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GENERALIZED KIRCHHOFF APPROXIMATION FOR
HELMHOLTZ EQUATION

F. CUVELIER

ABSTRACT. We give integral formulas to approximate solutions of Dirichlet
and Neumann problems for Helmholtz equation at high frequencies. These
approximations are valid in the complementary of a union of convex compact
obstacles. The first step of the iterative procedure is the classical Kirchhoff
approximation. Convergence is proved by comparison with the geometrical
optics asymptotics. The method is shown to be numerically stable.

1. INTRODUCTION

Let Q be an open set in R? and ' = R3\ Q. We study the high frequency
diffraction problems of an incident plane wave in ) for Helmholtz equation with
respectively, Dirichlet and Neumann boundary conditions :

Av(z) +k*v(z) = 0 foraxeq,
(D) v(iz) = 0 forzedf,
v(x) = e HFEB fy(z) forx e,
Av(z) +k*v(z) = 0 forzeq,
0
(N) So@) = 0 foraed,
n )
v(x) = e HFEB fy(z) forx e Q.
Here u satisfies the Sommerfeld radiation condition :
0
r2(a—u + iku) bounded when r =| z |— +o0.
,

The incident plane wave, e~**{%) is given with the normalization | ¢ |= 1. Here,
high frequency means that the wave length is small with respect to 92 curvatures.
So usual numerical methods, such as finite element method, boundary element
method and so on, fall down.

A classical high frequency approximation is given by geometrical optics , which,
for a point z € 2, allows us to compute, from optic rays going through z, an
approximation of the diffracted wave by €. We obtain for Dirichlet problem (D)
and Neumann problem () respectively

(1.1) V56 (@) =Y e af ()
and
(1.2) v (@) =Y e e Wadl ().

Here, the phase ¢(z) is the length of optic rays going through x and computation
of the amplitude agy(x) work out by propagation and reflection formulas along optic
rays (see [Cuvl3]). The main problem of this method is its numerical instability :
in order to compute this approximation, it’s necessary to determine all the optic
rays going through z. But, small errors in the numerical representation of 92 can
give large errors in the optic rays determination.
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2 F. CUVELIER

An other one is Kirchhoff approximation, based on integral representations. We
give Kirchhoff approximation respectively for Dirichlet problem (D) and Neumann
problem (N) :

) 1 ) e—ik\w—a\
1. D _ —ik({§,x) _/ ik . —ik(€,0) d
(13) oy @) = €0 L [ ik ((Em(o) — & (o)) e 6 ———do

Ulj\éir.(x)
(1.4) e &)
+
. €& mn(o0)) T—0 —ik(£ o) e~ tkle=al
ﬁfasz’k(\(&zgagn —1) <|z—a|’n(0)>e ) e do

Here, n(o) is the unit normal to T at point o, exterior to . But, the validity of
this method is restricted to £’ beeing a strictly convex compact (see [MT85| for
Dirichlet problem and [Yin79], [Yin83] for Neumann problem) and false otherwise.
This is due to the incapacity of this method to see multiple reflections.

The purpose of this paper is to determine an iterative integral method, numeri-
cally stable, equivalent, at first order and high frequency, to the geometrical optic
approximation sets €’ is a finite and disjointed union of regular and strictly convex
compacts. In both case, the first step is given by Kirchhoff approximation.

It relies in ...(crire les principales tapes du papier)

2. NOTATIONS AND DEFINITIONS

2.1. Gradient and Hessian on Surfaces. Let K C R? be a compact and I it
boundary. Let us suppose that I' is a regular and orientable surface.

Definition 1. (Gradient on Surfaces). The gradient of a differentiable func-
tion ¢ : T C R® = R is a differentiable map grad ¢ : T — R? which assigns to each
point o € I' a vector grad p(o) € T,(I') C R?® such that

<grado(o),v >,=dps(v) Yv e Ty(T).

Definition 2. (Hessian on Surfaces). The hessian of a twice differentiable
function ¢ : T C R® — R is the function Hess @ : T’ — L(R¥) which assigns to each
point 0 € I' a matriz Hess (o) € L (T,(I")) such that

(Hess p(0)v,v) = d*pq(v)v Yo € T,(T).

