3est A 3rp2 A 5cha B 5ptp A
Set 2 13 1arb A 1sgt A 2alp A 2sga A 3est A 3sgb E 5ptp A

1ppb H 1ton A 2pka B 2snv A 3rp2 A 5cha B
Cytochromes P450
Set 1 35 1izo A 1izo C 1io9 B 1cpt 1q5e A 1odo A 1n97 A

1oxa 1ued B 1akd 1o76 B 1gwi A 1w0e A 1egy A
2rom 1lgf A 1lfk A 1ued A 1n97 B 1n40 A 1n4g A
1s1f A 1e9x A 1h5z A 1gwi B 1pkf A 1suo A 1dt6 A
1cl6 A 1w0g A 1jpz B 1n6b A 1f4t A 2bmh A 1po5 A

Set 2 16 d1cpta d1jfba d1n97a d1q5da d1tqna d2ij2a1
d1io7a d1lfka d1odoa d1re9a d1x8va d1izoa
d1n40a d1po5a d1s1fa d1z8oa1

7.1 Finding repeated 3D substructures: parameters

We represent a structure by using discretized distances as relations. As an
example of relational motifs representing a structure, Figure 1 describes two
occurrences of a motif of length 4 where we consider that a prior discretization
of the distances has been performed so that relations are then positive integers.
We then consider a set of relational groups {Rj = {j, ..., j + δ}} where δ repre-
sents the approximation level: two discretized distances d(xp, xq) and d(xp′ , xq′)
belong to the same group whenever |d(xp, xq) − d(xp′ , xq′)| ≤ δ. Note that as a
consequence we have gR = δ + 1. In the example of Figure 1, we consider δ = 1
and so gR = 2, and we find two occurrences of a 4-long relational motifs (with
quorum q = 2). Notice that here we had slightly adapted the algorithm in order
to find patterns that occur at least q times in a set of m protein structures. Here
m = q = 2.

The parameters are: the mesh for the discretization, the margin δ for the
relational groups and the quorum q. As the distance between 2 successive Cα

is always around 3.8Å, the smallest motif sizes are 3 residues. As anticipated
earlier, both the framework of relational motifs and the KMRoverlapR solutions
we suggested are very general. Depending on the specific application they are
used for, relations can be instantiated to increase specificity or sensitivity, or

2ASTRAL SCOP 1.73 genetic domain sequence subsets, based on PDB SEQRES records
(i.e. sequences), with less than 40% identity to each other

23

Page 24 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
p1

p2

p3

p4

p8

p7p6

p9

3

4

3

4

6

2

4

3

5

4

3
4

p5

Figure 1: A sequence of 3D points with the distances represented as labels of
the edges relating the nodes associated to the points. The two occurrences are
p1 − p2 − p3 − p4 and p6 − p7 − p8 − p9 in a 9-long sequence t.

to speed up the inference. One can observe, for example, that in a 3D protein
structure the distances between two sets of adjacent positions are not indepen-
dent. Consider two positions p and q of the input sequence. Assume that they
are part of occurrences of two relational motifs (respectively P and Q) that are
distinct but that overlap. Since P (resp. Q) is a relational motif, we know that
the distance between positions, say, p and p+1 (resp. q and q+1) are conserved
in the occurrences of P (resp. Q). The same holds for p and p− 1 (resp. q and
q − 1). When we overlap P and Q, if p and q belong to parts that were not
overlapping, the conservation of the relation between this two positions has to
be checked. Nevertheless if the relations between p− 1 and q − 1 are conserved
as well as those between p + 1 and q + 1, it is unlikely (actually impossible
under reasonable degeneracy conditions) that the relations between position p
and position q are not conserved. Due to our choice of relations (see below for
details), in our applications on 3D proteins we can safely check only relations
every, say, 3 positions without affecting the sensitivity of the method, while
considerably speeding up the inference. For example if we perform steps with
d = 3, at each step, we overlap two `− 3-motifs in order to build an `-motif and
we only have to check the relation between the two extreme sides (positions 1
and `) of the new `-motifs instead of checking the d2 = 32 = 9 new relations.
We have verified that by doing this, we do not miss any biologically meaning-
ful motif. Usually starting from the length `0, we incrementally infer motifs of
length `0 + d, `0 + 2d, and so on, until length k is reached.

We also tried to fix the number of overlapping positions. For example, with
an overlapping o, we build motif of length 2(` − o) from two motifs of length
`. With this procedure, motifs length growth is much faster but some motifs,
different from maximal length motifs, are shorter than they could be with the
classical procedure d = 1.

We tried several mesh: 0.5Å, 1Å, 1.5Å. When searching for structural motifs
there is always a difficult step (i.e. a motif length) to bypass, because too many
motifs are generated (see figure 2). This peak is due to canonical secondary
structures (mostly α helices) which have very small structural variations and

24

Page 25 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
0

500

1000

1500

2000

2500

3000

3500

N
u
m

b
e
r

o
f

m
o
ti

fs

0 20 40 60 80

Motif length

1.5

1

0.5

Mesh:

Figure 2: Number of motifs found at each step (length) with several meshes for
the structures of globins set 1.

therefore may generate many extents. In most cases motifs are longer with a
1.5Å mesh but sometimes again too many motifs are generated. This may also
occurs with a mesh of 1Å. The best results are obtained for a mesh of 1Å. If
the margin is greater than 1, again too many motifs are found. Computing time
increases with the number of proteins but rather linearly (see for example figure
3) but it strongly depends on data nature.

