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Abstract Efficient Matlab codes in 2D and 3D have been proposed recently
to assemble finite element matrices. In this paper we present simple, compact
and efficient vectorized algorithms, which are variants of these codes, in ar-
bitrary dimension, without the use of any lower level language. They can be
easily implemented in many vector languages (e.g. Matlab, Octave, Python,
Scilab, R, Julia, C++with STL,...). The principle of these techniques is general,
we present it for the assembly of several finite element matrices in arbitrary
dimension, in the P1 finite element case. We also provide an extension of the al-
gorithms to the case of a system of PDE’s. Then we give an extension to piece-
wise polynomials of higher order. We compare numerically the performance
of these algorithms in Matlab, Octave and Python, with that in FreeFEM++
and in a compiled language such as C. Examples show that, unlike what is
commonly believed, the performance is not radically worse than that of C :
in the best/worst cases, selected vector languages are respectively 2.3/3.5 and
2.9/4.1 times slower than C in the scalar and vector cases. We also present
numerical results which illustrate the computational costs of these algorithms
compared to standard algorithms and to other recent ones.
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1 Introduction

Vector languages1 such as Matlab [27], GNU Octave [30], Python [13], R [14],
Scilab [12], Julia [22], C++ with STL,..., are very widely used for scientific
computing (see for example [3,25,20,24,32]) and there is significant interest
in programming techniques in these languages for two reasons. The first con-
cerns how to make clear, compact code to ease implementation and under-
standing, which is important for teaching and rapid-prototyping in research
and industry. The second concerns how to make this compact code fast enough
for realistic simulations.

On the other hand, in finite element simulations [4,5,21,33,35], the need
for efficient algorithms for assembling the matrices may be crucial, especially
when the matrices may need to be assembled several times. This is the case for
example when simulating time-dependent problems with explicit or implicit
schemes with time-dependent coefficients (e.g. in ocean-atmosphere coupling
or porous medium applications). Other examples are computations with a
posteriori estimates when one needs to reassemble the matrix equation on a
finer mesh, or in the context of eigenvalue problems where assembling the
matrix may be costly. In any event, assembly remains a critical part of code
optimization since solution of linear systems, which asymptotically dominates
in large-scale computing, could be done with the linear solvers of the different
vector languages.

In a vector language, the inclusion of loops is a critical performance degrad-
ing aspect and removing them is known as a vectorization. In finite element
programming, the classical finite element assembly is based on a loop over the
elements (see for example [26]). In [9] T. Davis describes different assembly
techniques applied to random matrices of finite element type. A first vector-
ization technique is proposed in [9]. Other more efficient algorithms in Matlab
have been proposed recently in [1,2,3,8,15,17,23,34].

In this paper we describe vectorized algorithms, which are variants of the
codes in [2,3,15,23], extended to arbitrary dimension d ≥ 1, for assembling
large sparse matrices in finite element computations. A particular strength of
these algorithms is that they make using, reading and extending the codes
easier while achieving performance close to that of C.

The aim of this article is the quantitative studies for illustrating the ef-
ficiency of the vector languages and the various speed-up of the algorithms,
relatively to each other, to C and to FreeFem++ [19]. We also propose a
vectorized algorithm in arbitrary dimension which is easily transposable to
matrices arising from PDE’s such as (see [33])

−∇ · (A∇u) +∇ · (bbbu) + ccc · ∇u+ a0u = f in Ω, (1.1)

where Ω is a bounded domain of Rd (d ≥ 1), A ∈ (L∞(Ω))d×d, bbb ∈ (L∞(Ω))d,
ccc ∈ (L∞(Ω))d, a0 ∈ L∞(Ω) and f ∈ L2(Ω) are given functions. The de-
scription of the vectorized algorithm is done in three steps: we recall (non-

1 which contain usual element-wise operators and functions on multidimensional arrays
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vectorized) versions called base and OptV1. The latter requires sparse ma-
trix tools found in most of the languages used for computational science
and engineering. Then we give vectorized algorithms which are much faster:
OptV2 (memory consuming), OptV (less memory consuming) and OptVS (a
symmetrized version of OptV). These algorithms have been tested for several
matrices (e.g. weighted mass, stiffness and elastic stiffness matrices) and in
different languages. We also provide an extension to the vector case in arbi-
trary dimension, where the algorithm is applied to the elastic stiffness matrix
with variable coefficients, in 2D and 3D.

For space considerations, we restrict ourselves in this paper to P1 Lagrange
finite elements. However, in the appendix we show that with slight modifica-
tion, the algorithm is valid for piecewise polynomials of higher order.

These algorithms can be efficiently implemented in many languages if the
language has a sparse matrix implementation. For the OptV1, OptV2, OptV
and OptVS versions, a particular sparse matrix constructor is also needed (see
Section 3) and these versions require that the language supports element-wise
array operations. Examples of languages for which we obtained an efficient
implementation of these algorithms are

• Matlab,
• Octave,
• Python with NumPy and SciPy modules,
• Scilab,
• Thrust and Cusp, C++ libraries for CUDA

This paper is organized as follows: in Section 2 we define two examples of
finite element matrices. Then we introduce the notation associated to the mesh
and to the algorithmic language used in this article. In Section 3 we give the
classical and OptV1 algorithms. In Section 4 we present the vectorized OptV2

and OptV algorithms for a generic sparse matrix and P1 finite elements, with
the application to the assemblies of the matrices of Section 2. A similar version
called OptVS for symmetric matrices is also given. A first step towards finite
elements of higher order is deferred to Appendix B. In Section 5 we consider
the extension to the vector case with an application to linear elasticity. In
Section 6, benchmark results illustrate the performance of the algorithms in the
Matlab, Octave and Python languages. First, we show a comparison between
the classical, OptV1, OptV2, OptV and OptVS versions. Then we compare the
performances of the OptVS version to those obtained with a compiled language
(using SuiteSparse [10] in C language), the latter being well-known to run
at high speed and serving as a reference. A comparison is also given with
FreeFEM++ [18] as a simple and reliable finite element software. We also
show in Matlab and Octave a comparison of the OptVS algorithm and the
codes given in [2,3,17,34].

All the computations are done on our reference computer2 with the re-
leases R2014b for Matlab, 3.8.1 for Octave, 3.4.0 for Python and 3.31 for
FreeFEM++. The Matlab/Octave and Python codes may be found in [7].

2 2 x Intel Xeon E5-2630v2 (6 cores) at 2.60Ghz, 64Go RAM
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2 Statement of the problem and notation

In this article we consider the assembly of the standard sparse matrices (e.g.
weighted mass, stiffness and elastic stiffness matrices) arising from the P1

finite element discretization of partial differential equations (see e.g. [5,33]) in
a bounded domain Ω of Rd (d ≥ 1).

We suppose that Ω is equipped with a mesh Th (locally conforming) as de-
scribed in Table 2.1. We suppose that the elements belonging to the mesh are d-
simplices . We introduce the finite dimensional spaceX1

h = {v ∈ C0(Ωh), v|K ∈
P1(K), ∀K ∈ Th} where Ωh =

⋃

K∈Th
K and P1(K) denotes the space of

all polynomials over K and of total degree less than or equal to 1. Let qj ,
j = 1, ..., nq be a vertex of Ωh, with nq = dim(X1

h). The space X1
h is spanned

by the P1 Lagrange basis functions {ϕi}i∈{1,...,nq} in Rd, where ϕi(q
j) = δij ,

with δij the Kronecker delta.
We consider two examples of finite element matrices: the weighted mass matrix
M[w], with w ∈ L∞(Ω), defined by

M
[w]
i,j =

∫

Ωh

wϕjϕidq, ∀(i, j) ∈ {1, ..., nq}
2, (2.1)

and the stiffness matrix S given by

Si,j =

∫

Ωh

〈∇ϕj ,∇ϕi〉 dq, ∀(i, j) ∈ {1, ..., nq}
2. (2.2)

Note that on the k-th element K = Tk of Th we have

∀α ∈ {1, . . . , d+ 1} , ϕi|Tk
= λα, with i = me(α, k), (2.3)

where (λα)α∈{1,...,d+1} are the barycentric coordinates (i.e the local P1 La-
grange basis functions) of K, and me is the connectivity array (see Table 2.1).
The matrices M[w] and S can be assembled efficiently with a vectorized algo-
rithm proposed in Section 4, which uses the following formula (see e.g. [31])

∫

K

d+1
∏

i=1

λni

i dq = d!|K|

d+1
∏

i=1

ni!

(d+

d+1
∑

i=1

ni)!

(2.4)

where |K| is the volume of K and ni ∈ N.

Remark 2.1 The (non-vectorized or vectorized) finite element assembly algo-
rithms presented in this article may be adapted to compute matrices associated
to the bilinear form (1.1).

Remark 2.2 These algorithms apply to finite element methods of higher order.
Indeed, one can express the Pk-Lagrange basis functions (k ≥ 2) as polynomials
in λi variable and then use formula (2.4). In Appendix D we give a first step
to obtain a vectorized algorithm for Pk finite elements.



Efficient finite element assembly algorithms in vector languages 5

In the remainder of this article, we will use the following notations to
describe the triangulation Th of Ω:

name type dimension description

d integer 1 dimension of simplices of Th
nq integer 1 number of vertices of Th
nme integer 1 number of mesh elements in Th
q double d× nq array of vertex coordinates
me integer (d + 1) × nme connectivity array
vols double 1× nme array of simplex volumes

Table 2.1: Data structure associated to the mesh Th

In Table 2.1, for ν ∈ {1, . . . , d}, q(ν, j) represents the ν-th coordinate of
the j-th vertex, j ∈ {1, . . . , nq}. The j-th vertex will be also denoted by qj .
The term me(β, k) is the storage index of the β-th vertex of the k-th element,
in the array q, for β ∈ {1, ..., d+ 1} and k ∈ {1, . . . , nme}.