Proposition 1. With previous definition, and by taylor’s expansion we obtain for
teR andv € T,(T)

t2
plo + 1) — p(o) = t (gradp(o),v) + 5 (Hess (o). v) +o(1?)

N times

—

Definition 3. The gradient of a differentiable function o : T x --- x I C RN — R
is a differentiable map grad : T' x --- x I' — R3N which assigns to each point
v=/(01,...,0n) €N a vector grad o(v) € (T,,(T) x -+ x T, (T')) C R*N such
that

(grado(v), @), = dp,(w) Vw € (T5, (L) x -+ x To5 (T))
The function V,,p : TN — R3which assigns to each point v = (o1,...,on) €TV a
vector Vo, p(v) € Ty, (') C R3 is defined by

(Vo,o(v), wi) = dpy(w) Vow; € T, ()

with w = (0,...,0,w;,0,...,0).
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Definition 4. The hessian of a twice differentiable function ¢ : TN — R is
N times
—
the function Hessgp : I'x --- xT' — £ (IRgN) which assigns to each point v =
(01,...,0n) € TN, a matriz Hess p(v) € £ (Ty, (L) x -+ x Ty (') such that

(Hess o(v)w, @), = d*pu(w).w Vo € Ty, (T) x -+ x Ty (T).
N times
—
The function H; ;0 : I'x - xT' = £ (RB), 1<i#£j N, which assigns

i <
to each point v = (o1,...,0n) € TN, a matriz H; ;o(v) € L (T,,(),T,,(I)) is
defined by

(Hijo(v)wi,wj) = d*py(w).w V(w;,wj) € Ty, (T) x Ty, (T)

with w = (w1,...,wN), wp =0 for k#i and k # j, w; = w; and w; = wj.
N times
—
The function H; ;0 : I'x - xI' = L (R?’) , 1 <4 < N, which assigns to each
point v = (01,...,0n) € TN, a matriz 3, ;,0(v) € L (T,,(T)) is defined by

(Hiip(V)wi,w;) = d*p,(w).w Vw; € T,,(T)
with w = (w1,...,wN) € Tp, (T') X -+ X Ty (T'), wi, =0 for k #1i, and w; = w;.

2.2. Geometrical notations.

o Let (K;)i=1,.. v be a set of regular, disjoint and strictly convex compact
in R3.
e We denote by I';, the boundary of K;, and I' = Uf;l I;.

e Thus I'; is a regular and orientable surface. So, given a point o of surface I';
we can choose the coordinate axis of R3 so that origin O of the coordinates
is at o and the z axis is directed along the negative normal (i.e. the
outer normal) n(c) of I'; in o (thus, the zy plane agrees with T, (T;) :
tangent plane of I'; in o). It follows that a neighborhooh of ¢ in I'; can be
represented in the form z = g;(u,v), (u,v) € U C R?, where U is an open
set and g; is a differentiable function with g;(0,0) = 3% (0,0) = %(0, 0)=
0.

Let us assume further that the w and v axes are directed along the
principal directions, with the axis v along the direction of maximum
principal curvature. Thus

&g &g

—aQQi(o 0), ki(o) = =2£(0,0), and
Toou2 T TR T g2 N Oudv

and, so we obtain by developing g¢;(u, v) into Taylor’s expansion about (0, 0)

ki (o) (0,0)=0

1 . .
gi(u,v) = —5(%“2 + k40?) + o(u® + v?)

We note R’ (0) = -~ and R!(0) = - the principal radii of curva-
u ki (o) v k(o)

ture.

Let us denote R;(o) the orthonormal basis R;(c) = {u;,v;,n;} where n; is

the negative normal of I'; in o, u; and v; are the principal directions of T';

in o with u; the direction of maximum principal curvature.