7.2 Comparison to structure multiple alignments

Several parameters where tried for all the following sets: for each mesh of 0.5Å,
1Å or 1.5Å we tried d = 1, 2, 3, 4 or o = 3, 4, 5.

7.2.1 Comparison of the motifs to manually curated alignment of
serine proteases

The first set of serine proteases is composed of mammalian proteins and the
second is made of more divergent serine proteases. We compare the ungapped
blocks of Lesk and Fordham’s alignments (Lesk and Fordham, 1996) to the
motifs found by our method. There were 12 blocks longer than 4 residues in
set 1 serine protease alignment and 5 blocks in set 2.

For the set 1, all sets of parameters but one (mesh 1.5Å and d = 1) do not
implicate the generation of too many motifs. The results are almost the same
with d = 1, 2, 3, 4 but if we use the fixed size overlapping procedure (o = 3, 4or5)
, motifs are shorter. We chose to study more precisely the results found with
d = 3.

25

Page 26 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
0

500

1000

1500

2000

C
P
U

 T
im

e
 (

s
e
c
)

-5 0 5 10 15 20 25 30 35 40

Number of protein

Figure 3: CPU time vs. number of proteins for the set 1 of cytochrome P450
(mesh 1, overlapping 3). Times were measured for several subsets of the P450
set 1. Depending on the proteins, times may be very different.

The two first conserved blocks (positions 16 to 25 and 26 to 35 in all PBDs)
are found by our method in only one motif. These two blocks are separated
by one position in each proteins of the original alignment but the residues are
not all aligned at this position. With a 0.5Å mesh, we find a block of length
13, shorter than the reference block. But with a 1Å mesh, the block length is
18 residues and with 1.5Å, 21 residues: the whole are found (see figure 4). In
MUSTANG alignment, the two blocks are also merged and the block length is 19
residues. All other blocks are found by our method but they may be in several
parts (which may overlap) with a 0.5Å mesh. For example, the longest one (26
residues, beginning at residue 100) is also the longest motif found by our method
(28 or 25 residues depending on the mesh), but with a mesh of 0.5Å the longest
motifs are 13 residue long (two words of length 13 covering 18 residues of the
26 residues block). It is also interesting to remark that sometimes motifs occur
several times in proteins. For example the fourth block (around positions 62-73,
depending on the proteins) corresponds to a motif with several occurrences in
one protein.

MUSTANG alignment have been compared to the reference Lesk and Ford-
ham’s alignment. MUSTANG alignment shows more blocks (205 positions with-
out gap in MUSTANG alignment vs. 174 in the manual alignment (Konagurthu
et al., 2006)). Some of these positions are at the extremities of reference align-
ment blocks. Our blocks mostly agree with those new positions. Others are
isolated and our method cannot find them. One block is much more longer
in MUSTANG alignment but our method found the same boundaries as the
reference alignment, and consequently disagrees with MUSTANG.

There are more proteins in the second set, and it not possible to compute

26

Page 27 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
Figure 4: Motifs in serine protease set 1. The motif contains the same positions
as the reference alignement. From left to rigth, the mesh is 0.5Å, 1Å and
1.5Å (margin 1, shift d = 3). As the mesh increases, the motif is longer. All
proteins are superimposed according to the longest motif (the same rotation-
translation matrices are used for the three pictures).

the motifs with d = 1. These proteins are far more divergent. Consequently,
there are less blocks in the reference alignment and they are smaller. Similarly,
our motifs are smaller. The longest motifs are of length 13. We do not find a
motif occurring only once in each protein. It is possible to find the reference
blocks among the motifs, but many other occurrences of each motif are found
in each protein (see for example figure 5).

In these examples we have seen that all conserved blocks found by alignment
methods are found by our method. But many other motifs are also found and it
may be interesting to wonder what kind of substructures they are. Many of the
motifs are used to build motifs of a greater size but many positions disappear
during these steps. However these intermediate motifs are interesting because
they show substrctures which occurs several times in one protein. Obviously
most of these intermediate motifs are canonical secondary structures (α helices
and β strands) but some motifs are different. Maybe these motifs could be used
to characterize the protein family.

7.2.2 Comparison to Globin alignments (Konagurthu et al., 2006)

The set 1 of globins contains mammalian proteins, in set 2 invertebrate and
plant globins are added to set 1 and in set 3 truncated globins are added to
set 2.

