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AN EFFICIENT WAY TO PERFORM THE ASSEMBLY OF FINITE ELEMENT

MATRICES IN VECTOR LANGUAGES

FRANÇOIS CUVELIER∗, CAROLINE JAPHET∗†, AND GILLES SCARELLA∗

Abstract. We describe different optimization techniques to perform the assembly of finite element matrices

in vector languages (e.g. Matlab, Octave, Python), from the standard approach to recent vectorized ones, without

any low level language used. We finally obtain a simple and efficient vectorized algorithm. A comparison is given

with a compiled language such as C. Unlike what was expected and generally accepted, examples show that the

performances of Matlab, Octave and Python are not as far as the ones of C. The principle of this assembly algorithm

is general, we present it for a large class of partial differential operators in the scalar or vector cases in 2d and 3d, in

the P1 finite elements case, with an application to linear elasticity. We present numerical results which illustrate the

computational costs of the different approaches.
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1. Introduction. Vector languages1 such as Matlab [22], GNU Octave [13] and Python

[23] are very widely used for scientific computing (see for example [25, 20, 17, 19, 2, 14])

and there is significant interest in programming techniques in these languages for two reasons.

The first concerns how to make clear, compact code to ease implementation and understand-

ing, which is important for teaching and rapid-prototyping in research and industry. The

second concerns how to make the code fast enough for large-scale real-life simulations. A

particular strength is that ease of programming can often be combined with high performance

if the techniques are of the right type.

In this paper we describe various algorithms for making the assembly of large sparse

matrices in finite element computations [24, 27, 3, 4, 18] in vector language (e.g. Matlab,

Octave or Python). The last one is fully vectorized which makes use, reading and extension of

the code easier while achieving performance close to C. Moreover, we propose quantitative

studies to illustrate the efficiency of the vector languages and the various speed-up of the

algorithms, relatively to each other and to C.

In a vector language, the loops are the critical performance degrading aspect and remov-

ing them is named a vectorization step. In the finite element programming, the classical finite

element assembly is based on a loop over the elements (see for example [21]). In [9] T. Davis

describes different assembly techniques applied to random matrices of finite element type.

A first vectorization technique is proposed in [9]. Other more efficient algorithms in Matlab

have been proposed recently in [1, 2, 8, 12, 15, 26].

The description of the fully vectorized algorithm is done in three steps: we recall the

classical (non-vectorized) version, then a first optimized version, named OptV1, based on

sparse matrices tools usually found in most of the languages used for computational science

and engineering, and finally our full vectorized algorithm. This new algorithm, named

OptV2, is similar to the ideas given in [1, 2, 12] and has been tested for several matrices (e.g.

the elastic stiffness matrix) and in different languages. A full generalization including the

vectorization of operators D and H (defined in 2) is the subject of a future paper.

These algorithms can be efficiently implemented in many languages if the language has

a sparse matrix implementation. For the OptV1 and OptV2 versions, a particular sparse ma-

trix constructor is also needed (see Section 3). Moreover, the OptV2 version requires that
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1which contain usual element-wise operators and functions on multidimensional arrays
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the language supports element-wise array operations. Examples of languages for which we

obtained an efficient implementation of these algorithms are

• Matlab,

• Octave,

• Python with Numpy and Scipy modules,

• Scilab,

• Thrust, a C++ template library for CUDA.

Up to now, the implementation in Scilab has been done in 2d and the implementation in

Thrust has been done for OptV1 and OptV2 algorithms in 2d.

Due to the length of the paper, we restrict ourselves to P1 Lagrange finite elements in

the scalar and vector cases, in 2d and 3d. However the ideas extend to Pk finite elements,

k ≥ 2.

The remainder of this article is organized as follows: in Section 2 we introduce the

notations associated to the mesh and we define the finite element matrices in a general setting

for scalar and vector cases. In Section 3 we give the classical and OptV1 algorithms to

perform the assembly of these matrices. Then in Section 4 we present the fully vectorized

OptV2 method and show two applications: the assemblies of the stiffness and elastic stiffness

matrices in 2d and 3d. In Section 5, benchmarks results illustrate the performance of the

algorithms in Matlab, Octave and Python languages. We first show a comparison between

the classical, OptV1 and OptV2 versions. Then we compare the performances of the OptV2

version to those obtained with a compiled language (using SuiteSparse [10] in C language),

the latter being well-known to run at optimal speed and serving as a reference. A comparison

is also given with FreeFEM++ as a simple and reliable finite element software. We also show

in Matlab and Octave a comparison of the OptV2 algorithm and the codes given in [1, 2, 15,

26].

All the computations are done on our reference computer2 with the releases R2012b

for Matlab, 3.6.3 for Octave, 3.3.2 for Python and 3.20 for FreeFEM++. The entire Mat-

lab/Octave code and Python code may be found in [6].

2. Notations. Let Ω be the domain of the PDE problem in Rd , d = 2 or 3. Let D be the

first order bilinear differential operator acting on scalar fields defined by

D(u,v) = 〈A∇u,∇v〉− (u〈bbb,∇v〉− v〈∇u,ccc〉)+ f uv, ∀(u,v) ∈ (H1(Ω))2, (2.1)

where A∈ (L∞(Ω))d×d , bbb∈ (L∞(Ω))d , ccc∈ (L∞(Ω))d and f ∈ L∞(Ω) are given functions, and

〈·, ·〉 is the usual scalar product in Rd . We denote by H the first order bilinear differential op-

erator acting on vector fields defined ∀uuu=(u1, . . . ,ud)∈H1(Ω)
d
, ∀vvv=(v1, . . . ,vd)∈H1(Ω)

d
,

by

H (uuu,vvv) =
d

∑
α ,β=1

D
α ,β (uα ,vβ ), (2.2)

where (Dα ,β )α ,β∈{1,...,d} is a set of d2 first order bilinear differential operators acting on

scalar fields.

These operators usually appear in variational formulations associated to second order

linear partial differential equations in the following integrals

L (u,v) =

∫

Ω
D(u,v)(q)dq or L (uuu,vvv) =

∫

Ω
H (uuu,vvv)(q)dq.

22 x Intel Xeon E5645 (6 cores) at 2.40Ghz, 32Go RAM, supported by GNR MoMaS
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For simplicity we use P1 Lagrange finite elements to approximate these integrals.

We suppose that Ω is provided with its mesh Th (classical and locally conforming). We

consider that the set belonging to the mesh is of simplicial type (triangles or tetrahedra). We

use a triangulation Ωh =
⋃

Tk∈Th
Tk of Ω described by :

name type dimension description

nq integer 1 number of vertices

nme integer 1 number of elements

q double d× nq array of vertices coordinates. q(ν, j) is the

ν-th coordinate of the j-th vertex, ν ∈
{1, . . . ,d}, j ∈ {1, . . . ,nq}. The j-th vertex

will be also denoted by q j

me integer (d+ 1)× nme connectivity array. me(β ,k) is the storage

index of the β -th vertex of the k-th ele-

ment, in the array q, for β ∈ {1, ...,d+ 1}
and k ∈ {1, . . . ,nme}

vol double 1× nme array of areas in 2d (or volumes in 3d)

vol(k) is the k-th triangle area (or tetrahe-

dron volume), k ∈ {1, . . . ,nme}

We now define a general class of finite element matrices whose assembly can be done

efficiently with the optimized algorithm proposed hereafter.

2.1. The scalar case. Let H1
h (Ωh) = {v ∈ C 0(Ωh), v|T ∈P1(T ), ∀T ∈ Th} be the

finite dimensional space spanned by the P1 Lagrange basis functions {ϕi}i∈{1,...,nq} in Rd ,

where P1(T ) denotes the space of all polynomials defined over T of total degree less than or

equal to 1. With (u,v) ∈ (H1(Ω))2, we have the P1 Lagrange finite elements approximation

L (u,v) =

∫

Ω
D(u,v)(q)dq≈ 〈DUUU ,VVV 〉 ,

where UUU = (u(qi))
nq

i=1 and VVV = (v(qi))
nq

i=1 are nq-by-1 vectors and D is the nq-by-nq finite

element matrix defined by

Di, j =

∫

Ωh

D(ϕ j ,ϕi)(q)dq, ∀(i, j) ∈
{

1, . . . ,nq

}2
. (2.3)

Let ndfe = d + 1 be the local number of degrees of freedom for each mesh element. We

introduce the ndfe-by-ndfe local matrix De
α ,β (Tk), associated to D, defined by

D
e
α ,β (Tk) =

∫

Tk

D(ϕk
β ,ϕ

k
α )(q)dq, ∀(α,β ) ∈ {1, . . . ,ndfe}

2,

where ϕk
α = ϕ

I k
α

is the α-th local basis function associated to the k-th element with I k
α =

me(α,k).
For simplicity, we will consider as an example the stiffness matrix (e.g. arising from the

discretization of the Poisson equation), obtained from (2.1) with A= I, bbb = ccc = 0, and f = 0.