N
We set ' = |J K; and we note Q; = R\ K.

i=1
Let M., »(R) the set of real matrix of size m x n.
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e We note
I = {(o1, -+ ,01) €I with (0; €T and 0j41 €y = p #q)}
and the phase function v; : R3xTY — R defined, forallv = oy, --- ,07 € T'%,
by

-1
Gix;v) = (€ 00) + Y loju1 — o5 + |z — i
j=1
We call C;() the set of all l-uplet (oy,---,0;) € 'l such that:
(1) <£,’I’L(O’1)> < 0 and <O’j+1 — oj,n(aj+1)> < 0 for allj S {1, s ,l — 1},
(2) The phase 1;(x,®) is stationary on I' at point v = (oy,--- ,07) (i.e.
grad, i(z;v) = 0)
We note C(z) = U, Ci(z).
Let v = (o1, ,0f) € Ci(z). We note R = R;(0%) = {uf,v7,n}}, je€
1,1
Let v = (o7, - ,07) € Ci(x), we define £, for j € {1,---,1} by :

v vV _ \Ve¢v . v __ v _ LV
ol — o) = N&Y with X/ =| o7, — o |

and note £ = (&7, %5, f;fg)w . We also note B(c) the curvature matrix
J

v
J
RY where Uy = 1/ k{(a}’) and V) =1/ k%(a;’) are the principal radius of
curvature. Due to strict convexity of compact we have Uy > 0 and V" > 0.

Let RY defined by :

of I'; in 0¥ : it’s the diagonal matrix with diagonal entries (%, %, 0) in
J J

<“§"+1a“§'> <“§"+1a”?> <“JV'+1a"JV'>
Ry = <”?+1’“§'/> <”5+1’”§'/> <”?+1v"}/>
ny g, uy nj, vy nyjy,,n;

we call R;(x) the set of all l-uplet p = (o1, ,07) € (9Q)! such that p is

*

an optic ray going through x and o; the point of i*” reflection along this
ray. We note R(z) = {J, Ri(x).

o Let x € Qand p= (01, -+ ,01) € Ci(x). We say that p realize :
(1) a transmission condition at point o; (i =1,--- 1) if
ﬁi:gil = ¢ fori=1
Ji+1—04 _ 0i—04i—1 -
ool = To—ary forie{2,---.0}
(2) a reflection condition at point o; (i=1,---,1)if
ool = E—2¢n(o1))n(o1) fori=1
g4 —0; _ O;—04— O;—04— .
fn _ momo(mmt o)) ni) foric (2.0

Here 0141 = z.
o Letx e Qand v = (df,---,07) € Ci(x) we note

ag

v 0 if o7 is a transmission point
4 ( j) =

1if o7 is a reflexion point

e We note 7 = |J; 71 with 7; the set of points x € € such that exists
(o1, ,01) € (O)! verifying
(1) ¢.n(o1))=00r 3j € {1,---,1—1} such that (641 —0;,n(0j4+1)) =
0,
(2) The phase ;(z, ®) is stationary on (9Q)% in (o1,--- ,07).
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2.3. Matrix applications.
e Let 0 > 0, we note 8, C Mj 3(R) the set of matrix A such that I 4 cA is
regular. We note S, the following application :

Sa' : 80 — ngg(R)
A — Al+o0A)7!

o Let B € M33(R) a symmetric matrix , n € R3, ¢ € R3. We suppose
(¢,m) # 0. We note Tg 5 ¢ the application of M3 3(R) given by :
VA € M33(R), Vz € R?

(TepeA))z = (A—2(Cn)B)z—2(n,z)(An+B()
~2(An + BC, )0 +2 |2 (An,n) — 5| (n,2)n

e we define, for x € Q\ 7 and v = (07, -+ ,0]) € C(x), the following [
matrices MY in Ma »(R):

MY = ﬁl,ﬂbl(%l/)
and, Vje {2, ,0}
MY = 3 i (5 v) — Hyoy b (m;v) MY, ] 3 aibi(z; ).

Remark 1. We shall see in Lemmal3 that MY is regular.