The globins are shorter than the proteases but it is more difficult to find
relevant motifs because there are many α helices. Usually when many helices
are present, best results are obtained with mesh 1Å. If the mesh is smaller
or greater, too many motifs may be generated. With d = 3 and mesh = 1Å
we found a 46 residue-long motif which corresponds to the longest blocks of
POSA and MUSTANG alignments. It is possible to find motifs everywhere on
the molecules except in one variable region which corresponds to a region with

27

Page 28 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
Figure 5: Example of 11 residues motif in serine protease set 2 (mesh 1Å, shift
d = 3). There are many occurrences (21 occurrences for 13 proteins) but they
all are structurally similar.

gaps in MUSTANG alignment (see figure 6). With proteins of set 2 the longest
motifs have 22 residues (d = 3, mesh=1), but there are 74 motifs of length 22 in
those globins and they all are α helices. The other shorter motifs contains the
blocs found by POSA or MUSTANG which always agreed except few positions
at the extremities.

As the set 3 contains 3 truncated globins added to the 9 previous proteins,
it is interesting to set the quorum q = 9 and to check wether our method finds
the motifs found in the set 2. These 3 truncated proteins miss the beginning of
the globins. Therefore the first block (16 residues in POSA, 17 in MUSTANG)
is not present in these 3 proteins. However we do find the first motifs in the
other proteins. More motifs are generated with a quorum of 9/11 proteins but
with d = 3 the maximal motif is also 22 residues.

7.2.3 Sequence constraints

Two sets of P450 have ben studied (see table 1), one with 35 proteins which
amino acid sequences share less than 50% identity and one with 16 proteins
(sequence identity < 40%). Same sets of parameters were used for the study of
cytochromes P450, but this set of 35 structures with many α helices generate
too many motifs in all cases. Motifs are found for the 16 proteins set with
mesh = 1Å and a fixed overlap o = 3. This examples are very difficult cases for
our method. Therefore we added some restrictions on the nature of the amino
acids: they have to be either polar or apolar or small in order to be at the
same position in one motif (see page 21 for detailed categories). The number of
motifs is then extremely smaller and we can compute motifs with d = 1 even
for 35 structures. However the longest motifs are shorter than those found in
the set 2 of P450s without sequence restriction (length of 8 or 9 instead of 22
residues). These small motifs are mostly fragments of α helices. Thus sequence

28

Page 29 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
Unaligned

Reference motif

Figure 6: Globins set 1. No motif is found in the upper left grey region. Ev-
erywhere else, there are some motifs. Grayscale indicates depth. Proteins are
superimposed according to one motif of 15 residues (reference motif).

constraints may be too strong in order to search for structural motifs in such
sequence divergent proteins.

We also tried the same cover on the alphabet for the globin sets and motifs
are also shorter.

7.2.4 Motifs quality

In globins set 1 we computed RMSDs for all motifs longer than 6 residues.
RMSDs are lower than 2.0Å and increase with motif length until only well
conserved motifs are present (see figure 7).

When increasing the shift d, the shorter motifs found show slightly higher
RMSD (around 0,15Å in average, see figure 7).

We also computed RMSDs for motifs obtained for several mesh and d = 3
and as expected RMSDs are higher with mesh= 1.5Å.

8 Conclusions

The first use of relational motifs (without a degenerate alphabet) can be found
in (Bouthinon and Soldano, 1999) to extract repeated RNA secondary struc-
tures. In this work an RNA secondary structure was defined as a sequence

29

Page 30 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

R
M

S
D

0 5 10 15 20 25 30 35 40 45
Motif length

2

1

3

d:

Figure 7: Globins set 1. RMSD average for all motifs of a given length vs motif
length for shifts d = 1, 2, 3. The RMSD of each motifs has been computed for
several parameters.

of helices, i.e. as an ordered set of possibly overlapping subsequences of the
RNA sequence. In this case the structure is represented as the set of relations
(amongst include, overlap and disjoint) between the helices. In (Bouthinon
and Soldano, 1999) an ad hoc coding scheme was used allowing to reduce the
extraction of such k-long motifs to the extraction of prefixes of k-long words
in a dictionary. The overall complexity of the resulting KMR-like algorithm
was O(n · k) like KMRoverlapR in the case g = gR = 1. However, note that
the coding scheme only applies to relations encountered when motifs are union
of possibly overlapping intervals (Vialette, 2004) as it is the case when dealing
with temporal motifs (Bouandas and Osmani, 2003). As a matter of fact, it
would be interesting to use the relational variant of KMRoverlapR to extract
more flexible repeated RNA secondary structures in RNA sequences using a de-
generate alphabet to describe the helices, and still using crisp relations (gR = 1)
to describe the relations between helices.

Notice that there are applications where actually the number of relations to
be taken into account, in the non degenerate case, can be bounded by a constant
number that depends from the specific problem addressed. This is the case in
particular when searching for geometrical motifs in a d-dimensional Euclidian
space, like the 3D space used to represent the structure of proteins. In the de-

30

Page 31 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

generate case, the interesting one for practical applications, this allows to obtain
a good approximation when checking occurrences of a relational k-motif, by only
checking a number of relations linear in k and to perform the computation with
a fixed length overlap. As a result only log k steps are performed, the number
of k-long motifs is in O(ngk

R) rather than in O(ngk2

R), and the overall complex-
ity of the relational algorithm is similar to the complexity of KMRC. We have
used a fixed length overlap in the experiments on P450 proteins, thus avoiding
motif lengths producing too much computations. However we have found that
whenever all maximal lengths motives are searched for, a fixed length overlap
may result in missing some relevant motives corresponding to non investigated
lengths.