We also provide below some common functions and operators of the vector-
ized algorithmic language used in this article which generalize the operations
on scalars to higher dimensional arrays, matrices and vectors:

A← B Assignment
A ∗ B matrix multiplication,
A .∗.∗.∗ B element-wise multiplication,
A ./././B element-wise division,
A(:) all the elements of A, regarded as a single column.
[, ] Horizontal concatenation,
[; ] Vertical concatenation,
A(:, J) J-th column of A,
A(I, :) I-th row of A,
Sum(A, dim) sums along the dimension dim,
In n-by-n identity matrix,
1m×n (or 1n) m-by-n (or n-by-n) matrix or sparse matrix of ones,
Om×n (or On) m-by-n (or n-by-n) matrix or sparse matrix of zeros,
ones(n1, n2, ..., nℓ) ℓ dimensional array of ones,
zeros(n1, n2, ..., nℓ) ℓ dimensional array of zeros.

3 Standard finite element assemblies

In this section we consider the P1 finite element assembly of a generic nq-by-nq
sparse matrix M with its corresponding (d+1)-by-(d+1) local matrix E (also
denoted by E(K) when referring to an element K ∈ Th). For K = Tk, the
(α, β)-th entry of E(Tk) is denoted by ekα,β.

In Algorithm 3.1, we recall the classical finite element assembly method for
calculating M. In this algorithm, an nq-by-nq sparse matrix M is first declared,
then the contribution of each element Tk ∈ Th, given by a function ElemMat,
is added to the matrix M. These successive operations are very expensive due
to a suboptimal use of the sparse function.
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A first optimized, non-vectorized, version (called OptV1), suggested in [9],
is based on the use of the sparse function:

M ← sparse(Ig,Jg,Kg,m,n);

This command returns an m ×n sparse matrix M such that

M(Ig(k),Jg(k))← M(Ig(k),Jg(k)) + Kg(k).

The vectors Ig, Jg and Kg have the same length. The zero elements of K are
not taken into account and the elements of Kg having the same indices in Ig

and Jg are summed.
Examples of languages containing a sparse function are given below

• Python (scipy.sparse module) :
M=sparse.<format> matrix((Kg,(Ig,Jg)),shape=(m,n))

where <format> is the sparse matrix format (e.g. csc, csr, lil, ...),
• Matlab : M=sparse(Ig,Jg,Kg,m,n), only csc format,
• Octave : M=sparse(Ig,Jg,Kg,m,n), only csc format,
• Scilab : M=sparse([Ig,Jg],Kg,[m,n]), only row-by-row format.
• C with SuiteSparse [10]
• CUDA with Thrust [29] and Cusp [28] libraries

The OptV1 version consists in computing and storing all elementary contri-
butions first and then using them to generate the sparse matrix M. The main
idea is to create three global 1d-arrays KKKg, IIIg and JJJg of length (d + 1)2nme,
which store the local matrices as well as the position of their elements in the
global matrix as shown on Figure 3.1. To create the arraysKKKg, IIIg and JJJg, we
define three local arrays KKKe

k, III
e
k and JJJe

k of length (d + 1)2 obtained from the
(d+ 1)-by-(d+ 1) local matrix E(Tk) as follows:

KKKe
k : elements of the matrix E(Tk) stored column-wise,

IIIek : global row indices associated to the elements stored in KKKe
k,

JJJe
k : global column indices associated to the elements stored in KKKe

k.

Using KKKe
k, III

e
k, JJJ

e
k and a loop over the mesh elements Tk, one may calculate

the global arrays IIIg, JJJg and KKKg. The corresponding OptV1 algorithm is given
in Algorithm 3.2.

Numerical experiments in Section 6.1 and in Tables A.3 and A.4 show that
the OptV1 algorithm is more efficient than the classical one. The inefficiency
of the classical (base) version compared to the OptV1 version is mainly due
to the repetition of element insertions into the sparse structure and to some
dynamic reallocation troubles that may also occur.

However, the OptV1 algorithm still uses a loop over the elements. To im-
prove the efficiency of this algorithm, we propose in the next section other op-
timized versions, in a vectorized form: the main loop over the elements, which
increases with the size of the mesh, is vectorized. The other loops (which are
independent of the mesh size and with few iterations) will not necessarily be
vectorized.
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Fig. 3.1: Insertion of a local matrix into global 1d-arrays - OptV1 version, where
m = d+ 1, Ikl = me(l, k).

Algorithm 3.1 (base) - Classical assembly

1: M← Onq ⊲ Sparse matrix

2: for k ← 1 to nme do

3: E← ElemMat(vols(k), . . .)
4: for α← 1 to d+ 1 do

5: i← me(α, k)
6: for β ← 1 to d+ 1 do

7: j ← me(β, k)
8: Mi,j ← Mi,j + Eα,β

9: end for

10: end for

11: end for

Algorithm 3.2 (OptV1) - Optimized and
non-vectorized assembly

1: KKKg ← IIIg ← JJJg ← zeros((d + 1)2nme, 1)
2: l← 1
3: for k ← 1 to nme do

4: E← ElemMat(vols(k), . . .)
5: for β ← 1 to d+ 1 do

6: for α← 1 to d+ 1 do

7: IIIg(l)← me(α, k)
8: JJJg(l)← me(β, k)
9: KKKg(l)← E(α, β)
10: l← l+ 1
11: end for

12: end for

13: end for

14: M←sparse(IIIg,JJJg,KKKg,nq,nq)
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4 Optimized finite element assembly

In this section we present optimized algorithms, only available in vector lan-
guages. In the first algorithm, OptV2, the idea is to vectorize the main loop
over the elements by defining the two-dimensional arrays Kg, Ig and Jg of size
(d + 1)2-by-nme which store all the local matrices as well as their positions
in the global matrix. Then, as for the OptV1 version, the matrix assembly is
obtained with the sparse function:

M ← sparse(Ig(:),Jg(:),Kg(:),nq,nq);

A non-vectorized approach inspired by OptV1 is as follows: for each mesh
element Tk, the k-th column of the global arrays Kg, Ig and Jg is filled with
the local arrays KKKe

k, III
e
k, JJJ

e
k respectively, as shown in Figure 4.1.
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Fig. 4.1: Insertion of a local matrix into global 2D-arrays

Thus,Kg, Ig and Jg are defined by: ∀k ∈ {1, . . . , nme} , ∀l ∈
{

1, . . . , (d+ 1)2
}

,

Kg(l, k) =KKKe
k(l), Ig(l, k) = IIIek(l), Jg(l, k) = JJJe

k(l).

A natural way to calculate these three arrays is column-wise. In that case, for
each array one needs to compute nme columns.
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The OptV2 method consists in calculating these arrays row-wise. In that
case, for each array one needs to calculate (d+1)2 rows (where d is independent
of the number of mesh elements). This vectorization method is represented in
Figure 4.2.

Kg

e1α,β enme

α,β

1 2 . . . . . . nme

1

 

 

 

 

 

 

m(β − 1) + α

 

 

 

 

 

 

m2

Ig

I
1

α I
nme

α

1 2 . . . . . . nme

Jg

I
1

β
I
nme

β

1 2 . . . . . . nme

Fig. 4.2: Row-wise operations on global 2D-arrays

We first suppose that for α and β fixed, we can vectorize the computation
of ekα,β, for all k ∈ {1, . . . , nme} . This vectorization procedure, denoted by
vecElem(α, β, . . .), returns a 1d-array containing these nme values. We will
describe it in detail for some examples in Sections 4.1 and 4.2. Then we obtain
the following algorithm

Algorithm 4.1 (OptV2) - Optimized and vectorized assembly

1: Function M←AssemblyGenP1OptV2(me,nq, . . .)
2: Kg ← Ig ← Jg ← zeros((d + 1)2,nme) ⊲ (d+ 1)2-by-nme 2d-arrays
3: l← 1
4: for β ← 1 to d+ 1 do

5: for α← 1 to d+ 1 do

6: Kg(l, :)← vecElem(α, β, . . .)
7: Ig(l, :)← me(α, :)
8: Jg(l, :)← me(β, :)
9: l← l + 1
10: end for

11: end for

12: M← Sparse(Ig(:), Jg(:),Kg(:), nq,nq)
13: end Function

Algorithm 4.1 is efficient in terms of computation time (see Section 6.1).
However it is memory consuming due to the size of the arrays Ig, Jg and Kg.
Thus a variant (see [3,23] for dimension 2 or 3 in Matlab) consists in using
the sparse command inside the loops (i.e. for each component of all element
matrices). This method, called OptV, is given in Algorithm 4.2.
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Algorithm 4.2 (OptV) - Optimized and vectorized assembly (less memory consuming)

1: Function M←AssemblyGenP1OptV(me,nq, . . .)
2: M← Onq ⊲ nq-by-nq sparse matrix
3: for β ← 1 to d+ 1 do

4: for α← 1 to d+ 1 do

5: KKKg ← vecElem(α, β, . . .)
6: M← M+ Sparse(me(α, :),me(β, :),KKKg ,nq, nq)
7: end for

8: end for

9: end Function

For a symmetric matrix, the performance can be improved by using a
symmetrized version of OptV (called OptVS), given in Algorithm 4.3. More
precisely, in the lines 3-8 of this algorithm, we build a non-triangular sparse
matrix which contains the contributions of the strictly upper parts of all the
element matrices. In line 9 the strictly lower part contributions are added using
the symmetry of the element matrices. Then in lines 10-13 the contributions
of the diagonal parts of the element matrices are added.