-1

o Let z € Q\ T and v = (o}, --- ,07) € Ci(x). We define by recurrence the {
symmetric matrices P% in £(R?) such that

Py = Th(oy).n(or).€ (0) x 8”(07)
and, Vj € {2,--- 1}
Py = Siy , (BY 1) x (1= 8"(0) + Toomioner, (Sxy, (Bf1)) x 8"()).

e Let D; the function define on T, by

Dl(Ul,'" ,07)
_ U]+1 %i- n(oj41) Tt i)
((€nle)| = €.nto)) TT e
e Let A; the function define on I'} by
/\/1(01,"- ,01)
l—1 1 )
(Em(o1)) ) (5= a]\ ("J+1)> 1 <aj+1—aj _ >
(\(E,n(m))\ [| ‘Uji Sm gj+l)>| ‘G'j+1*0'j"n(0—])

3. GEOMETRICAL OPTICS APPROXIMATION

We only give the main results. The geometrical optic approximation is given,
for Dirichlet and Neumann problems, respectively by : Vo € Q\ T

Ug.G.(SC)

(3.1)

e~ ik (@ip)

eﬂk({,z) + Z (71)l

1
>1 p=(c7, of)eR(z) T1 det(ﬂ+|a]+1—a;|IP’
j=1
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Ug.ci(w)

) — ikt (z3p)
e~ tk(€,x) 4 E E : z e L
121 p=(0f, - 07 )eR(z) [I y/det(I+]|of, ,—a][P])
=1

Here 0141 = x, det (I+ | ol —af | Pjp) is positive, and in corollary, the Maslov
indice vanished. For more explanation, report to [eC89] or [Cuv13].
4. ITERATIVE KIRCHHOFF APPROXIMATION
4.1. Dirichlet problem. We introduce the following kernels series
py(0) = ik (|(€,n(a))] — (€,n(a))) e ™7 Vo € 90
and, for o € 0K
. / /

=it [ ) ||[F )| - el T
We set the iterative Kirchhoff approximation for Dirichlet problem (D) by

uf(z) = 0
{ wPl@) = uP (@) + & [y pl (0) o

That is to say with previous notations

(4.1)

ik ! etk (z;01,0,01)
4.9 D —uP w / D - doy---d
42) @) =)+ (F) [ Do o) e

We state the main result comparing the iterative method describe in (@) and
the geometrical optic approximation given in ([B.J]) for problem (D) :

Theorem 1. Let Q an open in R3, exterior of a regular domain Y finite and
disjointed reunion of strictly conver compacts. Let x € Q\T. IfCi(z) = 0 forl > n
then

1

(43) e=MED) 4 yD(z) — 0Py (2) = O (E)

locally uniformly in x.

4.2. Neumann problem. We introduce the following kernels series

N(g) — i (&n(o)) o~ ih(E0) o
P () ’“(|<§,n<o>>| 1) Vo €00

and, for o € 0K

(15=gm(0))

ik
o) = [ e |
T JoQ\oK; ‘<%,n(o‘)>‘
o—o , e*ik|a’fa|
- - - do
(romene) Tt

We set the iterative Kirchhoff approximation for Neumann problem (N) by

(4.4) U(])V(SC) =0 —ik|z—o]
W @) = uf @) + & [ pl (0) (S n(0)) S do
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That is to say with previous notations

u (z) = ui (x)
(4.5) l - ik ( )
ik _ —iky(z;01, 07
(1) f(asz)gNl(Ul"” ,Ul)<|i_;‘,n(0’l)> oo do1 -~ do
We state the main result comparing the iterative method describe in (£4) and
the geometrical optic approximation given in ([B3.2]) for problem (N) :

Theorem 2. Let  an open in R3, exterior of a reqular domain ' finite and
disjointed reunion of strictly conver compacts. Let x € Q\T. IfCi(z) =0 forl > n
then

(4.6) e*ﬂﬂw+uﬁu>uﬁﬂz>o<%>

locally uniformly in x.

5. TECHNICAL LEMMAS AND PROPERTIES
To prove previous theorems we need some technical lemmas and properties.
5.1. Stationary phase points of ¢;(x;e). We first remark that
Remark 2. Let v = (o¥,--- ,00) € (0Q), if
(§,n(af)) 20
or if exists j € {1,--- ,1 — 1} such that

oY . —g¥
Jj+1 J
< v ,n(a;+1)> >0

| 0741 — 0

then
,Dl(o-?a"' agll/):M(Jlllv"' 7Ulu):0

To find stationary phase points on (9Q)., we have to compute, for all z € R3,

the set of points v = (0¥, ,0¥) € (9Q)!, which satisfies
(51) vfwl(x;allla"' ’gl”):()
We have
E _ 070y
loa—o]
oy—oy  o3—03
oy -t Jot—oy]