We have investigated and discussed the extraction of structural motifs from
a set of protein structures. However the question of their use to search databases
is also important. In a previous paper (Pisanti et al., 2006) we have investigated
issues related to the representation of our relational motifs and their search on
protein structures out of the set from which the motifs have been extracted. One
of the main limitation of the method is the number of structures that can be
handled when extracting motifs. This is due to the fact that the search is here
exhaustive. One way, not experimented so far, to preserve exhaustivity while
allowing to consider larger sets of structures is to previously cluster the whole set
of proteins structures and then incrementally extract the motifs. A first cluster
(of say a dozen of structures as shown here) of proteins will give a set of motifs
then such motifs may be considered as standalone structures and added to a
second cluster in order to produce new motifs using again our extraction method.
Note that new motifs are then necessarily included in previous ones, and so such
a procedure should hopefully converge to a small but significant set of motifs
representative to the whole family. A second limitation of the method, that
can also be a drawback for the above variant, is that in some cases many motifs
happen to be extracted. These motifs are however very similar when considering
their occurrences on the structures. A way under investigation to overcome this
limitation is obviously to define a notion of similarity between motifs relying
on their extensions, i.e. their set of occurrences on the investigated structures.
This procedure should drastically reduce the number of motives and it would
be then possible to build a structural alignment from them.

The method could be of interest for the structural characterization of protein
structure families. It could be run on all protein families of SCOP (Murzin et al.,
1995) for example, in order to find motifs specific of each families (structural
signature).

As the method exhibits similar substructures in a structural family, it could
be an help in building structural cores for threading methods (Marin et al.,
2002) or in building structural alphabets as those used by Baker and coll. in
their ab initio folding method (Simons et al., 1999).

31

Page 32 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

9 Appendix

9.1 Proof of proposition 1

At a generic step of an in depth inference, the extension with one extra sym-
bol/position of a motif of length ` with 1 ≤ ` ≤ k − 1 is attempted. The new
(`+1)th extra position has to check its relations with all positions i for 1≤ i≤ `,
and this has to be done for each occurrence of the motifs. There are at most
n distinct occurrences per each fixed length as stated in Remark 1, and hence
the relations to be checked are at most as many as

∑k−1
`=1 n ·

∑`−1
i=1 i, and thus

in O(k3n). •

9.2 Proof of proposition 2

At each step two motifs are concatenated in order to form a new one of double
length. There are only O(log k) such steps to perform, and at each step i, for
1 ≤ i ≤ (log k)−1, we have two motifs of length 2i that are concatenated; in
this case relations between pairs of positions belonging to the two distinct sub-
motifs have to be checked, which makes (2i)2 comparison per each one of the
occurrences of the new motif. We have seen in Remark 1 that at a given step,
since the length is fixed, there are at most n positions for which the check has
to be done (for all the motifs that are being generated).

Therefore, the result is
∑(log

2
k)−1

i=1 (n ·22i) =
∑(log

2
k)−1

i=1 (n ·4i) = n ·4log
2

k =
n · (2log

2
k · 2log

2
k) and thus we have O(k2n) relations that are checked. •

9.3 Proof of proposition 3

Assume we perform a total of O(k) (`−d)-overlap steps of two `-motifs where
d is in O(1). We would have, at step i for 1 ≤ i ≤ k/d, two (`i−d)-motifs that
are merged and only the relation between one of the d positions at the extreme
right and one of those at the extreme left of the new motif has to be checked,
and again for all its occurrences. Given that by Remark 1, these are at most n
in total for the whole step, we have that the relations to be checked are at most
∑k/d

i=1 n · d2 = ndk ∈ O(n · k). •

9.4 Proof of lemma 1

Let I be any maximal k-motif with extent LI , m any of its s-motifs, and let
Ip be the prefix of length ` of m. It must be that LI ⊆ LIp

because a proper
suffix of any string occurs at least wherever the string does. If Ip is maximal
then we are done. If this is not, then it is because there exists another maximal
`-motif I ′p such that LIp

(LI′

p
. Since LI ⊆ LIp

, then we have that LI (LI′

p
,

and hence I ′
p is a prefix of another s-motif of I (because it occurs wherever I

32

Page 33 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

does). Given that by hypothesis I ′
p is also maximal, we have that it is what we

are looking for. The very same proof can be done for suffixes of I and shifting
the corresponding extents, and hence the result is proved. •

9.5 Proof of theorem 1

In order to obtain the extent of a maximal k-motif, it suffices to take the ex-
tents Lp and Ls of the maximal `-motifs which are its maximal prefix and suffix
according to Lemma 1, and compute Lp ∩ (Ls + ` − k). •