This matrix, denoted by S, is defined by:

Si, j =

∫

Ωh

D(ϕ j ,ϕi)(q)dq =

∫

Ωh

〈

∇ϕ j(q),∇ϕi(q)
〉

dq, ∀(i, j) ∈ {1, ...,nq}
2.

The matrix S is a nq-by-nq sparse matrix. Its corresponding local stiffness matrix, denoted by

Se, is defined by: ∀(α,β ) ∈ {1, ...,ndfe}
2,

S
e
α ,β (Tk) =

∫

Tk

D(ϕk
β ,ϕ

k
α)(q)dq =

∫

Tk

〈

∇ϕk
β (q),∇ϕk

α(q)
〉

dq. (2.4)

3



2.2. The vector case. The space (H1
h (Ωh))

d is of dimension ndof = d nq. One can choose

the alternate basis spanned by the functions {ψψψ l}1≤l≤ndof
, defined by

ψψψdi−α = ϕi

(

δd−1,α , · · · ,δ0,α

)t
, ∀α ∈ {0, . . . ,d− 1} , ∀i ∈

{

1, . . . ,nq

}

. (2.5)

Let (uuu,vvv) ∈ (H1(Ω)
d
)2. We denote by UUU and VVV the ndof-by-1 vectors defined by Udi−(α−1) =

uα(q
i), Vdi−(α−1) = vα(q

i), ∀i ∈
{

1, . . . ,nq

}

, ∀α ∈ {1, . . . ,d} . Then, we have the P1 La-

grange finite element approximation

L (uuu,vvv) =

∫

Ω
H (uuu,vvv)(q)dq≈ 〈HUUU ,VVV 〉 ,

where H is the ndof-by-ndof finite element matrix defined by

Hl,m =

∫

Ωh

H (ψψψm,ψψψ l)(q)dq, ∀(l,m) ∈ {1, . . . ,ndof}
2 .

Let ndfe = d(d + 1). The ndfe-by-ndfe matrix He
α ,β (Tk), associated to H, is defined by

H
e
α ,β (Tk) =

∫

Tk

H (ψψψk
β ,ψψψ

k
α)(q)dq, ∀(α,β ) ∈ {1, . . . ,ndfe}

2, (2.6)

where ψψψk
α =ψψψ

I k
α

is the α-th local basis function associated to the k-th element with I k
da−b =

d me(a,k)− b, ∀a ∈ {1, . . . ,d+ 1} , ∀b ∈ {0, . . . ,d− 1} .
For simplicity, we will consider as an example the elastic stiffness matrix arising in linear

elasticity when Hooke’s law is used and the material is isotropic, under small strain hypothesis

(see for example [11]). Thus, for a sufficiently regular vector field uuu = (u1, . . . ,ud) : Ω→Rd ,

we define the linearized strain tensor εεε by

εεε(uuu) =
1

2

(

∇∇∇(uuu)+∇∇∇
t(uuu)

)

.

We set εεε = (ε11,ε22,2ε12)
t in 2d and εεε = (ε11,ε22,ε33,2ε12,2ε23,2ε13)

t in 3d, with εi j(uuu) =
1
2

(

∂ui

∂x j
+

∂u j

∂xi

)

. Then the Hooke’s law reads

σσσ = Cεεε,

where σσσ is the elastic stress tensor and C the elasticity tensor defined by the Lamé parameters

λ and µ (supposed constant on Ω for simplicity), which satisfy λ +µ > 0. For d = 2 or d = 3,

C is given by

C=

(

λ12 + 2µI2 0

0 µ

)

3×3

or C=

(

λ13 + 2µI3 0

0 µI3

)

6×6

,

respectively, where 1d is a d-by-d matrix of ones, and Id the d-by-d identity matrix. Then

the elastic stiffness matrix K is defined by

Kl,m =

∫

Ωh

εεε t(ψψψm)Cεεε(ψψψ l)dq, ∀(l,m) ∈ {1, . . . ,ndof}
2 . (2.7)

Details of obtaining the matrix K from the operator H are given in Appendix A.2. The corre-

sponding local elastic stiffness matrix, denoted by Ke, is defined for all (α,β )∈ {1, . . . ,ndfe}
2

by

K
e
α ,β (Tk) =

∫

Tk

εεεt(ψψψk
β )Cεεε(ψψψk

α)dq =

∫

Tk

H (ψψψk
β ,ψψψ

k
α)(q)dq. (2.8)
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In the scalar or vector cases, by approximating the L∞(Ω) functions arising in D and H

by functions in H1
h (Ωh), and using the following (well-known) formulas:

∫

T
ϕm

1 ϕm
2 ϕ p

3 dT =
2!|T |m!n!p!

(2+m+ n+ p)!
, d = 2, (2.9)

∫

T
ϕm

1 ϕm
2 ϕ p

3 ϕq
4 dT =

3!|T |m!n!p!q!

(3+m+ n+ p+q)!
, d = 3, (2.10)

the computation of the local matrices associated to D and H can be done explicitly without

any quadrature formula. Remind that these matrices are sparse, due to the basis functions

properties.

REMARK 2.1. All the (non-vectorized or vectorized) finite element assembly algorithms

presented in this article can be used to compute matrices of D (or H) type. They also apply

to Pk-Lagrange finite element methods (i.e. finite element matrices obtained from bilinear

differential operators of order k). Indeed, one can express the Pk-Lagrange basis functions

versus the P1-Lagrange basis functions and then use the formulas (2.9) or (2.10).

3. Classical and first optimized finite element assemblies. In this part we consider

the finite element assembly of a generic ndof-by-ndof sparse matrix M with its corresponding

ndfe-by-ndfe local matrix E (also denoted by E(Tk) when referring to a specific element Tk).

An element of E(Tk) is denoted by ek
α ,β .

In Algorithm 13, we recall the classical finite element assembly method to calculate M.

In this algorithm a ndof-by-ndof sparse matrix M is first declared, then each contribution of

element Tk is added to the matrix M. These successive operations are very expensive. Thus,

we compute and store all elementary contributions and use them to generate the sparse matrix

M. This is the purpose of the first optimized algorithm, already suggested in [9], and shown

in Algorithm 2.

Algorithm 1 Classical assembly - base version

1: M←Ondof×ndof
⊲ Sparse matrix

2: for k← 1 to nme do

3: E← ElemMat(vol(k), . . .)
4: for il← 1 to ndfe do

5: i←I k(il)
6: for jl← 1 to ndfe do

7: j←I k( jl)
8: Mi, j ←Mi, j +Eil, jl

9: end for

10: end for

11: end for

Algorithm 2 Optimized assembly - OptV1 version

1: dim← n2
dfenme

2: IIIg←Odim×1 ⊲ 1d array of size dim

3: JJJg←Odim×1 ⊲ 1d array of size dim

4: KKKg←Odim×1 ⊲ 1d array of size dim

5: ii← [1 : ndfe]
t ∗11×ndfe

; ii← ii(:);
6: j j← 1ndfe×1 ∗ [1 : ndfe]; j j← j j(:)
7: kk← [1 : n2

dfe]
8: for k← 1 to nme do

9: E← ElemMat(vol(k), . . .)
10: IIIg(kk)←I k(ii)
11: JJJg(kk)←I k( j j)
12: KKKg(kk)← E(:)
13: kk← kk+ n2

dfe

14: end for

15: M←sparse(IIIg,JJJg,KKKg,nq,nq)

This optimized version (named “version 1” or OptV1) is non-vectorized and based on the use

of the sparse function as follows:

3The functions and operators used in the algorithms are given in Appendix C.
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M ← sparse(Ig,Jg,Kg,m,n);

This command returns a m ×n sparse matrix M such that M(Ig(k),Jg(k)) ← Kg(k). The

vectors Ig, Jg and Kg have the same length. The zero elements of K are not taken into account

and the elements of Kg having the same indices in Ig and Jg are summed.