Vvq/)l(x;o-llla' o ao—ly> =

ooty a—of
of —ot 4| |e—ot]
The condition (51)) is equivalent to the existence of (uy,---, ;) € R such that
pn(oy)
Voti(w;of,---07) = :
pun(ay’)

By hypothesis | £ |= 1, so we obtain

pr =0 or pu=2(n(of))n(oy)
and Vj e {2,--,1}

v v

My = 0 or My = 2 <_Uj _ai1|7n(o-;‘/>> TL(O’;’)

o? —o?
J j—1

Then, using remark 2, we have the
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Lemma 1. Let x € Q\ T and v = (of,--- ,07) € Ci(z). Then v realize a trans-
massion or a reflection condition on each points 07,J € {1,...,1}.

5.2. Relation between MJV and IP’;’. We have the fundamental Lemma

Lemma 2. Letx € Q\T andv = (of,--- ,07) € Ci(x). Then, Vj € {1,--- 1} we

have :
v v 1 v tev

(5.2) Mj = PJ’\THQ(U;) + Y (]I - (53 5J’)\Tan(ai)) )

J

2
Y n(o¥

(5.3) det M;’ = <<])\#)>> det (I + )\S{]P';{),

J
(5.4) sgn MY = 2,
and
(5.5) M inversible.

PROOF OF LEMMA [2] :
The proof of the lemma worked out by recurrence.

step one of recurrence proof

Using definition of P}, we easily obtain
P ooty = 2 (€0 0(0)) 8 (01 )B(0Y) o)
On the other hand, we have
My = H} . ti(zv)
- e o —ot)
= 2 <€llla n(alll)> 6V(U?)B(UT)|T39(GT) + v (]1 - (61’/ t§1V)|T39(a'f))
and so we have proved formula (5.2)) for j = 1.
To obtain formula (&3], we first remark that PY¢Y = 0. We set

1 0 &

7,1

Hj=]0 1 &,

0 0 &5

Then, combining | £/ |= 1 and formula (5.2)) gives
det(I+A/PY) = (g det ( "Hi (I+ \{PY) Hy)

2
= (=2l ) detMy
<<§'f,n<o'f>>) M
One finds easily that det(I+ AYP¥) > 0 and tr MY > 0. So, we get sgn My = 2.
We deduce that det My > 0 and so MY is regular.

Step j + 1 of recurrence proof

To prove formula ([5.2) at step j + 1, we first have to compute (PY,;)»,,, and

i1
MY, , respectively in function of (IP¥ )%r]{ and M. To simplify notations, we note
(P}')m‘:'; = [PT’S]T,SE{172,3} , and MY = [MT’S]T75€{1,2}'
e Computation of (PY, )%, ,
By definition,

(P;+1)§R;+1

(S)\jy (]P’;j)) o X (1 — 5”(0’3{4_1)) + TIB%(a;.’+1),n(a;+1),£; (Sx; (P;’)) X 5V(o';+1).

v
j+1 L
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We first evaluate SA; (PY)w, :

(Sxe (PY))m, det(I+ A/PY) = (P)m, + A/QY + (A)” Ldet PY
with QJV = [Qr,s]p7q€{17213} S MB,S(R> and

Qu = Pu(Ps3s+ Py)— P} — Pl
Q12 = P1aP33 — P13Pas,
Q13 = P3Py — P1oPa3,
Qa2 = Py (P33 + P11) — Ph — P3s,
Q23 = Py3Piy — PioPi3,
Q33 = DPs3(Paa+ Pi1)— Ph — P

As det P} = 0, we obtain :

1
Sy (PN = ————— (P + NYQY
(S BEDmy = oy vem) (s +X0)
and
(Sxy P))wy,, = ammesweny RS (s, +A7Q)) 'Ry,

Now, we have to compute Th(ov, )n(o¥, ,).ev (S,\ju, (IP’;’))