Algorithm 4.3 (OptVS) - Symmetrized version of OptV

1: Function M←AssemblyGenP1OptVS(me,nq, . . .)
2: M← Onq ⊲ nq-by-nq sparse matrix
3: for α← 1 to d+ 1 do

4: for β ← α+ 1 to d+ 1 do

5: KKKg ← vecElem(α, β, . . .)
6: M← M+ Sparse(me(α, :),me(β, :),KKKg ,nq, nq)
7: end for

8: end for

9: M← M+Mt

10: for α← 1 to d+ 1 do

11: KKKg ← vecElem(α, α, . . .)
12: M← M+ Sparse(me(α, :),me(α, :),KKKg,nq,nq)
13: end for

14: end Function

In the following, our objective is to show using examples how to vectorize
the computation of KKKg (i.e. how to obtain the vecElem function in algorithms
OptV2, OptV and OptVS). More precisely for the examples derived from (1.1),
the calculation of KKKg only depends on the local basis functions and/or their
gradients and one may need to calculate them on all mesh elements. For P1

finite elements, these gradients are constant on each d-simplex K = Tk. Let G
be the 3D array of size nme-by-(d+ 1)-by-d defined by

G(k, α, :) = ∇ϕ
k
α(q), ∀α ∈ {1, . . . , d+ 1} , ∀k ∈ {1, . . . , nme} . (4.1)

In Appendix C, we give a vectorized function called GradientVec (see Algo-
rithm C.1) which computes G in arbitrary dimension. Once the gradients are
computed, the local matrices are calculated using the formula (2.4). For sim-
plicity, in the following we consider the OptV version. The vectorization of the
computation of KKKg is shown using the two examples introduced in Section 2.
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4.1 Weighted mass matrix assembly

The local weighted mass matrix M[w],e(K) is given by

M
[w],e
α,β (K) =

∫

K

wλβλαdq, ∀(α, β) ∈ {1, ..., d+ 1}2, (4.2)

with w ∈ L∞(Ω). Generally, this matrix cannot be computed exactly and
one has to use a quadrature formula. In the following, we choose to approx-
imate w by wh = π1

K(w) where π1
K(w) =

∑d+1
γ=1 w(q

γ)λγ is the P1 Lagrange
interpolation of w. Then using (2.4), we have the quadrature formula for (4.2)

∫

K

π1
K(w)λαλβdq =

d!

(d+ 3)!
|K|(1 + δα,β)(w

s + w(qα) + w(qβ)), (4.3)

where ws =
∑d+1

γ=1 w(q
γ). Using (4.3) we vectorize the assembly of the approx-

imate weighted mass matrix (2.1) as shown in Algorithm 4.4.

Algorithm 4.4 (OptV) - Weighted mass matrix assembly

1: Function M←AssemblyMassWP1OptV(me, q, vols, w)
2: www ← w(q) ⊲ 1d-array of size nq
3: W← www(me) ⊲ (d + 1)-by-nme 2d-array
4: wwws ← Sum(W, 1) ⊲ 1d-array of size nme

5: M← Onq ⊲ nq-by-nq sparse matrix
6: for α← 1 to d+ 1 do

7: for β ← 1 to d+ 1 do

8: KKKg ←
d!

(d+3)!
(1 + δα,β) ∗ vols .∗.∗.∗ (www

s +++W(α, :) +++W(β, :))

9: M← M+ Sparse(me(α, :),me(β, :),KKKg ,nq, nq)
10: end for

11: end for

12: end Function

Line 8 of Algorithm 4.4 corresponds to the vectorization of formula (4.3) and is
carried out as follows: first we set www ∈ Rnq such that www(i) = w(qi), 1 ≤ i ≤ nq,
or in a vectorized form www ← w(q). Then we compute the array W of size
(d + 1)-by-nme containing, for each d-simplex, the values of w at its vertices:
W(α, k) = w(qme(α,k)) or in vectorized form W ← www(me). We now calculate
wwws ∈ Rnme which contains, for each d-simplex, the sum of the values of w at
its vertices, i.e. we sum W over the rows and obtain line 4 of Algorithm 4.4.
Then, formula (4.3) may be vectorized to obtain line 8 in Algorithm 4.4.

Remark 4.1 Note that formula (4.3) is exact if w is a polynomial of degree 1
on K. Moreover, if w is constant, we get the mass matrix (up to the con-
stant w). Other quadrature rules could be used to approximate the integral
in (4.2) without changing the principle of Algorithm 4.4.

Remark 4.2 Algorithm 4.4 can be applied to meshes composed of n-simplices
(for n ≤ d) and may be used to compute Neumann or Robin boundary terms.



12 François Cuvelier et al.

4.2 Stiffness matrix assembly

The local stiffness matrix Se(K) is given, for all (α, β) ∈ {1, ..., d+ 1}2, by

Seα,β(K) =

∫

K

〈∇λβ ,∇λα〉 dq = |K| 〈∇λβ ,∇λα〉 . (4.4)

To obtain the right-hand side of (4.4) we use the fact that the gradients of
the local basis functions are constant on each d-simplex. The gradients are
computed with the vectorized function GradientVec of Algorithm C.1. Then
the vectorized assembly Algorithm 4.5 easily follows.

Algorithm 4.5 (OptV) - Stiffness matrix assembly

1: Function M←AssemblyStiffP1OptV(me, q, vols)
2: G← GradientVec(q,me)
3: M← Onq ⊲ nq-by-nq sparse matrix
4: for α← 1 to d+ 1 do

5: for β ← 1 to d+ 1 do

6: KKKg ← zeros(1, nme)
7: for i← 1 to d do

8: KKKg ←KKKg +++G(:, β, i) .∗.∗.∗G(:, α, i)
9: end for

10: KKKg ←KKKg .∗.∗.∗ vols
11: M← M+ Sparse(me(α, :),me(β, :),KKKg,nq,nq)
12: end for

13: end for

14: end Function

We will now adapt these methods to the vector case with an application
to the assembly of the elastic stiffness matrix in two and three dimensions.

5 Extension to the vector case

In this section we present an extension of Algorithms 4.1 and 4.2 to the vector
case, i.e for a system of m (m > 1) partial differential equations such as in
elasticity. First, we need to introduce some notation: the space (X1

h)
m (where

X1
h is defined in Section 2), is of dimension ndof = m nq and spanned by the

vector basis functions {ψψψl,i}1≤i≤nq

1≤l≤m

, given by

ψψψl,i = ϕieeel, (5.1)

where {eee1, · · · , eeem} is the standard basis of Rm. The alternate numbering is
chosen for the basis functions. We use either ψψψl,i or ψψψs with s = (i − 1)m+ l
to denote them. We will consider the assembly of a generic sparse matrix of
dimension ndof -by-ndof defined by

Hr,s =

∫

Ωh

H(ψψψs,ψψψr)dq,
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where H is a bilinear differential operator of order one.

As in the scalar case, in order to vectorize the assembly of the matrix,
one has to vectorize the computation of the local matrices. To define the local
matrix, we introduce the following notation: on the k-th element K = Tk of Th
we denote by {λλλl,α} 1≤l≤m

1≤α≤d+1
the ndfe = m(d+ 1) local basis functions defined

by

λλλl,α = λαeeel. (5.2)

We also use notation λλλi with i = (α− 1)m+ l to denote λλλl,α. By construction,
we have ∀l ∈ {1, . . . ,m} , ∀α ∈ {1, . . . , d+ 1}

ψψψl,me(α,k) = λλλl,α on K = Tk.

Thus, the local matrix He on the d-simplex K is of size ndfe-by-ndfe, and is
given by

He
i,j =

∫

K

H(λλλj ,λλλi)dq.

Then, a classical non-vectorized algorithm is given in Algorithm 5.1. The func-
tion ElemH is used to calculate the matrix He for a given d-simplex K. As in
the scalar case, the vectorized assembly algorithm is based on the use of a
function called vecHe which returns the values corresponding to the (i, j)-th
entry (with (i, j) = (m(α− 1)+ l,m(β− 1)+n)) of the local matrices He(K),
for all K ∈ Th and for all l, α, n, β. We suppose that this function can be vec-
torized. Then we obtain the OptV2 vectorized assembly of the matrix H given
in Algorithm 5.2.