Examples of vector languages and their corresponding sparse function are:

• Python (scipy.sparse module) :

M=sparse.<format> matrix((Kg,(Ig,Jg)),shape=(m,n))

where <format> is the sparse matrix format (e.g. csc, csr, lil, ...),

• Matlab : M=sparse(Ig,Jg,Kg,m,n), only csc format,

• Octave : M=sparse(Ig,Jg,Kg,m,n), only csc format,

• Scilab : M=sparse([Ig,Jg],Kg,[m,n]), only row-by-row format.

In compiled languages, there are some libraries with such functions. For example, in C

language one can use the SuiteSparse [10] developed by T. Davis. With a Nvidia GPU,

one can use the Thrust [28] and Cusp [5] libraries for vectorization and sparse computations

respectively.

In the OptV1 version, the main idea is to create three global 1d-arrays KKKg, IIIg and JJJg

allowing the storage of the local matrices as well as the position of their elements in the

global matrix. Thus, the size of these three arrays is n2
dfenme-by-1. These arrays will be used

in the sparse function to obtain the global matrix. To create the arrays KKKg, IIIg and JJJg, we

define three local arrays KKKe
k, IIIe

k and JJJe
k of length m = n2

dfe obtained from the ndfe-by-ndfe local

matrix E(Tk) as follows:

KKKe
k : elements of the matrix E(Tk) stored column-wise,

IIIe
k : global row indices associated to the elements stored in KKKe

k,

JJJe
k : global column indices associated to the elements stored in KKKe

k.

Using KKKe
k, IIIe

k, JJJe
k and a loop over all the mesh elements Tk, one can calculate the n2

dfenme-

by-1 global arrays IIIg, JJJg and KKKg. These operations are illustrated in Figure 3.1 and the

corresponding OptV1 algorithm is given in Algorithm 2. The functions and operators used in

the algorithms proposed in this article are given in Appendix C.

In Section 5.1 and in Tables B.1 and B.2 we show that the OptV1 algorithm is more

efficient than the classical algorithm. The inefficiency of the base version compared to the

OptV1 version is mainly due to the repetition of elements insertions in the sparse structure

and to some dynamic reallocation troubles that may also occur.

However, the OptV1 algorithm still uses a loop over elements. To improve the efficiency

of this algorithm, we propose in the next section a second optimized version, in a fully vec-

torized form.
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Fig. 3.1: Classical insertion of a local matrix in global arrays - Version 1

4. Optimized finite element assembly. In this part we present the optimized version 2

(OptV2) algorithm, only available in vector languages. The idea is to define three n2
dfe-by-nme

arrays Kg, Ig and Jg that allow to store all the local matrices as well as their positions in

the global matrix. Then, as for the OptV1 version, the matrix assembly is obtained with the

sparse function:

M ← sparse(Ig(:),Jg(:),Kg(:),ndof,ndof);

A non-vectorized approach, inspired from OptV1, is as follows: for each mesh element

Tk, one adds the local arrays KKKe
k, IIIe

k, JJJe
k defined above in the k-th column of the global arrays

Kg, Ig and Jg respectively. This method is shown in Figure 4.1. Thus, Kg, Ig and Jg are

defined by: ∀k ∈ {1, . . . ,nme} , ∀l ∈
{

1, . . . ,n2
dfe

}

,

Kg(l,k) =KKKe
k(l), Ig(l,k) = IIIe

k(l), Jg(l,k) = JJJe
k(l). (4.1)

A natural way to calculate these three arrays is column-wise. In that case, for each array one

needs to calculate nme columns (where nme depends on the number of mesh elements). The

OptV2 method consists in calculating these arrays row-wise. In that case, for each array one

needs to calculate ndfe rows (where ndfe is independent of the number of mesh elements). This

vectorization method is represented in Figure 4.2.
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Fig. 4.1: Classical insertion of a local matrix in 2d global arrays

Kg

e1
α,β

e
nme

α,β

1 2 . . . . . . nme

1

.
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.

.

.

.

m(β −1)+α

.

.

.

.

.

.

m2

Ig

I 1
α I

nme
α

1 2 . . . . . . nme

Jg

I 1
β

I
nme

β

1 2 . . . . . . nme

Fig. 4.2: Row-wise operations on 2d global arrays

The calculation of Kg, Ig and Jg uses also the following equalities with m = ndfe, for all

(α,β ) ∈ {1, . . . ,ndfe},

Kg(m(β − 1)+α,k) = ek
α ,β , Ig(m(β − 1)+α,k) = I

k
α , Jg(m(β − 1)+α,k) = I

k
β ,

where I k
α is defined in Sections 2.1 and 2.2 in the scalar and vector cases respectively. The

calculation of Ig and Jg can be vectorized using a row-wise computation (see Algorithms 3
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to 6). In the vector case, we calculate a matrix T such that T(α,k) =I k
α , ∀α ∈ {1, . . . ,ndfe} .

Algorithm 3 Ig and Jg : the scalar case in 2d

function [Ig,Jg]←BUILDIGJG2D(me)

ii← [1,2,3,1,2,3,1,2,3]
j j← [1,1,1,2,2,2,3,3,3]
Ig←me(ii, :) ⊲ 9×nme array

Jg←me( j j, :) ⊲ 9×nme array

end function

Algorithm 4 Ig and Jg : the scalar case in 3d

function [Ig,Jg]←BUILDIGJG3D(me)

ii← [1 : 4]t ∗11×4; ii← ii(:);
j j← 14×1 ∗ [1 : 4]; j j← j j(:)
Ig←me(ii, :) ⊲ 16×nme array

Jg←me( j j, :) ⊲ 16×nme array

end function

Algorithm 5 Ig and Jg : the vector case in 2d

function [Ig,Jg]←BUILDIGJG2DVF(me)

T←

















2me(1, :)− 1

2me(1, :)
2me(2, :)− 1

2me(2, :)
2me(3, :)− 1

2me(3, :)

















⊲ 6× nme

ii← [1 : 6]t ∗11×6; ii← ii(:);
j j← 16×1 ∗ [1 : 6]; j j← j j(:)
Ig← T(ii, :) ⊲ 36×nme array

Jg← T( j j, :) ⊲ 36×nme array

end function

Algorithm 6 Ig and Jg : the vector case in 3d

function [Ig,Jg]←BUILDIGJG3DVF(me)

T←























3me(1, :)− 2

3me(1, :)− 1

3me(1, :)
...

3me(4, :)− 2

3me(4, :)− 1

3me(4, :)























⊲ 12× nme

ii← [1 : 12]t ∗11×12; ii← ii(:);
j j← 112×1 ∗ [1 : 12]; j j← j j(:)
Ig← T(ii, :) ⊲ 144×nme array

Jg← T( j j, :) ⊲ 144×nme array

end function

Then, the computation of Kg (containing all the local matrices associated to D or H) is vector-

ized using row-wise vector operations. It is based on the calculation of the terms D(ϕk
β ,ϕ

k
α)

and H (ψψψk
β ,ψψψ

k
α ) which arise in the local matrices (2.3) and (2.6) respectively. This calcu-

lation only depends on the local basis functions ϕk
β , ∀β ∈ {1, . . . ,d + 1} and their first order

derivatives. Thus, one need to calculate all or part of the gradients of the basis functions on all

mesh elements. In the P1 finite elements case, these gradients are constant on each element

Tk and denoted by GGGα , ∀α ∈ {1, . . . ,d+ 1} . The d-by-nme array GGGα is thus defined by

GGGα(:,k) = ∇ϕme(α ,k)(q), ∀q ∈ Tk, ∀k ∈ {1, . . . ,nme} . (4.2)

Vectorized algorithms are given in Appendix A.1 to calculate these gradients in 2d and 3d

. Once the gradients are computed, the local matrices are calculated explicitly using the

formulas (2.9) and (2.10). For simplicity, we show below the vectorized computation of the

2d-array Kg on the two examples introduced in Section 2.