1 ER;#»I
| 7 0 1 0
In local coordinates, we have B(o%, ;) = | 0 - 0 (0 )Ry, =
0 0 0 |
R0
0 i1
0 | and (5;-’“)%1_,“ =| €412 |-So,ifwenote W = [(wpq)p qef1,2,31] =
1 ’ v
7+1,3

(Sxy By, and T = [(tpa)pacr.23)] = (Tocor, oo, e (Su (@)
then, Vr € R3

v

j+1

(Toornoone (S @), =

j+1
(&7 n(o11))
w1 — 2wy w13
Ury ( > I
fyvn(al‘/+1) To
w12 W — 247 wag
Jj+1 T3
w13 w23 w33
&7,uf T
w13 + < ]U,‘JJ+1>
(& V1)
—2x f’v’,vfﬂrl
3 Wo3 + JV+
Jj+1
w33 i
(&) uiia) . r
w + J UJ
13 ng]‘Jrl T 0
—2 Wa3 + VZ‘/,2 , | 22 0
Jt+1 T3 1
w33 )
w13 0
+4 wez |, | 0 z3 | 0
w33 1 1 i
0
v v 2 v v 2
-~ 2 (&5 uy1) (&5 Vi) 0
v p: UV %2 T3
<Ej 7n(gj+1)> j+1 j+1 1
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thus

t11 = w11 — 2_< U("+Jl+_1)>a

J
t12 = wia,

&

t13 = —wi3 — 27< UJ+71+1>;
too = wag — 2%3

J
ta3 = —wag — 2%,

ey ) (e vy,)’

tas = _ 2 < J 'J+1 J VJ+ )
33 W33 <£77n(‘77+1)> < UJ+1 * VJ+1

Using ( ]’f,n(og+1)> (1-26(c a¥i1)) <§;+1,n(03’+1)> , we obtain :

(TB(U;+1)7"(‘7;+1)15; (S)‘JV (]P);j)) )

|Toa(oyy)

((Sx @), ) —2(1 = 26°(0%,1)) (41, 1(0740)) BOY4) 1o,

|Toa(o}, )

Finally, we have

((P?Jrl)?ﬁjﬂ)

|TBQ (Ui/+1)

(5.6) ( Sye (B )
(Sx (P7)) ;14 Ton(o%,)
+25V(U?+1) <§}'j+1an(0-}/+1)> IB3(”?+1)|T69(
e Computation of M7,
By definition,

v S S v S
M]-i—l HU;+1,G;+lwl($’ V) - HO';,G’;-/+1wl($’ V) [M]} H 07 1,07 ’L/Jl(.’L', V)

We first evaluate Hf,_,ﬂ,au/)l (z;v) [MJ’{]*le,_,Jyﬂq/;l (z;v). By construction

of v;, we have :

HS,  _y(x;v) = HS, L | ofiq —of

Ti+1:9; i+ i |

o541)

That’s give in R;

1
HS]Jrl,o"’wl(‘rE V) FLU
where LY = [LPv‘Z]p vetia) with
Lu = (uf,&)(uf,,,¢&)—(uf, u §+1>,
Liz = (vj,&)(uf, &) — (V] uj),
Ly = (uf, &) (vii1, &) — (uf Vg+1>’
Ly = (v{.&)(vii1,&) — (Vi via).
We have by hypothesis MY = ]P’j’le (g,_,)Jr/\—l;( (& tf”))mm(au)
(MJV')W = [Mpv‘Z]p,qe{laQ}

J

[Pu Plz}_’_ill_(jy,lf —&5165 2

Pia Py )\JV‘ - ;1 jV,Q 1— (5572)2
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By recurrence hypothesis MY is regular, so we have :

H, | otn(as ) MY H e (i) = ——LYME) LY

a (A7)
Now, we evaluate Hfl_,ﬂ,a,_,ﬂwl(z; v) in R;41. We find
Ho o i(w;v)

i+1% 41

‘%/+1"7;+1 (| O—;’ o O—;/ | + | o-;'/+2 - O—;'/Jrl |)