9.6 Proof of theorem 2

Consider any position x on the input sequence s. We have that each letter can
be at most in as many as g groups of the cover G, and thus at position x can
start occurrences of at most g` distinct motifs. Moreover, at the same position
x there can start a relation motif with its `(` − 1)/2 relations, each one being

in at most gR distinct relational groups; hence at x occur at most g
`(`−1)/2
R

relational motifs. Since there are less than n possible positions x, the resulting

upper bound is n(g`.g
`(`−1)/2
R). •

9.7 Proof of theorem 4

Given that SI ∩ PJ = ∅, we must have that per each pair of (` − d)-motifs
SI, PJ such that SI ∈ SI and PJ ∈ PJ we have that SI 6= PJ . This means
that there must exist 1 ≤ p ≤ `− d such that SI[p] 6= PJ [p] and thus such that
I[p + d] ∩ J [p] = ∅ (because I[p + d] ⊆ ∪SI∈SI

SI[p] and J [p] ⊆ ∪PJ∈PJ
PJ [p]).

Let us now consider position p + d of the candidate (` + d)-motif IJ , that is
IJ [p + d]. We have that no group g′ ∈ I[p + d] can be in IJ [p + d] because
LIJ ⊆ (LJ −d), and thus g′ would belong to I[p+d]∩J [p] which is empty by hy-
pothesis. Similarly, no group of J [p] can be in IJ [p+d], otherwise it would also
be in I[p + d] (because LIJ ⊆ LI), contradicting again that I[p + d] ∩ J [p] = ∅.
Therefore, LIJ is either the extent of a pseudo-motif, or the extent of a motif
that in IJ [p + d] has one (or more) group(s) g′′ ∈ (G \ (I[p + d] ∪ J [p])). In
this case, LIJ will be generated by another overlap involving two motifs I ′ and
J ′ (with I ′ 6= I or J ′ 6= J) whose suffix (resp. prefix) list contains g′′ and for
which the prefix-suffix condition holds. •

9.8 Proof of theorem 5

We show that if both M1 and M2 inherit a non maximal (or a duplicated) motif
M ′, then the resulting extents of (`+d)-motifs would be the same as if only M1

did, except for possibly one or more non pseudo or duplicated extents. This,

33

Page 34 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

together with the fact that pseudo-motifs can not be maximal, ensures that the
inheritance of M ′ by M2 would be redundant. Let us suppose that M1 6= M2

(otherwise the result is trivial). We assume that both M1 and M2 inherit M ′,
and then show that any extension generated only thanks to the fact that M2

has inherited M ′, is either non maximal or a duplication.

Let p′ (resp. s′) denote any prefix (resp. suffix) of M ′ that is inherited by
M1 and M2. Moreover, we denote with P2 (resp. S2) the set PM2

(resp. SM2
)

of prefixes (resp. suffixes) of M2 without the inheritance of p′ (resp. s′). We
assume that p′ 6∈ P2, otherwise the result is trivial. Finally, we denote with P ′

2

the set P2 ∪ {p′} (resp. S′
2 = S2 ∪ {s′}).

Since LM ′ ⊆ LM1
and LM ′ ⊆ LM2

, it must be that LM1
∩ LM2

contains
at least LM ′ and thus it is not empty. Let x denote a generic text position
belonging to LM ′ (and thus also to LM1

and LM2
). We prove the thesis in

several different cases of set inclusions relations between LM1
, LM2

, and LM ′ :

1. LM ′ = LM1
∩ LM2

1a. LMi
\ LM ′ 6= ∅ for both i = 1, 2.

Let o1 (resp. o2) be a generic element in LM1
\LM ′ (resp. LM2

\LM ′).
The extent of M1 will give raise in general, according to lines 12-14
(possibly filtered), to several extents of (` + d)-motifs of the form
LM1N for possibly several `-motifs N . Let us focus our attention
to those that contain any x ∈ LM ′ (the others do not concern the
goal of this proof). There will be, say, h of them that we will denote
with LM1N1

, LM1N2
, . . . , LM1Nh

where LM1Ni
will contain Xi ⊆ LM ′

for i = 1, ..., h. We have that if each set is generated and contains
x ∈ Xi, then for our hypothesis it must be that:

(i) #Ni ∈ V`[x + d], and

(ii) SM1
∩ PNi

6= ∅.

Moreover, each LM1Ni
may or may not contain also any position

o1 ∈ (LM1
\ LM ′).

Let us now consider the contribution of M2 to extents of (` + d)-
motifs, and in particular the extents that result there only because
s′ ∈ S2. Notice that the condition (i) above does not depend from
whether x is coming from LM1

or LM2
, and thus it also holds for

overlaps involving M2. Moreover, for all extents we are concerned
about, we have that also the equivalent of condition (ii) holds, that
is, S′

2 ∩ PNi
6= ∅ because s′ ∈ (S′

2 ∩ PNi
). Therefore, we have that

LM2Ni
will also contain Xi for i = 1, ..., h. No other extent will con-

tain elements of M2 caused by the inheritance of M ′. Moreover, if
the extent LM2Ni

is generated only because s′ ∈ S′
2, it must be that

S2 ∩ PNi
= ∅. In this case, if #Ni 6∈ V`[o2] for any o2 ∈ LM2

\ LM ′ ,
then no position other than x ∈ Xi belongs to LM2Ni

, and thus

34

Page 35 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

LM2Ni
= Xi ⊆ LM1Ni

for all LM2Ni
generated only because s′ ∈ S′

2.
Otherwise, if #Ni ∈ V`[o2], then LM2Ni

would have been generated in
any case, also without M2 inheriting M ′. Therefore, all such LM2Ni

extents are non maximal or duplicated.