4.1. Stiffness matrix assembly. Using (4.2) and the definition of the local stiffness
matrix given in (2.4), the array Kg is defined by

Kg((d +1)(i−1)+ j,k) = |Tk|
〈

∇ϕme( j,k),∇ϕme(i,k)

〉

, 1≤ i, j ≤ d+1,1 ≤ k ≤ nme,

= |Tk|
〈

GGG j(:,k),GGGi(:,k)
〉

.

The calculation of Kg uses the vectorized functions BUILDIGJG (see Algorithms 3 and 4)

and GRADIENTVEC (see Algorithms 12 and 13 in Appendix A.1). The fully vectorized
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algorithms that calculate Kg are given in Algorithm 7, lines 4 to 11, in 2d and in Algorithm 8,

lines 4 to 15, in 3d respectively.

Algorithm 7 Vectorized assembly algorithm for the 2d stiffness matrix - version 2

1: function S←STIFFASSEMBLING2DP1OPTV2( nq,nme,q,me,vol)

2: [GGG1,GGG2,GGG3]← GRADIENTVEC2D(q,me,vol)

3: [Ig,Jg]←BUILDIGJG2D(me)

4: Kg←O9×nme

5: Kg(1, :)← sum(GGG1.∗GGG1,1).∗ vol

6: Kg(2, :)← sum(GGG2.∗GGG1,1).∗ vol

7: Kg(3, :)← sum(GGG3.∗GGG1,1).∗ vol

8: Kg(5, :)← sum(GGG2.∗GGG2,1).∗ vol

9: Kg(6, :)← sum(GGG3.∗GGG2,1).∗ vol

10: Kg(9, :)← sum(GGG3.∗GGG3,1).∗ vol

11: Kg([4,7,8], :)←Kg([2,3,6], :)
12: S←SPARSE(Ig(:),Jg(:),Kg(:),nq,nq)
13: end function

Algorithm 8 Vectorized assembly algorithm for the 3d stiffness matrix - version 2

1: function S←STIFFASSEMBLING3DP1OPTV2( nq,nme,q,me,vol)

2: [GGG1,GGG2,GGG3,GGG4]← GRADIENTVEC3D(q,me,vol)

3: [Ig,Jg]←BUILDIGJG3D(me)

4: Kg←O16×nme

5: Kg(1, :)← sum(GGG1.∗GGG1,1).∗ vol

6: Kg(2, :)← sum(GGG2.∗GGG1,1).∗ vol

7: Kg(3, :)← sum(GGG3.∗GGG1,1).∗ vol

8: Kg(4, :)← sum(GGG4.∗GGG1,1).∗ vol

9: Kg(6, :)← sum(GGG2.∗GGG2,1).∗ vol

10: Kg(7, :)← sum(GGG2.∗GGG3,1).∗ vol

11: Kg(8, :)← sum(GGG2.∗GGG4,1).∗ vol

12: Kg(11, :)← sum(GGG3.∗GGG3,1).∗ vol

13: Kg(12, :)← sum(GGG3.∗GGG4,1).∗ vol

14: Kg(16, :)← sum(GGG4.∗GGG4,1).∗ vol

15: Kg([5,9,10,13,14,15], :)←Kg([2,3,7,4,8,12], :)
16: S←SPARSE(Ig(:),Jg(:),Kg(:),nq,nq)
17: end function

4.2. Elastic stiffness matrix assembly. The local elastic stiffness matrix is given in
(2.8) with ndfe = d(d + 1). For simplicity, let us consider the case d = 2, and the calculation
of the first two terms in the first column of Ke(Tk) in (2.8). Then, using the expression of H

given in Appendix A.2, we obtain, for all k ∈ {1, . . . ,nme} ,

K
e
1,1(Tk) = |Tk|



(λ +2 µ)

(

∂ϕk
1

∂x

)2

+µ

(

∂ϕk
1

∂y

)2


 , K
e
2,1(Tk) = |Tk|(λ +µ)

∂ϕk
1

∂x

∂ϕk
1

∂y
,

that is (using the array notations defined above),

Kg(1,k) =K
e
1,1(Tk) = |Tk|

(

(λ + 2 µ)GGG1(1,k)2 + µGGG1(2,k)2
)

,

Kg(2,k) =K
e
2,1(Tk) = |Tk|(λ + µ)GGG1(1,k)GGG1(2,k).
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The vectorized calculation of the first two rows of Kg is shown in Algorithm 9, lines 5 to

6. The other rows of Kg are computed using the same method and using the symmetry of

the matrix. We present in Algorithm 9 the fully vectorized assembly algorithm of the elastic

stiffness matrix in 2d (in this algorithm, we don’t show all the terms of Kg; for the complete

function in Matlab/octave see [7]). The same method is used to perform the assembly of the

elastic stiffness matrix in 3d (see [7]).

Algorithm 9 Vectorized assembly for 2d elasticity stiffness matrix - version 2

1: function K←STIFFELAS2DP1OPTV2( nq,nme,q,me,vol,λ ,µ)

2: [GGG1,GGG2,GGG3]← GRADIENTVEC2D(q,me,vol) ⊲ see Algo. 12

3: [Ig,Jg]←BUILDIGJG2DVF(me) ⊲ see Algo. 5

4: Kg←O36×nme

5: Kg(1, :)← ((λ +2µ)∗GGG1(1, :).∗GGG1(1, :)+µ ∗GGG1(2, :).∗GGG1(2, :)).∗
vol

6: Kg(2, :)← (λ + µ)∗GGG1(1, :).∗GGG1(2, :).∗ vol

7:
...

8: Kg(30, :)← (λ + µ)∗GGG3(1, :).∗GGG3(2, :).∗ vol

9: Kg(36, :)← ((λ +2µ)∗GGG3(2, :).∗GGG3(2, :)+µ ∗GGG3(1, :).∗GGG3(1, :)).∗
vol

10: Kg([7,13,14,19,20,21,25,26,27,28,31,32,33,34,35], :)
←Kg([2,3,9,4,10,16,5,11,17,23,6,12,18,24,30], :)

11: S←SPARSE(Ig(:),Jg(:),Kg(:),2nq,2nq)
12: end function

We now present numerical results that illustrate the performances of the different finite

element assembly methods presented in this article.

5. Benchmarks results. We consider the assembly of the stiffness and elastic stiffness

matrices in 2d and 3d, in the following vector languages

• Matlab (R2012b),

• Octave (3.6.3),

• Python 3.3.2 with Numpy[1.7.1] and scipy[0.12.0].

For each language, we first compare the computation times of the different versions of

the matrix assembly code (base, OptV1 and OptV2), for each language considered. Then,

we compare the performances of the OptV2 code with those of an implementation of the

matrix assembly in C language, using the SuiteSparse library [10] (“CXSparse”), and in

FreeFEM++. A comparison of the performances of recent and efficient Matlab/Octave codes

and the OptV2 code is also given. In all benchmarks, the computational domain Ω is the unit

disk in 2d and the unit sphere in 3d. For each result in any language used, we present the

average computation time for ten finite element assembly calculations.

5.1. Comparison of the base, OptV1 and OptV2 assembly codes. We show in Fig-

ures 5.1 and 5.2, in logarithmic scales and for each vector language, the performances of the

matrix assembly codes versus the matrix dimension ndof, for the 2d stiffness and 3d elastic

stiffness matrices respectively. For each language, we observe that the OptV2 version is the

fastest one and its complexity is about O (ndof log(ndof)). For the 2d stiffness matrix, the

OptV1 version is about 20, 40 and 100 times slower in Matlab, Python and Octave respec-

tively. Its numerical complexity is about O (ndof log(ndof)). The less performing method, the

base version, has a complexity of O
(

ndof
2
)

in Matlab and Octave. However, its complex-

ity seems to be O (ndof) in Python. This is partially due to the use of the LIL format in the
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sparse matrix assembly in Python, the conversion in CSC format being taken into account in

the computation time. We obtain similar results with the stiffness matrix in 3d and the elastic

stiffness matrix in 2d and 3d. Computation times and speedup are given in Tables 5.1 and 5.2

for the 2d stiffness and 3d elastic stiffness matrices respectively. In Appendix B, computation

times and speedup are given in Tables B.1 and B.2 for the stiffness matrix in 3d and the elas-

ticity stiffness matrix in 2d, respectively. We observe that the performance differences of the

stiffness and elastic stiffness matrix assemblies in 2d and 3d are partially due to the increase

of the data: on the unit disk (2d) and the unit sphere (3d), we have nme ≈ 2nq and nme ≈ 6nq

respectively. With matrices of the same size (i.e. for an equal ndof), in comparison to the

stiffness matrix in 2d, the number of local values to be computed are 2, 4 and 16 times larger

for the elastic stiffness matrix in 2d, the stiffness matrix in 3d, and the elastic stiffness matrix

in 3d respectively.