Algorithm 5.1 (base) - Classical assembly
in vector case (m > 1)

1: ndof ← m ∗ nq
2: H← Ondof ⊲ Sparse matrix

3: for k ← 1 to nme do

4: He ← ElemH(vols(k), . . .)
5: for l← 1 to m do

6: for n← 1 to m do

7: for α← 1 to d+ 1 do

8: r ← m ∗ (me(α, k)− 1) + l
9: i← m ∗ (α− 1) + l
10: for β ← 1 to d+ 1 do

11: s← m ∗ (me(β, k)− 1) + n
12: j ← m ∗ (β − 1) + n
13: Hr,s ← Hr,s +He

i,j
14: end for

15: end for

16: end for

17: end for

18: end for

Algorithm 5.2 (OptV2) - Optimized assembly
in vector case (m > 1)

1: ndfe ← m ∗ (d+ 1)
2: Kg ← Ig ← Jg ← zeros(n2dfe, nme)
3: p← 1
4: for l← 1 to m do

5: for n← 1 to m do

6: for β ← 1 to d+ 1 do

7: for α← 1 to d+ 1 do

8: Kg(p, :)← vecHe(l, α, n, β, . . .)
9: Ig(p, :)← m ∗ (me(α, :)− 1) + l
10: Jg(p, :)← m ∗ (me(β, :)− 1) + n
11: p← p + 1
12: end for

13: end for

14: end for

15: end for

16: ndof ← m ∗ nq
17: H← sparse(Ig(:), Jg(:),Kg(:), ndof , ndof)
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As in Section 4, although Algorithm 5.2 is efficient in terms of computation
time, it is memory consuming due to the size of the arrays Ig, Jg and Kg. Thus
a variant consists in using the sparse command inside the loops, which leads to
the extension of the OptV algorithm to the vector case, given in Algorithm 5.3.

Algorithm 5.3 (OptV) - Optimized assembly in vector case (m > 1)

1: Function M←AssemblyVecGenP1OptV(me, nq, . . .)
2: ndof ← m ∗ nq
3: M← Ondof ⊲ ndof -by-ndof sparse matrix
4: for l← 1 to m do

5: for α← 1 to d+ 1 do

6: IIIg ← m ∗ (me(α, :)− 1) + l
7: for n← 1 to m do

8: for β ← 1 to d+ 1 do

9: KKKg ← vecHe(l, α, n, β, . . .)
10: JJJg ← m ∗ (me(β, :)− 1) + n
11: M← M+ Sparse(IIIg , JJJg,KKKg,ndof ,ndof )
12: end for

13: end for

14: end for

15: end for

16: end Function

For a symmetric matrix, the performance can be improved by using a
symmetrized version of Algorithm 5.3 (as in Section 4), given in Algorithm C.2.

In the following the vectorized function vecHe is detailed for the elastic
stiffness matrix in 2D and 3D.

5.1 Elastic stiffness matrix assembly

Here we consider sufficiently regular vector fields uuu = (u1, . . . , ud) : Ω → Rd,
with the associated discrete space (X1

h)
d, d = 2 or 3 (i.e. m = d in that case).

We consider the elastic stiffness matrix arising in linear elasticity when
Hooke’s law is used and the material is isotropic, under small strain hypothesis
(see for example [11]). This sparse matrix K is defined by

Kl,n =

∫

Ωh

ǫǫǫt(ψψψn)Cǫǫǫ(ψψψl)dq, ∀(l, n) ∈ {1, . . . , ndof}
2 , (5.3)

where ǫǫǫ is the linearized strain tensor given by

ǫǫǫ(uuu) =
1

2

(

∇∇∇(uuu) +∇∇∇
t(uuu)

)

,

with ǫǫǫ = (ǫ11, ǫ22, 2ǫ12)
t in 2D and ǫǫǫ = (ǫ11, ǫ22, ǫ33, 2ǫ12, 2ǫ23, 2ǫ13)

t in 3D,

with ǫij(uuu) = 1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

. The elasticity tensor C depends on the Lamé
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parameters λ and µ satisfying λ+µ > 0, and possibly variable in Ω. For d = 2
or d = 3, the matrix C is given by

C =

(

λ12 + 2µI2 O2×1

O1×2 µ

)

3×3

, C =

(

λ13 + 2µI3 O3×3

O3×3 µI3

)

6×6

.

Formula (5.3) is related to the Hooke’s law

σσσ = Cǫǫǫ,

where σσσ is the elastic stress tensor.
The vectorization of the assembly of the elastic stiffness matrix (5.3) will

be carried out as in Section 4, through the vectorization of the local elastic
stiffness matrix Ke given for all (i, j) ∈ {1, . . . , ndfe}

2
by

Ke
i,j(K) =

∫

K

ǫǫǫt(λλλj)Cǫǫǫ(λλλi)dq, (5.4)

or equivalently, using (5.2), we have for 1 ≤ α, β ≤ d+ 1 and 1 ≤ l, n ≤ m

Ke
i,j(K) =

∫

K

ǫǫǫt(λλλn,β)Cǫǫǫ(λλλl,α)dq, (5.5)

with i = (α − 1)d + l and j = (β − 1)d + n. The vectorization of Ke is based
on the following result:

Lemma 5.1 There exist two matrices Qn,l and Sn,l of size d-by-d depending
only on n and l such that

ǫǫǫt(λλλn,β)Cǫǫǫ(λλλl,α) = λ
〈

∇λβ ,Q
n,l
∇λα

〉

+ µ
〈

∇λβ , S
n,l
∇λα

〉

. (5.6)

The proof of Lemma 5.1 is given in Appendix B.
Using (5.6) in (5.5), we have

Ke
i,j(K) =

〈

∇λβ ,Q
n,l
∇λα

〉

∫

K

λdq +
〈

∇λβ , S
n,l
∇ λα

〉

∫

K

µdq.

One possibility is to approximate the Lamé parameters λ and µ by their P1

finite element interpolation π1
K(λ) and π1

K(µ), respectively (we consider P1

instead of P0 to illustrate better the vectorization, the latter being a special
case of the former). Then we have

Ke
i,j(K) ≈

|K|

d+ 1

(〈

∇λβ ,Q
n,l
∇ λα

〉

λs +
〈

∇λβ , S
n,l
∇λα

〉

µs
)

, (5.7)

with λs =
∑d+1

γ=1 λ(q
γ) and µs =

∑d+1
γ=1 µ(q

γ). The previous formula may
now be vectorized as shown in Algorithm 5.4. This algorithm is based on the
vectorization of the computation of the terms 〈∇λβ ,A∇λα〉, which is carried
out with the function dotMatVecG in Algorithm 5.5, for any d-by-d matrix A

independent of the d-simplices of the mesh. In this algorithm, G is the array
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of gradients defined in (4.1), α and β are indices in {1, . . . , d+ 1}, and XXX is a
1-by-nme array such that XXX(k) = 〈∇λβ ,A∇λα〉 on K = Tk.

Algorithm 5.4 Elastic stiffness matrix assembly - OptV version

1: Function M←AssemblyStiffElasP1OptV(me, q, vols, lamb, mu)
2: [Q,S]←MatQS(d) ⊲ Q,S : 2d array of matrices with Q(l, n) = Ql,n

3: Lambs ← sum(lamb(me), 1) .∗.∗.∗ vols/(d + 1)
4: Mus← sum(mu(me), 1) .∗.∗.∗ vols/(d + 1)
5: G← GradientVec(q,me)
6: ndof ← m ∗ nq, M← Ondof ⊲ ndof -by-ndof sparse matrix
7: for l← 1 to d do

8: for α← 1 to d+ 1 do

9: IIIg ← m ∗ (me(α, :)− 1) + l
10: for n← 1 to d do

11: for β ← 1 to d+ 1 do

12: KKKg ← Lambs .∗.∗.∗ dotMatVecG(Q(l, n),G, α, β)
+Mus .∗.∗.∗ dotMatVecG(S(l, n),G, α, β)

13: JJJg ← m ∗ (me(β, :)− 1) + n
14: M← M+ Sparse(IIIg , JJJg,KKKg,ndof ,ndof )
15: end for

16: end for

17: end for

18: end for

19: end Function

Algorithm 5.5 Vectorization of XXX in dimension d

1: Function XXX ← dotMatVecG(A,G, α, β)
2: XXX ← zeros(1, nme)
3: for i← 1 to d do

4: for j ← 1 to d do

5: XXX ←XXX + A(j, i) ∗ (G(:, α, i) .∗.∗.∗G(:, β, j))
6: end for

7: end for

8: end Function

From Algorithm 5.4, it is straightforward to derive Algorithm C.2 which
uses the symmetry when the assembly matrix is symmetric.

We now present numerical results that illustrate the performance of the
finite element assembly methods presented in this article.

6 Benchmark results

We consider the assembly of the stiffness and elastic stiffness matrices in 2D
and 3D, in the following vector languages

– Matlab (R2014b),
– Octave (3.8.1),
– Python 3.4.0 with NumPy[1.8.2] and SciPy[0.13.3].
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We first compare the computation times of the different codes (base,
OptV1, OptV2, OptV and OptVS), for each language considered. Then we com-
pare OptVS code with a C implementation of the assembly using the SuiteS-
parse library 4.2.1 [10] (“CXSparse”) and with FreeFEM++. A comparison
of the performance of the OptVS code with recent and efficient Matlab/Octave
codes is also given. In every benchmark the domain Ω is the unit disk in 2D
and the unit sphere in 3D. For each result we present the average computation
time for at least five finite element assembly calculations.

6.1 Comparison of the base, OptV1, OptV2, OptV and OptVS assembly codes

We show in Figures 6.1 and 6.2, in logarithmic scales and for each vector
language, the performance of the assembly codes versus the matrix dimension
ndof , for the 2D stiffness and 3D elastic stiffness matrices respectively. We
observe that the OptVS version is the fastest one and its complexity is O (ndof).
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Fig. 6.1: Stiffness matrix (2D): comparison of base, OptV1, OptV2, OptV and
OptVS codes in Matlab (top left), Octave (top right) and Python (bottom).
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Fig. 6.2: Elastic stiffness matrix (3D): comparison of base, OptV1, OptV2, OptV
and OptVS codes in Matlab (top left), Octave (top right) and Python (bottom).