In a similar way, it can be shown that each extent of the form LNM2

that has been generated only because p′ ∈ (P ′
2 \ P2) is included (or

equal to) an extent LNiM1
. Hence, M2 inheriting M ′ has only led to

non maximal or duplicated extents.

1b. LM2
\ LM ′ 6= ∅, but LM1

\ LM ′ = ∅ (or vice-versa).
We have that LM1

= LM ′ is a proper subset of LM2
, and thus M1

is not maximal, contradicting the hypothesis. Similarly, we cannot
have that LM2

\ LM ′ = ∅ and LM1
\ LM ′ 6= ∅ because M2 could not

be maximal.

1c. LM1
= LM2

.
In this case we have that LM1

= LM2
= LM ′ , that is M ′ is maximal

but it is a duplication of both M1 and M2, and moreover also M1

and M2 are duplications of each other. Notice that since M1 6=
M2, it must be that they have been generated by means of different
prefixes and/or suffixes. This is just a particular (and simpler) case
of 1a where we have that for each i = 1, ..., h the extents LM1Ni

and LM2Ni
only contains Xi because no o1 nor o2 exist, and thus all

entries LM2Ni
generated only because s′ ∈ S′

2 result in duplications
of entries LM1Ni

. Similarly, all extents of the form LNiM2
that have

been generated are duplications of extents of the form LNiM1
. This

actually holds for any extent that M2 could generate and in fact in
this case also M2 should have been inherited by M1.

2. If LM ′ (LM1
∩ LM2

Let x, o1, o2 be as above, and let y ∈ (LM1
∩ LM2

) \ LM ′ . Let us consider
the same sub-cases a, b and c as in case 1.

2a. LM1
\ LM2

6= ∅ and LM2
\ LM1

6= ∅.
This is the most general case and it differs from case 1a only in that
the extents LM1Ni

may now also contain one or more y ∈ (LM1
∩

LM2
) \ LM ′ next to Xi, or possibly only such y’s. But in this case

the corresponding LM2Ni
would contain the very same y’s and thus

the inclusions still hold.

2b. LM2
\ LM1

6= ∅, but LM1
\ LM2

= ∅ (or vice-versa).
Similarly to the case 1b, this case is again impossible because we have
that LM ′ (LM1

(LM2
(resp. LM ′ (LM2

(LM1
) and thus M1

(resp. M2) could not be maximal.

2c. LM1
= LM2

.
In this case we have that M1 and M2 are maximal duplications and

35

Page 36 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

that M ′ is not maximal. This is a simple extension of case 1c where
nothing else than xi’s and y’s would appear in the extent generated
by M1 and M2, and the latter are equal to the former for the reasons
mentioned above.

The arguments above hold for any generic prefix or suffix (inherited or not),
and thus they can be extended to the case of sets of them. As a consequence,
the result can be iterated and applied to the case of inheritance of inherited lists
of prefixes and suffixes, until only maximal and non duplicated extensions are
left. •

9.9 Proof of theorem 6

Given that IJ is a pseudo-motif with pseudo-extents LIJ , it must be that there
exists d + 1 ≤ p ≤ ` such that IJ [p] = I[p] ∩ J [p − d] and I[p] 6= J [p − d].
Moreover, the (pseudo-)motif IIJ obtained by IJ setting IJ [p] = I[p] (resp
IJJ setting IJ [p] = J [p − d]) has strictly more occurrences that IJ itself. Let
LIIJ = LIJ ∪ Y1 (resp. LIJJ = LIJ ∪ Y2) with LIJ ∩ Y1 = LIJ ∩ Y2 = ∅.
As a consequence, it must be that LI = LIJ ∪ V and LJ = (LIJ + d) ∪ U
with U ⊆ (Y2 + d) and V ⊆ Y1 and thus that both U and V are not empty,
V ∩ LIJ = ∅ and (U − d) ∩ LIJ . Moreover, there is no intersection between
V and U − d (otherwise this would have end up in LIJ as well). Given that
V ⊆ LI , then any ` − d long suffix of I must have at least occurred in V + d.
Also, the fact that U ⊆ LJ means that any prefix of J must have occurred at
least in U . The fact that (V + d)∩U = ∅ excludes that any (`− d)-motif could
at the same time be (or have been inherited) a suffix of I and a prefix of J . •

9.10 Proof of theorem 7

The proofs of parts 1, 2, and 4, are straightforward extensions of those of Theo-
rems 4, 5, and 6 respectively. The proof of part 3 is the extension to relational
motifs of Corollary 1, that is a consequence of 1. and 2.. •

Acknowledgments

Nadia Pisanti were supported by grants from ACI IMPBIO 2003 (project Evol-
Rep) and computations were achieved thank to grants from ANR-06-CIS (project
PROTEUS).