5.2. Comparison of the OptV2 version in vector languages with CXSparse and FreeFEM++.

We compare, in Tables 5.3 and 5.4, the OptV2 versions in Matlab/Octave/Python with a C

implementation of the assembly (OptV1 version) using the SuiteSparse library [10] (“CXS-

parse”), and with a FreeFEM++ version for the stiffness matrix in 2d and the elasticity stiff-

ness matrix in 3d. For the stiffness matrix in 3d and the elasticity stiffness matrix in 2d,

one can refer to the Tables B.3 and B.4 in Appendix B. The matrix assembly codes with

FreeFEM++, the complete listings and the values of the computation times are given in [7].

We observe that the OptV2 version is approximately 1.5 and 7.1 times in Matlab, 2.7 and

10.5 times in Octave and 2.4 and 7.8 times in Python faster than FreeFEM++ for the first two

matrices. As might be expected, the vector languages are less efficient than the C language:

in our benchmarks, the computation times are multiplied by a factor between 1.7 and 4.5 in

Matlab, 1.25 and 3.1 in Octave, and 1.4 and 3.75 in Python. However, these performance

differences are not as large as generally expected.

5.3. Comparison with other matrix assemblies in Matlab and Octave. In Matlab/Octave

other efficient algorithms have been proposed recently in [1, 2, 15, 26]. More precisely,

in [15], a vectorization is proposed, based on the permutation of two local loops with the

one through the elements. This technique allows to easily assemble different matrices, from

a reference element by affine transformation and by using a numerical integration. In [26],

the implementation is based on extending element operations on arrays into operations on

arrays of matrices, calling it a matrix-array operation, where the array elements are matrices

rather than scalars, and the operations are defined by the rules of linear algebra. Thanks to

these new tools and a quadrature formula, different matrices are computed without any loop.

In [2], for the assembly of the stiffness matrix in 2d associated to P1 finite elements, L. Chen

builds vectorially the nine sparse matrices corresponding to the nine elements of the local

stiffness matrix in 2d and adds them to obtain the global matrix. This method is close to the

one proposed in Algorithm 10. For the 2d stiffness matrix, the performance of our algorithm

is similar to the one of [12].

We compare these codes to the OptV2 version presented in this article, for the assembly

of the 2d stiffness matrix. The computations have been done on our reference computer.

On Tables 5.5 and 5.6, using Matlab and Octave respectively, we show the computation times

versus the number of vertices of the mesh, for these different codes. For large sparse matrices,

the OptV2 version allows gains in computational time of 5% to 20%, compared to the other

vectorized codes (for sufficiently large meshes).
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Fig. 5.1: 2d stiffness matrix : comparison of the classical, OptV1 and OptV2 matrix assembly

codes in Matlab (top left), Octave (top right) and Python (bottom).

StiffAssembling2DP1 - Matlab StiffAssembling2DP1 - Octave

ndo f OptV2 OptV1 base

14222
0.052 (s)

x 1.00

1.490 (s)

x 28.53

12.294 (s)

x 235.44

125010
0.506 (s)

x 1.00

10.765 (s)

x 21.27

812.572 (s)

x 1605.24

343082
1.347 (s)

x 1.00

28.760 (s)

x 21.35

6085.713 (s)

x 4518.24

885521
3.685 (s)

x 1.00

73.819 (s)

x 20.03
—

1978602
8.615 (s)

x 1.00

169.266 (s)

x 19.65
—

ndo f OptV2 OptV1 base

14222
0.024 (s)

x 1.00

3.292 (s)

x 136.71

23.518 (s)

x 976.71

125010
0.252 (s)

x 1.00

30.296 (s)

x 120.20

1594.866 (s)

x 6327.48

343082
0.725 (s)

x 1.00

81.988 (s)

x 113.14

12558.432 (s)

x 17330.32

885521
2.040 (s)

x 1.00

211.515 (s)

x 103.69
—

1978602
4.795 (s)

x 1.00

471.031 (s)

x 98.24
—

StiffAssembling2DP1 - Python

ndo f OptV2 OptV1 base

14222
0.031 (s)

x 1.00

1.423 (s)

x 46.66

19.746 (s)

x 647.27

125010
0.285 (s)

x 1.00

12.678 (s)

x 44.44

178.275 (s)

x 624.89

343082
0.829 (s)

x 1.00

34.801 (s)

x 41.98

489.411 (s)

x 590.36

885521
2.290 (s)

x 1.00

90.190 (s)

x 39.39
—

1978602
5.285 (s)

x 1.00

201.295 (s)

x 38.09
—

Table 5.1: 2d stiffness matrix : comparison of the OptV2, OptV1 and base matrix assembly

codes in Matlab (top left), Octave (top right) and Python (bottom) giving time in seconds (top

value) and speedup (bottom value). The speedup reference is OptV2 version.
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Fig. 5.2: 3d elastic stiffness matrix : comparison of the classical, OptV1 and OptV2 matrix

assembly codes in Matlab (top left), Octave (top right) and Python (bottom).

StiffElasAssembling3DP1 - Matlab StiffElasAssembling3DP1 - Octave

ndo f OptV2 OptV1 base

16773
0.783 (s)

x 1.00

5.016 (s)

x 6.40

391.354 (s)

x 499.65

44124
2.147 (s)

x 1.00

13.823 (s)

x 6.44

3236.753 (s)

x 1507.46

121710
6.309 (s)

x 1.00

39.615 (s)

x 6.28

29036.535 (s)

x 4602.45

601272
33.798 (s)

x 1.00

200.710 (s)

x 5.94
—

1144680
69.257 (s)

x 1.00

389.074 (s)

x 5.62
—

ndo f OptV2 OptV1 base

16773
0.513 (s)

x 1.00

13.998 (s)

x 27.27

800.288 (s)

x 1559.27

44124
1.433 (s)

x 1.00

38.591 (s)

x 26.94

7914.374 (s)

x 5524.39

121710
4.232 (s)

x 1.00

109.431 (s)

x 25.86

56718.057 (s)

x 13401.46

601272
23.389 (s)

x 1.00

558.996 (s)

x 23.90
—

1144680
46.395 (s)

x 1.00

1074.179 (s)

x 23.15
—

StiffElasAssembling3DP1 - Python

ndo f OptV2 OptV1 base

16773
0.420 (s)

x 1.00

10.982 (s)

x 26.15

117.283 (s)

x 279.27

44124
1.262 (s)

x 1.00

29.991 (s)

x 23.76

314.649 (s)

x 249.27

121710
4.043 (s)

x 1.00

85.132 (s)

x 21.06

879.347 (s)

x 217.52

601272
27.141 (s)

x 1.00

436.719 (s)

x 16.09
—

1144680
63.058 (s)

x 1.00

834.281 (s)

x 13.23
—

Table 5.2: 3d elastic stiffness matrix : comparison of the OptV2, OptV1 and base assembly

codes in Matlab (top left), Octave (top right) and Python (bottom) giving time in seconds (top

value) and speedup (bottom value). The speedup reference is OptV2 version.
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ndo f
CXSparse

(4.0.2)

Matlab

(R2012b)

Octave

(3.6.3)

Python

(3.3.2)

FreeFem

(3.2)

14222
0.010 (s)

x 1.00

0.052 (s)

x 5.22

0.024 (s)

x 2.41

0.031 (s)

x 3.05

0.081 (s)

x 8.10

125010
0.192 (s)

x 1.00

0.506 (s)

x 2.64

0.252 (s)

x 1.31

0.285 (s)

x 1.49

0.735 (s)

x 3.83

343082
0.579 (s)

x 1.00

1.347 (s)

x 2.33

0.725 (s)

x 1.25

0.829 (s)

x 1.43

2.042 (s)

x 3.53

885521
1.552 (s)

x 1.00

3.685 (s)

x 2.37

2.040 (s)

x 1.31

2.290 (s)

x 1.48

5.333 (s)

x 3.44

1978602
3.481 (s)

x 1.00

8.615 (s)

x 2.47

4.795 (s)

x 1.38

5.285 (s)

x 1.52

11.980 (s)

x 3.44

Table 5.3: Computational cost of the 2d stiffness matrix assembly versus ndo f , with the