For the stiffness matrix in 2D, the OptV1 version is about 40, 95 and 550
times slower in Matlab, Python and Octave respectively. Its numerical com-
plexity is O (ndof). The complexity of the less performing method, the base

version, is O
(

n2dof
)

in Matlab and Octave, while it seems to be O (ndof) in
Python. This is partly due to the use of the LIL format in the sparse matrix
assembly in Python, the conversion to the CSC format being included in the
computation time. We obtain similar results for the stiffness matrix in 3D and
the elastic stiffness matrices in 2D and 3D. Computation times and OptVS

speedup are given in Tables 6.1 and 6.2 for the 2D stiffness and 3D elastic
stiffness matrices respectively. For the 3D stiffness and the 2D elastic stiffness
matrices one can refer respectively to Tables A.3 and A.4. We observe that the
performance differences of the stiffness and elastic stiffness matrix assemblies
in 2D and 3D are partly due to the increase of the data: on the unit disk (2D)
and the unit sphere (3D), we have nme ≈ 2nq and nme ≈ 6nq respectively.
For matrices of the same size (i.e. for an equal ndof), in comparison to the
2D stiffness matrix, the number of local values to be computed are 2, 4 and
16 times larger for the 2D elastic stiffness, the 3D stiffness and the 3D elastic
stiffness matrices respectively.
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StiffAssembling2DP1 - Matlab StiffAssembling2DP1 - Octave

ndof OptVS OptV OptV2 OptV1 base

14222
.063 (s)

x 1

.044 (s)

x .692

.053 (s)

x .833

1.70 (s)

x 26.8

6.79 (s)

x 107

125010
.411 (s)

x 1

.617 (s)

x 1.5

.553 (s)

x 1.35

14.4 (s)

x 35.1

226 (s)

x 550

343082
.985 (s)

x 1

1.37 (s)

x 1.39

1.36 (s)

x 1.38

39.1 (s)

x 39.7

1873 (s)

x 1902

885521
2.34 (s)

x 1

3.24 (s)

x 1.39

3.29 (s)

x 1.41

99.7 (s)

x 42.7
-

1978602
5.45 (s)

x 1

7.60 (s)

x 1.40

7.28 (s)

x 1.34

223 (s)

x 40.9
-

ndof OptVS OptV OptV2 OptV1 base

14222
.017 (s)

x 1

.058 (s)

x 3.36

.036 (s)

x 2.09

14.3 (s)

x 826

15.4 (s)

x 888

125010
.167 (s)

x 1

.218 (s)

x 1.31

.221 (s)

x 1.33

124 (s)

x 742

255 (s)

x 1533

343082
.499 (s)

x 1

.656 (s)

x 1.32

.835 (s)

x 1.67

340 (s)

x 681

1458 (s)

x 2923

885521
1.47 (s)

x 1

1.91 (s)

x 1.30

2.43 (s)

x 1.65

899 (s)

x 613
-

1978602
3.64 (s)

x 1

4.63 (s)

x 1.27

5.44 (s)

x 1.49

2007 (s)

x 551
-

StiffAssembling2DP1 - Python

ndof OptVS OptV OptV2 OptV1 base

14222
.021 (s)

x 1

.027 (s)

x 1.26

.027 (s)

x 1.29

2.64 (s)

x 124

34.4 (s)

x 1614

125010
.190 (s)

x 1

.241 (s)

x 1.26

.336 (s)

x 1.77

23.2 (s)

x 122

303 (s)

x 1594

343082
.576 (s)

x 1

.716 (s)

x 1.24

.980 (s)

x 1.70

63.5 (s)

x 110

833 (s)

x 1445

885521
1.66 (s)

x 1

2.05 (s)

x 1.23

2.62 (s)

x 1.58

164 (s)

x 98.9
-

1978602
3.92 (s)

x 1

4.85 (s)

x 1.24

6.04 (s)

x 1.54

368 (s)

x 93.9
-

Table 6.1: Stiffness matrix (2D) : comparison of OptVS, OptV, OptV1 and base

codes in Matlab (top left), Octave (top right) and Python (bottom) giving
time in seconds (top value) and OptVS speedup (bottom value).

StiffElasAssembling3DP1 - Matlab StiffElasAssembling3DP1 - Octave

ndof OptVS OptV OptV2 OptV1 base

16773
.560 (s)

x 1

.971 (s)

x 1.73

.924 (s)

x 1.65

67.6 (s)

x 121

236 (s)

x 422

44124
1.70 (s)

x 1

3.45 (s)

x 2.03

2.60 (s)

x 1.52

184 (s)

x 108

1427 (s)

x 837

121710
4.43 (s)

x 1

8.12 (s)

x 1.83

7.55 (s)

x 1.70

540 (s)

x 122

1E+4 (s)

x 2716

601272
27.5 (s)

x 1

47.4 (s)

x 1.72

41.5 (s)

x 1.51

2765 (s)

x 101
-

1144680
51.5 (s)

x 1

89.4 (s)

x 1.74

84.2 (s)

x 1.64

5254 (s)

x 102
-

ndof OptVS OptV OptV2 OptV1 base

16773
.364 (s)

x 1

.628 (s)

x 1.73

.569 (s)

x 1.56

255 (s)

x 701

321 (s)

x 882

44124
.993 (s)

x 1

1.69 (s)

x 1.71

1.49 (s)

x 1.50

698 (s)

x 703

1314 (s)

x 1323

121710
3.03 (s)

x 1

5.13 (s)

x 1.69

4.19 (s)

x 1.38

1976 (s)

x 651

9338 (s)

x 3078

601272
18.9 (s)

x 1

31.7 (s)

x 1.68

25.5 (s)

x 1.35

9853 (s)

x 521
-

1144680
40.9 (s)

x 1

69.1 (s)

x 1.69

55.6 (s)

x 1.36

2E+4 (s)

x 471
-

StiffElasAssembling3DP1 - Python

ndof OptVS OptV OptV2 OptV1 base

16773
.391 (s)

x 1

.622 (s)

x 1.59

.486 (s)

x 1.24

122 (s)

x 312

784 (s)

x 2004

44124
.954 (s)

x 1

1.56 (s)

x 1.63

1.32 (s)

x 1.38

333 (s)

x 349

2141 (s)

x 2243

121710
2.55 (s)

x 1

4.21 (s)

x 1.65

3.79 (s)

x 1.49

946 (s)

x 372

6071 (s)

x 2384

601272
16.4 (s)

x 1

27.6 (s)

x 1.68

24.9 (s)

x 1.52

4850 (s)

x 296
-

1144680
36.4 (s)

x 1

61.5 (s)

x 1.69

54.2 (s)

x 1.49
- -

Table 6.2: Elastic stiffness matrix (3D) : comparison of OptVS, OptV, OptV2,
OptV1 and base codes in Matlab (top left), Octave (top right) and Python
(bottom) giving time in seconds (top value) and OptVS speedup (bottom
value).
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In Figure 6.3 we compare the maximum of memory for OptVS, OptV and
OptV2 codes. The OptV2 method is more consuming than OptVS and OptV

respectively by a factor between 5 and 6.3 and between 6 and 8.9 depending
on the language.

n=n
dof

×10 6
0.5 1 1.5 2 2.5 3 3.5 4

M
em
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y 

(M
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)

×10 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 Matlab  OptVS (x1.61)
 Matlab   OptV (x1.26)
 Matlab  OptV2 (x10.25)
 Octave  OptVS (x1.54)
 Octave   OptV (x1.03)
 Octave  OptV2 (x9.17)
 Python  OptVS (x1.22)
 Python   OptV (x1.00)
 Python  OptV2 (x6.14)

Fig. 6.3: Elastic stiffness matrix (3D): memory usage in MB and ratio between
the slope of each method and OptV in Python (in the caption)

6.2 Comparison of the OptVS version with CXSparse and FreeFEM++

In Tables 6.3 the OptVS codes in Matlab/Octave/Python are compared with
a C implementation of the assembly (OptV1 version) using the SuiteSparse
library [10] (“CXSparse”) and with a FreeFEM++ code for the stiffness matrix
in 2D and the elastic stiffness matrix in 3D.