Disclosure statement

No competing financial interests exist.

36

Page 37 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

References

Bouandas, K. and Osmani, A., 2003. Optimal algorithm for temporal patterns
discovery. In FLAIRS-2003, 455–460. AAAI Press.

Bouthinon, D. and Soldano, H., 1999. A new method to predict the consensus
secondary structure of a set of unaligned rna sequences. Bioinformatics 15,
785–798.

Boutonnet, N. S., Rooman, M. J., Ochagavia, M. E., Richelle, J., and Wodak,
S. J., 1995. Optimal protein structure alignments by multiple linkage cluster-
ing: application to distantly related proteins. Protein Eng 8, 647–62.

Brenner, S. E., Koehl, P., and Levitt, M., 2000. The astral compendium for
protein structure and sequence analysis. Nucleic Acids Res 28, 254–6.

Brint, A. and Willett, P., 1987. Algorithms for the identification of three-
dimensional maximal common substructures. J Chem Inf Comput Sci 27,
152–8.

Brown, N. P., Orengo, C. A., and Taylor, W. R., 1996. A protein structure
comparison methodology. Computers and Chemistry 20, 359–380.

Carpentier, M. and Pothier, J., 2007. Protein pairwise structural comparison
methods: a review. In de Brevern, A. G., ed., Recent Advances in Structural
Bioinformatics. Research Signpost, India.

Cook, D. J. and Holder, L. B., 1994. Substructure discovery using minimum de-
scription length and background knowledge. Journal of Artificial Intelligence
Research 1, 231–55.

Crandell, C. W. and Smith, D. H., 1983. Computer-assisted examination of com-
pounds for common three-dimensional substructures. J. Chem. Inf. Comput.
Sci. 23, 186–97.

Dror, O., Benyamini, H., Nussinov, R., and Wolfson, H., 2003a. Mass: multiple
structural alignment by secondary structures. Bioinformatics 19 Suppl. 1,
i95–104.

Dror, O., Benyamini, H., Nussinov, R., and Wolfson, H. J., 2003b. Multiple
structural alignment by secondary structures: algorithm and applications.
Protein Sci 12, 2492–507.

Eidhammer, I., Jonassen, I., and Taylor, W. R., 2000. Structure comparison
and structure patterns. J Comput Biol 7, 685–716.

El-Zant, N. and Soldano, H., 2004. Finding repeated flexible relational words
in sequences. Journal of Systemics, Cybernetics and Informatics 2.

37

Page 38 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Escalier, V., Pothier, J., Soldano, H., and Viari, A., 1998. Pairwise and multi-
ple identification of three-dimensional common substructures in proteins. J
Comput Biol 5, 41–56.

Estabrook, R. W., 2003. A passion for p450s (rememberances of the early history
of research on cytochrome p450). Drug Metab Dispos 31, 1461–73.

Feng, J., Parida, L., and Zhou, R., 2005. Protein folding trajectory analysis
using patterned clusters. In Proceedings of 3rd Asia-Pacific Bioinformatics
Conference, 17-21 January 2005, Singapore, 95–104.

Gerstein, M. and Altman, R., 1995. Using a measure of structural variation to
define a core for the globins. Comput. Appl. Biosci. 11, 633–644.

Gerstein, M. and Levitt, M., 1996. Using iterative dynamic programming to
obtain accurate pairwise and multiple alignments of protein structures. In
Proc Int Conf Intell Syst Mol Biol, volume 4, 59–67.

Gerstein, M. and Levitt, M., 1998. Comprehensive assessment of automatic
structural alignment against a manual standard, the scop classification of
proteins. Protein Sci 7, 445–56.

Guda, C., Scheeff, E. D., Bourne, P. E., and Shindyalov, I. N., 2001. A new
algorithm for the alignment of multiple protein structures using monte carlo
optimization. In Pacific Symposium on Biocomputing Pacific Symposium on
Biocomputing, 275–86.

Jones, N. C. and Pevzner, P. A., 2004. An Introduction to Bioinformatics
Algorithms. The MIT Press.

Karp, R., Miller, R., and Rosenberg, A., 1972. Rapid identification of repated
patterns in strings, trees and arrays. In Fourth ACM Symposium on Theory
of Computing, 125–136.

Kawabata, T., 2003. Matras: A program for protein 3d structure comparison.
Nucleic Acids Res 31, 3367–9.

Koch, I., Kaden, F., and Selbig, J., 1992. Analysis of protein sheet topologies
by graph theoretical methods. Proteins 12, 314–23.

Koch, I., Lengauer, T., and Wanke, E., 1996. An algorithm for finding maximal
common subtopologies in a set of protein structures. J Comput Biol 3, 289–
306.

Konagurthu, A., Whisstock, J., Stuckey, P., and Lesk, A., 2006. Mustang: a
multiple structural alignment algorithm. Proteins 64, 559–74.

Leibowitz, N., Fligelman, Z. Y., Nussinov, R., and Wolfson, H. J., 1999. Multiple
structural alignment and core detection by geometric hashing. Proc Int Conf
Intell Syst Mol Biol 169–77.