OptV2 Matlab/Octave/Python version (2nd/3rd/4th columns), with CXSparse (1st column)

and FreeFEM++ (5th column) : time in seconds (top value) and speedup (bottom value). The

speedup reference is CXSparse code.

ndo f
CXSparse

(4.0.2)

Matlab

(R2012b)

Octave

(3.6.3)

Python

(3.3.2)

FreeFem

(3.2)

16773
0.163 (s)

x 1.00

0.783 (s)

x 4.81

0.513 (s)

x 3.15

0.420 (s)

x 2.58

6.401 (s)

x 39.27

44124
0.469 (s)

x 1.00

2.147 (s)

x 4.58

1.433 (s)

x 3.05

1.262 (s)

x 2.69

17.547 (s)

x 37.41

121710
1.396 (s)

x 1.00

6.309 (s)

x 4.52

4.232 (s)

x 3.03

4.043 (s)

x 2.90

49.971 (s)

x 35.80

601272
7.573 (s)

x 1.00

33.798 (s)

x 4.46

23.389 (s)

x 3.09

27.141 (s)

x 3.58

255.006 (s)

x 33.67

1144680
16.832 (s)

x 1.00

69.257 (s)

x 4.11

46.395 (s)

x 2.76

63.058 (s)

x 3.75

489.377 (s)

x 29.07

Table 5.4: Computational cost of the 3d elastic stiffness matrix assembly versus ndo f , with the

OptV2 Matlab/Octave/Python version (2nd/3rd/4th columns), with CXSparse (1st column)

and FreeFEM++ (5th column) : time in seconds (top value) and speedup (bottom value). The

speedup reference is CXSparse code.

nq OptV2 Chen iFEM HanJun RahVal

170355
0.638 (s)

x 1.00

0.774 (s)

x 0.82

0.663 (s)

x 0.96

0.944 (s)

x 0.68

0.995 (s)

x 0.64

424178
1.733 (s)

x 1.00

2.092 (s)

x 0.83

1.771 (s)

x 0.98

2.452 (s)

x 0.71

2.634 (s)

x 0.66

778415
3.113 (s)

x 1.00

3.943 (s)

x 0.79

3.694 (s)

x 0.84

4.446 (s)

x 0.70

4.984 (s)

x 0.62

1251480
5.142 (s)

x 1.00
6.595 (s)

x 0.78
6.056 (s)

x 0.85
7.320 (s)

x 0.70
8.117 (s)

x 0.63

1671052
6.937 (s)

x 1.00
9.233 (s)

x 0.75
8.557 (s)

x 0.81
10.174 (s)

x 0.68
10.886 (s)

x 0.64

2349573
9.892 (s)

x 1.00
12.778 (s)

x 0.77
12.308 (s)

x 0.80
14.384 (s)

x 0.69
15.585 (s)

x 0.63

3085628
13.157 (s)

x 1.00
17.419 (s)

x 0.76
16.575 (s)

x 0.79
18.938 (s)

x 0.69
20.767 (s)

x 0.63

Table 5.5: Computational cost, in Matlab (R2012b), of the 2d stiffness matrix assembly ver-

sus nq, with the OptV2 version (column 2) and with the codes in [1, 2, 15, 26] (columns 3-6)

: time in seconds (top value) and speedup (bottom value). The speedup reference is OptV2

version.
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nq OptV2 Chen iFEM HanJun RahVal

170355
0.315 (s)

x 1.00

0.353 (s)

x 0.89

0.355 (s)

x 0.89

0.740 (s)

x 0.43

0.747 (s)

x 0.42

424178
0.815 (s)

x 1.00

0.970 (s)

x 0.84

0.942 (s)

x 0.86

1.917 (s)

x 0.42

1.890 (s)

x 0.43

778415
1.604 (s)

x 1.00

1.945 (s)

x 0.82

1.883 (s)

x 0.85

3.985 (s)

x 0.40

3.982 (s)

x 0.40

1251480
2.662 (s)

x 1.00
3.349 (s)

x 0.79
3.307 (s)

x 0.81
6.423 (s)

x 0.41
6.752 (s)

x 0.39

1671052
3.744 (s)

x 1.00
4.533 (s)

x 0.83
4.750 (s)

x 0.79
9.310 (s)

x 0.40
9.183 (s)

x 0.41

2349573
5.253 (s)

x 1.00
6.687 (s)

x 0.79
7.227 (s)

x 0.73
12.973 (s)

x 0.40
13.195 (s)

x 0.40

3085628
7.363 (s)

x 1.00

8.833 (s)

x 0.83

9.526 (s)

x 0.77

18.001 (s)

x 0.41

17.375 (s)

x 0.42

Table 5.6: Computational cost, in Octave (3.6.3), of the 2d stiffness matrix assembly versus

nq, with the OptV2 version (column 2) and with the codes in [1, 2, 15, 26] (columns 3-6)

: time in seconds (top value) and speedup (bottom value). The speedup reference is OptV2

version.

6. Conclusion and work in progress. We presented vectorized algorithms for the as-

sembly of P1 finite element matrices. The implementation of these algorithms (with very

few difference from the algorithmic language) has been done in different vector languages

such as Matlab, Octave and Python to calculate the stiffness and elastic stiffness matrices in

2d and 3d. We compared computation times between different versions (vectorized or not),

different interpreted languages and C language. Numerical examples show the efficiency of

the OptV2 algorithm: for the assembly of the stiffness matrix in 2d of size 106 the computa-

tion is performed in 3.9, 2.2 and 2.5 seconds with Matlab, Octave and Python respectively,

and in 1.8 seconds with C. Less performance is obtained for the assembly of the elastic stiff-

ness matrix in 3d: a matrix of size 106 is computed in 60.5, 40.5 and 55 seconds, with Matlab,

Octave and Python respectively, and in 14.7 seconds with C.

We are now working on many variations for the OptV2 algorithm. Some of them may

improve the performances and/or the memory usage. For example, to overcome the fact

that the OptV2 algorithm is very memory consuming, one can split global arrays, generate

incomplete sparse matrices and sum them up. This method is presented for the stiffness matrix

in the vectorized Algorithm 10. This 2d version is about 15% faster with Matlab. However, it

is about 10% and 30% slower under Octave and Python respectively. For the elastic stiffness

matrix in 3d, a different implementation of the symmetry allows to obtain a similar algorithm

with better performances: speedup by about a factor 2 for Matlab/Octave/Python and memory

usage divided by a factor 6. Others improvements of the optimized assembly algorithm may

be done using the specificities of each language.

Algorithm 10 Split vectorized assembly

function S←STIFF( nq,nme,q,me,vol)

[GGG1, . . . ,GGGndfe ]← GRADIENTVEC(me,vol)

S←Onq×nq

for α ← 1 to ndfe do

S← S+ELEM(. . . ,GGGα ,GGGα ,α,α)
for β ← α + 1 to ndfe do

Stmp←ELEM(. . . ,GGGα ,GGGβ ,α,β )
S← S+Stmp +St

tmp

end for

end for

end function

Algorithm 11 Row assembly

function S←ELEM(. . . ,GGGα ,GGGβ ,α ,β)

KKKgr← sum(GGGα .∗GGGβ ,1).∗ vol

IIIgr←me(α, :)
JJJgr←me(β , :)
S←sparse(IIIgr,JJJgr,KKKgr,nq,nq)

end function

16



Appendix A. Remaining routines.

A.1. Vectorized computation of the gradients of the basis functions. By construc-

tion, the gradients of the basis functions are constant on each element Tk. In what follows, we

use the definition (4.2).

A.1.1. The 2d case. On a triangle Tk, we define DDD12 = qme(1,k)−qme(2,k),DDD13 = qme(1,k)−
qme(3,k) and DDD23 = qme(2,k)− qme(3,k). Then we have

∇ϕk
1(q) =

1

2|Tk|

(

DDD23
y

−DDD23
x

)

, ∇ϕk
2(q) =

1

2|Tk|

(

−DDD13
y

DDD13
x

)

, ∇ϕk
3(q) =

1

2|Tk|

(

DDD12
y

−DDD12
x

)

.