The computation cost for the stiffness matrix in 3D and the elastic stiffness
matrix in 2D are given in Tables A.1 and A.2. We observe that OptVS version
is approximately 1.5 and 5.5 times in Matlab, 2 and 7.5 times in Octave,
and 2.1 and 8.5 times in Python faster than FreeFEM++. Compared to C,
computation times are multiplied by a factor between 2.5 and 4.7 in Matlab,
1.9 and 3.7 in Octave, and 1.8 and 3.2 in Python. Unlike what is commonly
believed the performance is not radically worse than that of C.
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ndof
CXSparse
(4.2.1)

Matlab
(2014b)

Octave
(3.8.1)

Python
(3.4.0)

FreeFEM
(3.31)

14222
0.014 (s)
x 1.00

0.063 (s)
x 4.64

0.017 (s)
x 1.26

0.021 (s)
x 1.56

0.071 (s)
x 5.16

125010
0.073 (s)
x 1.00

0.411 (s)
x 5.62

0.167 (s)
x 2.28

0.190 (s)
x 2.60

0.501 (s)
x 6.85

343082
0.221 (s)
x 1.00

0.985 (s)
x 4.46

0.499 (s)
x 2.26

0.576 (s)
x 2.61

1.421 (s)
x 6.43

885521
0.606 (s)
x 1.00

2.337 (s)
x 3.86

1.467 (s)
x 2.42

1.660 (s)
x 2.74

3.692 (s)
x 6.10

1978602
1.354 (s)
x 1.00

5.446 (s)
x 4.02

3.644 (s)
x 2.69

3.920 (s)
x 2.89

8.305 (s)
x 6.13

ndof
CXSparse
(4.2.1)

Matlab
(2014b)

Octave
(3.8.1)

Python
(3.4.0)

FreeFEM
(3.31)

16773
0.137 (s)
x 1.00

0.560 (s)
x 4.09

0.364 (s)
x 2.66

0.391 (s)
x 2.86

3.827 (s)
x 27.95

44124
0.398 (s)
x 1.00

1.705 (s)
x 4.29

0.993 (s)
x 2.50

0.954 (s)
x 2.40

10.440 (s)
x 26.26

121710
1.193 (s)
x 1.00

4.433 (s)
x 3.72

3.034 (s)
x 2.54

2.547 (s)
x 2.13

29.914 (s)
x 25.08

601272
6.386 (s)
x 1.00

27.482 (s)
x 4.30

18.894 (s)
x 2.96

16.359 (s)
x 2.56

152.553 (s)
x 23.89

1144680
12.477 (s)
x 1.00

51.465 (s)
x 4.12

40.940 (s)
x 3.28

36.392 (s)
x 2.92

293.307 (s)
x 23.51

Table 6.3: 2D Stiffness matrix (top table) and 3D elastic stiffness ma-
trix (bottom table) : computational cost versus ndof , with the OptVS Mat-

lab/Octave/Python version (2nd/3rd/4th columns), with CXSparse (1st col-

umn) and FreeFEM++ (5th column); time in seconds (top value) and CXS-
parse speedup (bottom value).

6.3 Comparison with other matrix assemblies in Matlab and Octave

In Matlab/Octave other efficient algorithms have been proposed recently in [2,
3,17,34]. More precisely, in [17], a vectorization is proposed, based on the per-
mutation of two local loops with the one through the elements. This technique
allows to easily assemble different matrices, from a reference element by affine
transformation and by using a numerical integration. In [34], the implemen-
tation is based on extending element operations on arrays into operations on
arrays of matrices, calling them matrix-array operations. The array elements
are matrices instead of scalars and the operations are defined by the rules of
linear algebra. Thanks to these new tools and a quadrature formula, differ-
ent matrices are computed without any loop. In [3], for the assembly of the
stiffness matrix in 2D associated to P1 finite elements, L. Chen constructs
vectorially the nine sparse matrices corresponding to the nine elements of the
local stiffness matrix in 2D and adds them to obtain the global matrix. The
restriction to d = 2 or 3 of Algorithm 4.2 corresponds to the method in [3].
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We compare these codes to OptVS for the assembly of the stiffness matrix
in 2D. In Tables 6.4 and 6.5, using Matlab and Octave respectively, compu-
tation times versus the number of vertices are given for the different codes.
OptVS speedup is between 1 and 2.5 in comparison with the other vectorized
codes for sufficiently fine meshes.

ndof OptVs Chen iFEM HanJun RahVal

125010
0.411 (s)
x 1.00

0.616 (s)
x 1.50

0.693 (s)
x 1.69

0.646 (s)
x 1.57

0.664 (s)
x 1.61

343082
0.985 (s)
x 1.00

1.464 (s)
x 1.49

1.257 (s)
x 1.28

1.989 (s)
x 2.02

2.096 (s)
x 2.13

885521
2.337 (s)
x 1.00

3.307 (s)
x 1.41

2.966 (s)
x 1.27

4.372 (s)
x 1.87

4.721 (s)
x 2.02

1978602
5.446 (s)
x 1.00

9.286 (s)
x 1.71

7.221 (s)
x 1.33

9.813 (s)
x 1.80

9.123 (s)
x 1.68

3085628
8.644 (s)
x 1.00

12.332 (s)
x 1.43

11.444 (s)
x 1.32

14.562 (s)
x 1.68

14.841 (s)
x 1.72

Table 6.4: Stiffness matrix (2D): computational cost in Matlab (R2014b) ver-
sus nq, with the OptVS version (column 2) and with the codes in [2,3,17,34]
(columns 3-6) : time in seconds (top value) and speedup (bottom value). The
speedup reference is OptVS version.

ndof OptVs Chen iFEM HanJun RahVal

125010
0.167 (s)
x 1.00

0.305 (s)
x 1.83

0.288 (s)
x 1.73

0.417 (s)
x 2.50

0.486 (s)
x 2.92

343082
0.499 (s)
x 1.00

0.823 (s)
x 1.65

0.644 (s)
x 1.29

1.299 (s)
x 2.60

1.245 (s)
x 2.50

885521
1.467 (s)
x 1.00

2.123 (s)
x 1.45

1.663 (s)
x 1.13

3.720 (s)
x 2.54

3.221 (s)
x 2.20

1978602
3.644 (s)
x 1.00

4.674 (s)
x 1.28

3.832 (s)
x 1.05

8.279 (s)
x 2.27

7.164 (s)
x 1.97

3085628
6.457 (s)
x 1.00

7.786 (s)
x 1.21

6.642 (s)
x 1.03

13.523 (s)
x 2.09

11.583 (s)
x 1.79

Table 6.5: Stiffness matrix (2D): computational cost in Octave (3.8.1) ver-
sus nq, with the OptVS version (column 2) and with the codes in [2,3,17,34]
(columns 3-6) : time in seconds (top value) and speedup (bottom value). The
speedup reference is OptVS version.

In Figure 6.4 we compare the memory costs in Matlab of our assembly
codes with the other ones. As expected the consumption of OptVS and OptV

methods are observed to be close to that of iFEM and lower than that of the
other codes.
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Fig. 6.4: Stiffness matrix (2D): memory usage in MB and ratio between the
slope of each method and OptVS (in the caption)

7 Conclusion and work in progress

We presented vectorized algorithms for the assembly of P1 finite element ma-
trices in arbitrary dimension. The implementation of these algorithms has
been done in different vector languages such as Matlab, Octave and Python to
calculate the stiffness and elastic stiffness matrices. Computation times of dif-
ferent versions (vectorized or not) have been compared in several interpreted
languages and C. Numerical examples show the efficiency of the OptV2, OptV
and OptVS algorithms. More precisely, for the OptVS method, the assembly of
the stiffness matrix in 2D of size 106 is performed in 2.6, 1.75 and 2 seconds
with Matlab, Octave and Python respectively and in 0.75 seconds with C.
Less performance is obtained for the assembly of the elastic stiffness matrix in
3D: a matrix of size 106 is computed in 45, 35.8 and 31.8 seconds, with Mat-
lab, Octave and Python respectively and in 10.9 seconds with C. Moreover we
observed that OptVS is about 1.4 times faster than the non-symmetrized ver-
sions OptV and OptV2. OptV and OptVS methods are less memory consuming
than OptV2. Preliminary results towards the extension to Pk finite elements
are given in the Appendix. The algorithms in arbitrary dimension for piece-
wise polynomials of higher order, is the subject of a future paper. The OptV2

algorithm has been also implemented with a NVIDIA GPU3, using the Thrust
and Cusp libraries. For the 2D elastic stiffness and 3D stiffness matrices, the
OptV2 code is respectively 3.5 and 7 times faster on GPU than the C code (the
time for GPU/CPU data and matrix transfers is taken into account).

Vectorization gave good performance and the vectorized code can be used
for other matrices or discretizations, the only part of the code that have to
be reviewed (which is probably the most difficult part) is the vectorization of
the element matrix computation. We have seen that it is possible to efficiently
assemble matrices of large size in interpreted languages. In this framework
Python showed some very good performance even though Octave seems to be
more efficient in some cases. Moreover the performance of our vectorized codes
was better in Octave than in Matlab. The Python and Matlab/Octave codes
are available online (see [7]).

3 GeForce GTX Titan Black, 2880 CUDA Core, 6Go Memory
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A Additional benchmark results

In this section, we consider the assembly of the 3D stiffness and 2D elastic stiffness matrices.
In Tables A.1 and A.2 we compare the OptVS versions in Matlab/Octave/Python with a C
implementation of the assembly (OptV1 version) using the SuiteSparse library [10] (“CXS-
parse”), and with a FreeFEM++ version. In Tables A.3 and A.4 the computation times of
OptVS, OptV, OptV2, OptV1 and base versions are compared in Matlab, Octave and Python.
We observe similar results as in Section 6.

ndof
CXSparse
(4.2.1)

Matlab
(2014b)

Octave
(3.8.1)

Python
(3.4.0)

FreeFEM
(3.31)

14708
0.087 (s)
x 1.00

0.135 (s)
x 1.55

0.143 (s)
x 1.64

0.191 (s)
x 2.19

0.545 (s)
x 6.26

40570
0.155 (s)
x 1.00

0.461 (s)
x 2.97

0.293 (s)
x 1.89

0.377 (s)
x 2.43

1.571 (s)
x 10.12

200424
1.014 (s)
x 1.00

3.457 (s)
x 3.41

1.911 (s)
x 1.88

1.935 (s)
x 1.91

8.742 (s)
x 8.62

580975
3.844 (s)
x 1.00

9.767 (s)
x 2.54

7.193 (s)
x 1.87

6.804 (s)
x 1.77

26.970 (s)
x 7.02

1747861
10.752 (s)
x 1.00

31.203 (s)
x 2.90

31.008 (s)
x 2.88

26.069 (s)
x 2.42

84.698 (s)
x 7.88

Table A.1: Stiffness matrix (3D) : computational cost versus ndof , with the

OptVS Matlab/Octave/Python version (2nd/3rd/4th columns), with CXS-

parse (1st column) and FreeFEM++ (5th column) : time in seconds (top
value) and speedup (bottom value). The speedup reference is CXSparse code.