38

Page 39 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Leibowitz, N., Fligelman, Z. Y., Nussinov, R., and Wolfson, H. J., 2001. Auto-
mated multiple structure alignment and detection of a common substructural
motif. Proteins 43, 235–45.

Lesk, A. M. and Fordham, W. D., 1996. Conservation and variability in the
structures of serine proteinases of the chymotrypsin family. J Mol Biol 258,
501–37.

Lothaire, M., 2005. Applied Combinatorics on words. Cambridge University
Press.

Lupyan, D., Leo-Macias, A., and Ortiz, A. R., 2005. A new progressive-iterative
algorithm for multiple structure alignment. Bioinformatics .

Marin, A., Pothier, J., Zimmermann, K., and Gibrat, J. F., 2002. Frost: a
filter-based fold recognition method. Proteins 49, 493–509.

Marsan, L. and Sagot, M.-F., 2001. Algorithms for extracting structured motifs
using a suffix tree with application to promoter and regulatory consensus
identification. Journal of Computational Biology 7, 345–360.

Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C., 1995. Scop: a
structural classification of proteins database for the investigation of sequences
and structures. J Mol Biol 247, 536–40.

Ochagavia, M. and Wodak, S., 2004. Progressive combinatorial algorithm for
multiple structural alignments: Application to distantly related proteins. Pro-
teins: Structure, Function, and Bioinformatics 55, 436–454.

Ortiz, A. R., Strauss, C. E., and Olmea, O., 2002. Mammoth (matching molec-
ular models obtained from theory): an automated method for model compar-
ison. Protein Sci 11, 2606–21.

Parida, L., 2008. Pattern Discovery in Bioinformatics. Chapman & Hall.

Parida, L. and Zhou, R., 2005. Combinatorial pattern discovery approach for
the folding trajectory analysis of a β-hairpin. PLoS Computational Biology
1.

Pisanti, N., Crochemore, M., Grossi, R., and Sagot, M.-F., 2003. A basis of
tiling motifs for generating repeated patterns and its complexity for higher
quorum. In B.Rovan and P.Vojtás, eds., Mathematical Foundations of Com-
puter Science, LNCS 2747, 622–631. Springer-Verlag.

Pisanti, N., Soldano, H., and Carpentier, M., 2005. Incremental Inference of
Relational Motifs with a Degenerate Alphabet. In Combinatorial Pattern
Matching (CPM), 229–240. Springer-Verlag. LNCS 3537.

39

Page 40 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Pisanti, N., Soldano, H., Carpentier, M., and Pothier, J., 2006. Implicit and
explicit representation of approximated motifs. In Iliopoulos, C. S., Park, K.,
and Steinhoefel, K., eds., Algorithms in Bioinformatics, Texts in Algorithmics,
volume 6, 1–14. College Press.

Sali, A. and Blundell, T. L., 1990. Definition of general topological equivalence
in protein structures. a procedure involving comparison of properties and
relationships through simulated annealing and dynamic programming. J Mol
Biol 212, 403–28.

Shindyalov, I. N. and Bourne, P. E., 1998. Protein structure alignment by
incremental combinatorial extension (ce) of the optimal path. Protein Eng
11, 739–47.

Simons, K. T., Bonneau, R., Ruczinski, I., and Baker, D., 1999. Ab initio
protein structure prediction of casp iii targets using rosetta. Proteins Suppl
3, 171–6.

Soldano, H., Viari, A., and Champesme, M., 1995. Searching for flexible re-
peated patterns using a non-transitive similarity relation. Pattern Recognition
Letters 16, 243–246.

Su, S., Cook, D. J., and Holder, L. B., 1999. Applications of knowledge discovery
to molecular biology: identifying structural regularities in proteins. Pac Symp
Biocomput 190–201.

Taylor, W. R., May, A. C., Brown, N. P., and Aszodi, A., 2001. Protein struc-
ture: geometry, topology and classification. Reports on Progress in Physics
64, 517.

Vialette, S., 2004. On the computational complexity of 2-interval pattern match-
ing problems. Theoretical Computer Science 312, 223–249.

Wu, T. D., Schmidler, S. C., Hastie, T., and Brutlag, D. L., 1998a. Modeling
and superposition of multiple protein structures using affine transformations:
analysis of the globins. Pac Symp Biocomput 509–20.

Wu, T. D., Schmidler, S. C., Hastie, T., and Brutlag, D. L., 1998b. Regression
analysis of multiple protein structures. J Comput Biol 5, 585–95.

Ye, J. and Janardan, R., 2004. Approximate multiple protein structure align-
ment using the sum-of-pairs distance. J Comput Biol 11, 986–1000.

Ye, Y. and Godzik, A., 2003. Flexible structure alignment by chaining aligned
fragment pairs allowing twists. Bioinformatics 19 Suppl 2, II246–II255.

Ye, Y. and Godzik, A., 2005. Multiple flexible structure alignment using partial
order graphs. Bioinformatics 21, 2362–9.

40

Page 41 of 40

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