These formulas lead to a simple vectorization, given in Algorithm 12

Algorithm 12 Vectorized computation of the gradients of the basis functions in 2d

Input :

q : vertex coordinates array (2× nq)

me : connectivity array (3× nme)

vol : array of mesh elements areas (1× nme)

Output :

GGG1,GGG2,GGG3 : gradients arrays (2× nme)

GGGα(:,k) = ∇ϕk
α(q), ∀α ∈ {1, . . . ,3}

function [GGG1,GGG2,GGG3]← GRADIENTVEC2D(q,me,vol)

DDD12← q(:,me(1, :))− q(:,me(2, :)) ⊲ 2× nme array

DDD13← q(:,me(1, :))− q(:,me(3, :)) ⊲ 2× nme array

DDD23← q(:,me(2, :))− q(:,me(3, :)) ⊲ 2× nme array

GGG1←

(

DDD23(2, :)./(2 ∗ vol)
−DDD23(1, :)./(2 ∗ vol)

)

GGG2←

(

−DDD13(2, :)./(2 ∗ vol)
DDD13(1, :)./(2 ∗ vol)

)

GGG3←

(

DDD12(2, :)./(2 ∗ vol)
−DDD12(1, :)./(2 ∗ vol)

)

end function

A.1.2. The 3d case. On a tetrahedron Tk, we define

DDD12 = qme(1,k)− qme(2,k), DDD23 = qme(2,k)− qme(3,k),

DDD13 = qme(1,k)− qme(3,k), DDD24 = qme(2,k)− qme(4,k),

DDD14 = qme(1,k)− qme(4,k), DDD34 = qme(3,k)− qme(4,k).

Then, we have

∇ϕk
1(q) =

1

6|Tk|





−DDD23
y DDD24

z +DDD23
z DDD24

y

DDD23
x DDD24

z −DDD23
z DDD24

x

−DDD23
x DDD24

y +DDD23
y DDD24

x



 , ∇ϕk
2(q) =

1

6|Tk|





DDD13
y DDD14

z −DDD13
z DDD14

y

−DDD13
x DDD14

z +DDD13
z DDD14

x

DDD13
x DDD14

y −DDD13
y DDD14

x



 ,

∇ϕk
3(q) =

1

6|Tk|





−DDD12
y DDD14

z +DDD12
z DDD14

y

DDD12
x DDD14

z −DDD12
z DDD14

x

−DDD12
x DDD14

y +DDD12
y DDD14

x



 , ∇ϕk
4(q) =

1

6|Tk|





DDD12
y DDD13

z −DDD12
z DDD13

y

−DDD12
x DDD13

z +DDD12
z DDD13

x

DDD12
x DDD13

y −DDD12
y DDD13

x



 .

With these formulas, the vectorization is given in Algorithm 13
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Algorithm 13 Vectorized computation of the gradients of the basis functions in 3d

Input :

q : vertex coordinates array (3× nq)

me : connectivity array (4× nme)

vol : array of mesh elements volumes (1× nme)

Output :

GGG1,GGG2,GGG3,GGG4 : gradients arrays (3× nme)

GGGα(:,k) = ∇ϕk
α(q), ∀α ∈ {1, . . . ,4}

1: function [GGG1,GGG2,GGG3,GGG4]← GRADIENTVEC3D(q,me,vol)

2: DDD12← q(:,me(1, :))− q(:,me(2, :)) ⊲ 3×nme array

3: DDD13← q(:,me(1, :))− q(:,me(3, :))
4: DDD14← q(:,me(1, :))− q(:,me(4, :))
5: DDD23← q(:,me(2, :))− q(:,me(3, :))
6: DDD24← q(:,me(2, :))− q(:,me(4, :))
7: C← 1/(6 ∗ vol)

8: GGG1←





(−DDD23(2, :).∗DDD24(3, :)+DDD23(3, :).∗DDD24(2, :)).∗C

(DDD23(1, :).∗DDD24(3, :)−DDD23(3, :).∗DDD24(1, :)).∗C

(−DDD23(1, :).∗DDD24(2, :)+DDD23(2, :).∗DDD24(1, :)).∗C





9: GGG2←





(DDD13(2, :).∗DDD14(3, :)−DDD13(3, :).∗DDD14(2, :)).∗C

(−DDD13(1, :).∗DDD14(3, :)+DDD13(3, :).∗DDD14(1, :)).∗C

(DDD13(1, :).∗DDD14(2, :)−DDD13(2, :).∗DDD14(1, :)).∗C





10: GGG3←





(−DDD12(2, :).∗DDD14(3, :)+DDD12(3, :).∗DDD14(2, :)).∗C

(DDD12(1, :).∗DDD14(3, :)−DDD12(3, :).∗DDD14(1, :)).∗C

(−DDD12(1, :).∗DDD14(2, :)+DDD12(2, :).∗DDD14(1, :)).∗C





11: GGG4←





(DDD12(2, :).∗DDD13(3, :)−DDD12(3, :).∗DDD13(2, :)).∗C

(−DDD12(1, :).∗DDD13(3, :)+DDD12(3, :).∗DDD13(1, :)).∗C

(DDD12(1, :).∗DDD13(2, :)−DDD12(2, :).∗DDD13(1, :)).∗C





12: end function

A.2. Elastic stiffness matrix. The elastic stiffness matrix K defined in Section 2.2 can

be expressed with the operator H (see (2.2)). This operator is defined in 2d, for all uuu =

(u1,u2) ∈ H1(Ω)
2
, and for all vvv = (v1,v2) ∈ H1(Ω)

2
, by

H (uuu,vvv) =
〈(

γ 0

0 µ

)

∇u1,∇v1

〉

+
〈(

0 λ
µ 0

)

∇u2,∇v1

〉

+
〈(

0 µ
λ 0

)

∇u1,∇v2

〉

+
〈(

µ 0

0 γ

)

∇u2,∇v2

〉

,

and in 3d, for all uuu = (u1,u2,u3) ∈ (H1(Ω))3, for all vvv = (v1,v2,v3) ∈ (H1(Ω))3, by

H (uuu,vvv)
=

〈(

γ 0 0

0 µ 0

0 0 µ

)

∇u1,∇v1

〉

+
〈(

0 λ 0

µ 0 0

0 0 0

)

∇u2,∇v1

〉

+
〈(

0 0 λ
0 0 0

µ 0 0

)

∇u3,∇v1

〉

+
〈(

0 µ 0

λ 0 0

0 0 0

)

∇u1,∇v2

〉

+
〈(

µ 0 0

0 γ 0

0 0 µ

)

∇u2,∇v2

〉

+
〈(

0 0 0

0 0 λ
0 µ 0

)

∇u3,∇v2

〉

+
〈(

0 0 µ
0 0 0

λ 0 0

)

∇u1,∇v3

〉

+
〈(

0 0 0

0 0 µ
0 λ 0

)

∇u2,∇v3

〉

+
〈(

µ 0 0

0 µ 0

0 0 γ

)

∇u3,∇v3

〉

where λ and µ are the Lamé coefficients, and γ = λ + 2µ . With this operator, we have

Kl,m =

∫

Ωh

εεε t(ψψψm)Cεεε(ψψψ l)dq =

∫

Ωh

H (ψψψm,ψψψ l)dq, ∀(l,m) ∈ {1, . . . ,ndof}
2 .
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Appendix B. Benchmarks additional results. In this section, we consider the assembly

of the 3d stiffness and 2d elastic stiffness matrices. In Tables B.1 and B.2 we compare the

computation times of the OptV2, OptV1 and base versions, in Matlab, Octave and Python. In

Tables B.3 and B.4, we compare the OptV2 versions in Matlab/Octave/Python with a C imple-

mentation of the assembly (OptV1 version) using the SuiteSparse library [10] (“CXSparse”),

and with a FreeFEM++ version.