ndof
CXSparse
(4.2.1)

Matlab
(2014b)

Octave
(3.8.1)

Python
(3.4.0)

FreeFEM
(3.31)

28444
0.023 (s)
x 1.00

0.139 (s)
x 5.92

0.115 (s)
x 4.88

0.076 (s)
x 3.25

0.762 (s)
x 32.47

111838
0.107 (s)
x 1.00

0.412 (s)
x 3.84

0.321 (s)
x 2.99

0.288 (s)
x 2.69

2.865 (s)
x 26.75

250020
0.267 (s)
x 1.00

1.046 (s)
x 3.92

0.727 (s)
x 2.73

0.662 (s)
x 2.48

6.432 (s)
x 24.11

1013412
1.133 (s)
x 1.00

5.000 (s)
x 4.41

4.238 (s)
x 3.74

3.377 (s)
x 2.98

26.301 (s)
x 23.20

2802258
3.142 (s)
x 1.00

14.867 (s)
x 4.73

11.483 (s)
x 3.65

10.036 (s)
x 3.19

72.561 (s)
x 23.10

Table A.2: Elastic stiffness matrix (2D) : computational cost versus ndof , with

the OptVSMatlab/Octave/Python version (2nd/3rd/4th columns), with CXS-

parse (1st column) and FreeFEM++ (5th column) : time in seconds (top value)
and speedup (bottom value). The speedup reference is CXSparse code.
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StiffAssembling3DP1 - Matlab StiffAssembling3DP1 - Octave

ndof OptVS OptV OptV2 OptV1 base

14708
.135 (s)

x 1

.409 (s)

x 3.03

.442 (s)

x 3.27

5.07 (s)

x 37.5

25.6 (s)

x 189

40570
.461 (s)

x 1

.827 (s)

x 1.80

.775 (s)

x 1.68

14.0 (s)

x 30.3

112 (s)

x 244

200424
3.46 (s)

x 1

4.69 (s)

x 1.36

4.74 (s)

x 1.37

69.6 (s)

x 20.1

3255 (s)

x 942

580975
9.77 (s)

x 1

13.2 (s)

x 1.35

14.1 (s)

x 1.44

204 (s)

x 20.9
-

1747861
31.2 (s)

x 1

40.4 (s)

x 1.29

44.5 (s)

x 1.42

623 (s)

x 20.0
-

ndof OptVS OptV OptV2 OptV1 base

14708
.143 (s)

x 1

.177 (s)

x 1.24

.146 (s)

x 1.02

76.0 (s)

x 531

77.3 (s)

x 540

40570
.293 (s)

x 1

.446 (s)

x 1.52

.488 (s)

x 1.66

216 (s)

x 737

248 (s)

x 844

200424
1.91 (s)

x 1

2.37 (s)

x 1.24

3.15 (s)

x 1.65

1120 (s)

x 586

3041 (s)

x 1592

580975
7.19 (s)

x 1

9.15 (s)

x 1.27

10.6 (s)

x 1.47

3264 (s)

x 454
-

1747861
31.0 (s)

x 1

38.0 (s)

x 1.22

40.5 (s)

x 1.31
- -

StiffAssembling3DP1 - Python

ndof OptVS OptV OptV2 OptV1 base

14708
.191 (s)

x 1

.207 (s)

x 1.08

.258 (s)

x 1.35

12.8 (s)

x 67.0

172 (s)

x 903

40570
.377 (s)

x 1

.530 (s)

x 1.41

.823 (s)

x 2.19

36.0 (s)

x 95.5

488 (s)

x 1295

200424
1.93 (s)

x 1

2.50 (s)

x 1.29

4.15 (s)

x 2.14

182 (s)

x 94.0

2480 (s)

x 1282

580975
6.80 (s)

x 1

8.89 (s)

x 1.31

12.4 (s)

x 1.83

541 (s)

x 79.5
-

1747861
26.1 (s)

x 1

34.2 (s)

x 1.31

40.3 (s)

x 1.55
- -

Table A.3: Stiffness matrix (3D) : comparison of OptVS, OptV, OptV2, OptV1
and base codes in Matlab (top left), Octave (top right) and Python (bottom)
giving time in seconds (top value) and OptVS speedup (bottom value).

StiffElasAssembling2DP1 - Matlab StiffElasAssembling2DP1 - Octave

ndof OptVS OptV OptV2 OptV1 base

28444
.114 (s)

x 1

.272 (s)

x 2.39

.185 (s)

x 1.63

16.9 (s)

x 148

67.8 (s)

x 594

250020
1.01 (s)

x 1

1.68 (s)

x 1.65

1.91 (s)

x 1.88

150 (s)

x 148

6156 (s)

x 6073

686164
3.20 (s)

x 1

5.28 (s)

x 1.65

5.42 (s)

x 1.70

414 (s)

x 129
-

1771042
8.97 (s)

x 1

14.7 (s)

x 1.64

15.2 (s)

x 1.69

1090 (s)

x 122
-

3957204
21.6 (s)

x 1

34.1 (s)

x 1.58

33.1 (s)

x 1.53
- -

ndof OptVS OptV OptV2 OptV1 base

28444
.082 (s)

x 1

.129 (s)

x 1.57

.091 (s)

x 1.11

63.7 (s)

x 777

88.6 (s)

x 1080

250020
.726 (s)

x 1

1.26 (s)

x 1.74

.915 (s)

x 1.26

564 (s)

x 777

4485 (s)

x 6176

686164
2.21 (s)

x 1

3.57 (s)

x 1.61

3.36 (s)

x 1.52

1550 (s)

x 701
-

1771042
6.85 (s)

x 1

10.7 (s)

x 1.56

9.39 (s)

x 1.37
- -

3957204
16.2 (s)

x 1

25.8 (s)

x 1.59

22.0 (s)

x 1.36
- -

StiffElasAssembling2DP1 - Python

ndof OptVS OptV OptV2 OptV1 base

28444
.136 (s)

x 1

.207 (s)

x 1.53

.202 (s)

x 1.49

30.0 (s)

x 221

183 (s)

x 1348

250020
.721 (s)

x 1

1.08 (s)

x 1.50

1.22 (s)

x 1.7

277 (s)

x 384

1639 (s)

x 2274

686164
2.05 (s)

x 1

3.06 (s)

x 1.50

3.55 (s)

x 1.73

761 (s)

x 372
-

1771042
6.06 (s)

x 1

9.12 (s)

x 1.50

9.58 (s)

x 1.58
- -

3957204
14.0 (s)

x 1

21.2 (s)

x 1.52

21.5 (s)

x 1.54
- -

Table A.4: Elastic stiffness matrix (2D): comparison of OptVS, OptV, OptV2 ,
OptV1 and base codes in Matlab (top left), Octave (top right) and Python
(bottom) giving time in seconds (top value) and OptVS speedup (bottom
value).
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B Proof of Lemma 5.1

To prove Lemma 5.1, we introduce the following matrix Bl :

Bl =





δl,1 0
0 δl,2

δl,2 δl,1



 if d = 2, and Bl =















δl,1 0 0
0 δl,2 0
0 0 δl,3

δl,2 δl,1 0
0 δl,3 δl,2

δl,3 0 δl,1















if d = 3.

Thus we have ǫǫǫ(λλλl,α) = Bl∇λα and then

ǫǫǫt(λλλn,β)Cǫǫǫ(λλλl,α) = ∇λt
βB

t
nCBl∇λα.

Moreover we have C = λC0 + µC1 with

C0 =

(

1d Od,2d−3

O2d−3,d O2d−3

)

3(d−1)×3(d−1)

and C1 =

(

2Id Od,2d−3

O2d−3,d I2d−3

)

3(d−1)×3(d−1)

Thus we obtain

ǫǫǫt(λλλn,β)Cǫǫǫ(λλλl,α) = λ∇λt
βB

t
nC0Bl∇λα + µ∇λt

βB
t
nC1Bl∇λα.

Denoting Qn,l = Bt
nC0Bl and Sn,l = Bt

nC1Bl we obtain (5.6) which ends the proof of
Lemma 5.1.

C Remaining routines

C.1 Gradients of the barycentric coordinates

Let Tk be a d-simplex of Rd with vertices q0, . . . , qd, and T̂ be the reference d-simplex with
vertices q̂0, . . . , q̂d where q̂0 = 000d and q̂i = eeei, ∀i ∈ {1, . . . , d} .

Let Fk be the bijection from T̂ to Tk defined by q = Fk(q̂) = Bkq̂ + q0 where Bk ∈
Md(R) is such that its i-th column is equal to qi − q0, for all i ∈ {1, . . . , d} .

The barycentric coordinates of q̂ = (x̂1, . . . , x̂d) ∈ T̂ are given by λ̂0 = 1−
∑d

i=1 x̂i, and

λ̂i = x̂i, ∀i ∈ {1, . . . , d} . The barycentric coordinates of q = (x1, . . . , xd) ∈ Tk are given by

λk,i(q) = λ̂i ◦ F
−1
k (q) and we have

∇λk,i(q) = B−t
k ∇̂λ̂i(q̂), ∀i ∈ {0, . . . , d} , (C.1)

with ∇̂λ̂0(q̂) =





−1
. . .
−1



 , ∇̂λ̂i = eeei, ∀i ∈ {1, . . . , d} . Note that gradients are constant. Let

Ĝ =
(

∇̂λ̂0, . . . , ∇̂λ̂d

)

=















−1 1 0 . . . 0

−1 0 1
. . .

.

..
...

...
. . .

. . . 0
−1 0 . . . 0 1















.

Then computing the gradients of the barycentric coordinates is equivalent to solve (d + 1)
linear systems, written in matrix form as follows:

Bt
kGk = Ĝ, (C.2)
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where Gk =
(

∇λk,0(q), . . . , ∇λk,d(q)
)

∈ Md,d+1(R).

For each d-simplex one has to calculate (d+1) gradients and thus to determine (d+1)nme

vectors of dimension d.

The vectorization of the calculation of the gradients is done by rewriting the equations
(C.2), for k = 1, ...,nme, under an equivalent form of a large block diagonal sparse system
of size N = d× nme, with d-by-d diagonal blocks given by:















Bt
1 O . . . O

O
. . .

. . .
..
.

...
. . .

. . . O

O . . . O Bt
nme















N×N











G1

G2

...
Gnme











N×(d+1)

=













Ĝ

Ĝ

...

Ĝ













N×(d+1)

(C.3)

Algorithm C.1 Vectorized computation of gradients of the basis functions in dimension d

Function GGG← GradientVec(q,me)
K← I← J← zeros(d, d,nme)
ii← d ∗ [0 : (nme − 1)]
for i← 1 to d do

for j ← 1 to d do

K(i, j, :)← q(i,me(j + 1, :)) − q(i,me(1, :))
I(i, j, :)← ii+ j, J(i, j, :)← ii + i

end for

end for

S← sparse(I(:), J(:),K(:), d ∗ nme, d ∗ nme)
R← zeros(d ∗ nme, d+ 1) ⊲ Build RHS

Ĝ← [−1d×1, Id]

R← copymat(Ĝ, nme, 1)

G← solve(S,R) ⊲ G(d(k − 1) + i, α) = ∂λα

∂xi |Tk

G← transform(G, ...) ⊲ such that G(k, α, i) = ∂λα

∂xi |Tk

end Function

The performance of this algorithm may be improved by writing specific algorithms in
each dimension d = 1, 2 or 3 (see Appendix A in [6]).

C.2 Elastic stiffness matrix assembly : algorithm using the symmetry

When the assembly matrix is symmetric, one may improve the performance of Algorithm 5.3
by using the symmetry of the element matrices (see Section 4), which leads to the following
algorithm:
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Algorithm C.2 (OptVS) - Optimized assembly in vector case (m > 1)

1: Function M←AssemblyVecGenP1OptVS(me,nq, . . .)
2: ndof ← m ∗ nq
3: M← Ondof ⊲ ndof -by-ndof sparse matrix
4: for l← 1 to m do

5: for α← 1 to d+ 1 do

6: IIIg ← m ∗ (me(α, :)− 1) + l
7: ii← m(α− 1) + l
8: for n← 1 to m do

9: for β ← 1 to d+ 1 do

10: jj ← m(β − 1) + n
11: if ii > jj then

12: KKKg ← vecHe(l, α, n, β, . . .)
13: JJJg ← m ∗ (me(β, :)− 1) + n
14: M← M+ Sparse(IIIg, JJJg ,KKKg, ndof , ndof)
15: end if

16: end for

17: end for

18: end for

19: end for

20: M← M+M′

21: for l← 1 to m do

22: for α← 1 to d+ 1 do

23: IIIg ← m ∗ (me(α, :)− 1) + l
24: KKKg ← vecHe(l, α, l, α, . . .)
25: M← M+ Sparse(IIIg, IIIg,KKKg ,ndof ,ndof )
26: end for

27: end for

28: end Function

D Extension to Pk-Lagrange finite elements

In this section we adapt the optimized algorithm of Section 4 to the case of finite elements
of higher order. For simplicity, we consider the assembly algorithm on the example of the
mass matrix.

The mesh used is adapted to Pk finite elements and is called a“Pk-mesh”. Only arrays
q and me differ between the usual mesh and the Pk-mesh. In the Pk-mesh, q contains the
coordinates of the nodal points associated to the Pk finite elements and me is of dimension

ndfe-by-nme, where ndfe is the local number of Pk-nodes in a d-simplex K : ndfe = (d+k)!
d!k!

,
as shown in the table below.

name type dimension description

ndfe integer 1 local number of Pk-nodes in a d-simplex
nq integer 1 number of Pk-nodes
q double d× nq array of Pk-node coordinates
me integer ndfe × nme (Pk) connectivity array

By construction, the total number of degrees of freedom of a Pk-mesh is its number of
nodal points. One may use for example gmsh [16] to generate a Pk-mesh in 2D or in 3D.

First, we need to introduce some notations: let Skd be the set of multi-indices given by

Skd =

{

ααα = (α1, . . . , αd+1) ∈ Nd+1 such that |ααα| :=

d+1
∑

i=1

αi = k

}

, (D.1)
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with #Sd = N . Then the Pk basis functions ϕααα on a d-simplex K may be deduced from the
barycentric coordinates {λj}

d+1
j=1

ϕααα =

d+1
∏

l=1

αl−1
∏

j=0

kλl − j

j + 1
, ∀ααα ∈ Skd , (D.2)

or equivalently, noticing that ϕααα is a polynomial in the variable (λ1, . . . , λd+1) and intro-
ducing a multi-index µµµ = (µ1, . . . , µd+1) ∈ Nd+1, we have

ϕααα =
∑

|µµµ|≤k

aµµµ(ααα)





d+1
∏

j=1

λ
µj

j



 . (D.3)

All the non-zero aµµµ(ααα) values can be computed from (D.2) and depend only on ααα, d and k.

As in the previous sections, the assembly algorithm of the mass matrix is based on the
vectorization of the local mass matrix Me on K, which is an N-by-N matrix given by

Me
I(ααα),I(βββ)(K) =

∫

K

ϕαααϕβββdq, ∀(ααα,βββ) ∈ S
k
d × S

k
d ,

where I : Skd −→ {1, . . . , N} is the local numbering choice.

We then introduce a formula of the same type as (4.3) to vectorize the computation of
Me. Using (D.3), we have for all (ααα,βββ) ∈ Skd × S

k
d

∫

K

ϕαααϕβββdq =
∑

|µµµ|≤k

∑

|ννν|≤k

aµµµ(ααα)aννν (βββ)

∫

K

d+1
∏

j=1

λ
µj+νj
j dq.

Then, using formula (2.4) we obtain

∫

K

ϕαααϕβββdq = d!|K|Cααα,βββ , (D.4)

where the constant Cααα,βββ does not depend on K and is given by

Cααα,βββ =
∑

|µµµ|≤k

∑

|ννν|≤k

aµµµ(ααα)aννν(βββ)

d+1
∏

i=1
(µi + νi)!

(d+ |µµµ|+ |ννν|)!
. (D.5)

Using (D.4), we can now extend Algorithm 4.4 (with w = 1) to the Pk finite element
case. This leads to the vectorized algorithm of the mass matrix given in Algorithm D.1.

Remark D.1 We have considered the extension of the OptV2 algorithm to finite elements
of higher order. The main idea is that all the steps of Section 4 remain valid for Pk finite
elements, if one replaces (d+ 1) by ndfe, and with q and me defined above. Then, one may
derive from Algorithm D.1 the other optimized versions OptV and OptVS for the Pk case, as
in Section 4.
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Algorithm D.1 (OptV2) - Mass matrix in Pk case

1: Function M←AssemblyMassPk(me, vols, nq, d, k)
2: C← coeffMass(d, k) ⊲ Get coefficients Cααα,βββ

3: Kg ← Ig ← Jg ← zeros(n2dfe,nme) ⊲ n2dfe-by-nme 2d-arrays
4: l← 1
5: for β ← 1 to ndfe do

6: for α← 1 to ndfe do

7: Kg(l, :)← d! ∗ C(α, β) ∗ vols
8: Ig(l, :)← me(α, :)
9: Jg(l, :)← me(β, :)
10: l← l+ 1
11: end for

12: end for

13: M← Sparse(Ig, Jg,Kg, nq, nq)
14: end Function

In Table D.1, using Matlab, we show the computation times versus the number of Pk

nodes, for Algorithm 4.4 (with w = 1), and for Algorithm D.1 with k = 1, 2, 3, 4, 5, 6. We
observe that the computation times are almost the same for Algorithm 4.4 and Algorithm D.1
with k = 1. Moreover, for a fixed number of nodes, the computation times increase slowly
with the degree of the polynomials: for a million of nodes, the computation time with P5

finite elements is twice the one for P1 finite elements.

ndof P1OptV2 Pk(k=1) Pk(k=2) Pk(k=3) Pk(k=4) Pk(k=5) Pk(k=6)

3.104 0.535 0.543 0.459 0.544 0.707 0.982 1.350
1.2105 2.322 2.500 2.025 2.407 3.184 4.389 5.696
5.105 10.885 13.203 9.811 11.684 15.184 19.766 25.340
106 22.744 28.362 22.635 25.656 33.314 42.812 54.782

Table D.1: 3D Mass matrix : computational cost versus ndof , with Matlab, for
OptV2 code : Algorithm 4.4 with w = 1) (column 1), and with Algorithm D.1
for k = 1, 2, 3, 4, 5, 6 (columns 2 to 7).
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