StiffAssembling3DP1 - Matlab StiffAssembling3DP1 - Octave

ndo f OptV2 OptV1 base

14708
0.289 (s)

x 1.00

4.570 (s)

x 15.80

52.189 (s)

x 180.42

40570
0.889 (s)

x 1.00

13.052 (s)

x 14.69

352.710 (s)

x 396.91

200424
4.775 (s)

x 1.00

67.004 (s)

x 14.03

9591.131 (s)

x 2008.56

580975
15.117 (s)

x 1.00

196.405 (s)

x 12.99
—

1747861
48.582 (s)

x 1.00

599.601 (s)

x 12.34
—

ndo f OptV2 OptV1 base

14708
0.200 (s)

x 1.00

26.175 (s)

x 130.96

92.095 (s)

x 460.76

40570
0.637 (s)

x 1.00

74.022 (s)

x 116.17

602.971 (s)

x 946.33

200424
3.587 (s)

x 1.00

377.162 (s)

x 105.13

15970.084 (s)

x 4451.66

580975
11.457 (s)

x 1.00

1104.374 (s)

x 96.39
—

1747861
44.064 (s)

x 1.00

3359.580 (s)

x 76.24
—

StiffAssembling3DP1 - Python

ndo f OptV2 OptV1 base

14708
0.178 (s)

x 1.00

5.423 (s)

x 30.44

106.954 (s)

x 600.31

40570
0.524 (s)

x 1.00

15.418 (s)

x 29.42

303.555 (s)

x 579.26

200424
3.531 (s)

x 1.00

78.638 (s)

x 22.27

1451.837 (s)

x 411.18

580975
12.090 (s)

x 1.00

231.443 (s)

x 19.14
—

1747861
49.006 (s)

x 1.00

707.233 (s)

x 14.43
—

Table B.1: 3d stiffness matrix : comparison of the OptV2, OptV1 and base assembly codes in

Matlab (top left), Octave (top right) and Python (bottom) giving time in seconds (top value)

and speedup (bottom value). The speedup reference is OptV2 version.

StiffElasAssembling2DP1 - Matlab StiffElasAssembling2DP1 - Octave

ndo f OptV2 OptV1 base

28444
0.197 (s)

x 1.00

1.509 (s)

x 7.67

108.713 (s)

x 552.45

111838
0.769 (s)

x 1.00

6.084 (s)

x 7.91

1885.628 (s)

x 2452.81

250020
1.757 (s)

x 1.00

13.490 (s)

x 7.68
—

1013412
7.728 (s)

x 1.00

55.489 (s)

x 7.18
—

2802258
22.862 (s)

x 1.00

154.827 (s)

x 6.77
—

ndo f OptV2 OptV1 base

28444
0.088 (s)

x 1.00

7.873 (s)

x 89.28

225.183 (s)

x 2553.53

111838
0.428 (s)

x 1.00

31.230 (s)

x 73.01

4086.153 (s)

x 9553.00

250020
0.997 (s)

x 1.00

70.025 (s)

x 70.21
—

1013412
4.304 (s)

x 1.00

284.692 (s)

x 66.15
—

2802258
12.893 (s)

x 1.00

786.855 (s)

x 61.03
—

StiffElasAssembling2DP1 - Python

ndo f OptV2 OptV1 base

28444
0.093 (s)

x 1.00

4.283 (s)

x 46.08

27.884 (s)

x 300.00

111838
0.451 (s)

x 1.00

16.864 (s)

x 37.36

110.468 (s)

x 244.72

250020
1.041 (s)

x 1.00

37.878 (s)

x 36.39

244.301 (s)

x 234.74

1013412
4.455 (s)

x 1.00

154.028 (s)

x 34.57
—

2802258
13.301 (s)

x 1.00

427.890 (s)

x 32.17
—

Table B.2: 2d elastic stiffness matrix : comparison of the OptV2, OptV1 and base assembly

codes in Matlab (top left), Octave (top right) and Python (bottom) giving time in seconds (top

value) and speedup (bottom value). The speedup reference is OptV2 version.

Appendix C. Vectorized algorithmic language. In computer science, vector languages

(also known as array programming or multidimensional languages) are often used in sci-

entific and engineering computations. They generalize the operations on scalars to higher

dimensional arrays, matrices and vectors : such operations are named vectorized operations.
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ndo f
CXSparse

(4.0.2)

Matlab

(R2012b)

Octave

(3.6.3)

Python

(3.3.2)

FreeFem

(3.2)

14708
0.078 (s)

x 1.00

0.289 (s)

x 3.71

0.200 (s)

x 2.56

0.178 (s)

x 2.28

0.824 (s)

x 10.56

40570
0.247 (s)

x 1.00

0.889 (s)

x 3.60

0.637 (s)

x 2.58

0.524 (s)

x 2.12

2.386 (s)

x 9.66

200424
2.081 (s)

x 1.00

4.775 (s)

x 2.29

3.587 (s)

x 1.72

3.531 (s)

x 1.70

12.914 (s)

x 6.21

580975
7.648 (s)

x 1.00

15.117 (s)

x 1.98

11.457 (s)

x 1.50

12.090 (s)

x 1.58

39.185 (s)

x 5.12

1747861
29.595 (s)

x 1.00

48.582 (s)

x 1.64

44.064 (s)

x 1.49

49.006 (s)

x 1.66

122.126 (s)

x 4.13

Table B.3: Computational cost of the 3d stiffness matrix assembly versus ndo f , with the

OptV2 Matlab/Octave/Python version (2nd/3rd/4th columns), with CXSparse (1st column)

and FreeFEM++ (5th column) : time in seconds (top value) and speedup (bottom value). The

speedup reference is CXSparse code.

ndo f
CXSparse

(4.0.2)

Matlab

(R2012b)

Octave

(3.6.3)

Python

(3.3.2)

FreeFem

(3.2)

14222
0.039 (s)

x 1.00

0.197 (s)

x 5.05

0.088 (s)

x 2.26

0.154 (s)

x 3.94

1.137 (s)

x 29.15

55919
0.156 (s)

x 1.00

0.769 (s)

x 4.93

0.428 (s)

x 2.74

0.677 (s)

x 4.34

4.530 (s)

x 29.04

125010
0.377 (s)

x 1.00

1.757 (s)

x 4.66

0.997 (s)

x 2.65

1.598 (s)

x 4.24

10.165 (s)

x 26.96

506706
1.574 (s)

x 1.00

7.728 (s)

x 4.91

4.304 (s)

x 2.73

6.889 (s)

x 4.38

41.459 (s)

x 26.34

1401129
4.327 (s)

x 1.00

22.862 (s)

x 5.28

12.893 (s)

x 2.98

20.048 (s)

x 4.63

114.049 (s)

x 26.36

Table B.4: Computational cost of the 2d elastic stiffness matrix assembly versus ndo f , with the

OptV2 Matlab/Octave/Python version (2nd/3rd/4th columns), with CXSparse (1st column)

and FreeFEM++ (5th column) : time in seconds (top value) and speedup (bottom value). The

speedup reference is CXSparse code.

We provide below some common functions and operators of the vectorized algorithmic lan-

guage used in this article, which is close to Matlab/Octave.

A← B Assignment

A∗B matrix multiplication,

A.∗B element-wise multiplication,

A./B element-wise division,

A(:) all the elements of A, regarded as a single column.

[, ] Horizontal concatenation,

[; ] Vertical concatenation,

A(:,J) J-th column of A

A(I, :) I-th row of A

sum(A,dim) sums along the dimension dim.

1m×n m-by-n array or sparse matrix of ones.

Om×n m-by-n array or sparse matrix of zeros.

20



Acknowledgements. The authors would like to thank Prof. H-P. Langtangen for his

many constructive comments that led to a better presentation of the paper.

REFERENCES

[1] L. CHEN, Programming of Finite Element Methods in Matlab, Preprint, University of California Irvine,

http://math.uci.edu/~chenlong/226/Ch3FEMCode.pdf , 2011.

[2] L. CHEN, iFEM, a Matlab software package, University of California Irvine,

http://math.uci.edu/~chenlong/programming.html , 2013.

[3] P. G. CIARLET, The finite element method for elliptic problems, SIAM, Philadelphia, 2002.

[4] Z. CHEN, Finite Element Methods and their Applications, Scientific Computation, Springer, 2005.

[5] Cusp, A C++ Templated Library for sparse linear algebra on CUDA,

https://developer.nvidia.com/cusp .

[6] F. CUVELIER, C. JAPHET, AND G. SCARELLA, OptFEMP1, MATLAB, Octave, Python packages, Université
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