%? (]I B 61{ tf’-j) |T'Q 7541) * )‘% (H B £;+1 tg}lJrl) |TBQ(G;+1)

j+1
—26"(o ]V-i-l) <”(0;+1)a§;>B(U}/+1)|Tm(g;f+l)-
Finally, we obtain
MY,
5.7 L(1— gvtey L (T—¢v,  tev
( ) Y (H fg §J)|TBQ(U;+1) + Py (]I §]+1 5]-11-1)|Taﬂ(g;f+lit
~26"(0j41) <n(0§-’+1),§§’>B(0j+1)|T69(G;+1) — WL;[M}’]* LY.

e Formula (5.2]) at step j+1 :
We compute now DY | = IP’J+1|TdQ 1) e (]I — (&1 t€j+1)|Tm(G;+1) ) -
MY, ;. Combining formulas (5.6]) et (EZZI) we obtain

Dj
1 vitev v v]—=1ty v
37 U8 11 or, ) + Gy ML

|Toa (%, 1)

(S @),
=0,|& |=1and 'RVRY =1.

We prove that D, ; = 0 using relations P7¢Y =

e Formula (5.3]) at step j+1:
We remark that P77, = 0. Then, we pose

10 &4,y
H;‘/H: 0 1 ;-’JFLQ
00 &y

and we obtain
1

det (I+ A7 PYpr) = @t )?

+1) det ( tH;/-i-l (]I + )\]+1 ]+1) H;‘/-‘rl) :
J

So
(€erom(of0)” det (T+ A7, PY )
1+ A7 (P 1t uyuly) )‘j+1 (PYqufy, vign) (€1 uih)
l/ 174 1% v v 1% 174
det AT <IP’ W, Vi L+ A éP)ijjH,ij &1 Vit
SEREL VN §ir1 Vi

As | &Y, |=1, we get, with formula (5.2]) at step j + 1:

1

2
v v )‘l'/+1 v
det (H 4+ >‘j+1Pj+1) = (m) det Mj+1
J ’ J
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e Formulas (5.4) and (5.5]) at step j + 1 :

In fact, we proved that

2
A
VA>0 det(T+ AP, )= | 5| detM”
T \(Ehn(ef) a

where p = (07, -+ ,07,1) € Cj+1(A}1). Moreover, we have :
Pl =Pl

for A=AV, )
Mj+1 =My,

and VA >0

det(I + )\]P’gﬂ) >0
because IP’? 41 18 a positive matrix. That’s give

YA >0, detM?,,

This quantity is positive for A in a neighborhood of zero, then by continuity
we have :

> 0.

VAS 0 M2, >0
with )
+ (&1, n(0)10))

1
trMf, | = Pii + Po2 + \

Thus, we obtain formula (5.4]) to step j + 1.
We have also showed that MY, ; is regular.

i1

That’s close the proof of Lemma 20
5.3. Lemma of transmission.
Lemma 3 (of transmission). Let x € Q\ T and v = (0¥, - ,0}) € Ci(z)

(1) if exists t € RY such that

o=o0] —t& €9Q and {n(o) <0
then
Hw= (O—ao—lyv"' 7Ull/) € Cl+1(z)
(2) if exists j € {1,--- 1l — 1} such that

o€ {]J;-’;U;Jrl[ﬂaQ} and (o —oj).n(o) <0

then
v 17 v v
n= (015"' ,O'j,O',O']-+1,"' 01 ) ECZ+1(Z')
Noting p = (of',--- ,Uﬁ_l), we obtain in both cases
I — ik (5v)
(71) < 1/2

L
]1;[1 det(I+|o¥, , —o¥ [P¥)

1)t

(5.8)

/2 =0

= Iz ph
jl;[l det(]l+|aj+1fo'j P )

Proor oF LEMMA [ :

In both case, using the strict convexity of compacts (Kj);e(1,...,n}, We obtain
€ Cryq(x).

Remark 3. In two cases, p realize a transmission condition in o, and thus

Yi(w;v) = iy (5 )
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Now, we prove the formula (B.§]), in both case. In fact, we only have to prove
that

1/2 1/2
/ +1 /

!
Hdet(ﬂ+|o}’+1fo;-’|19’]'f) = Hdet(ﬂ+|o§‘+1fo§‘|]?§f)
Jj=1 j=1

Here o7, = 0}, = .
In the first case, the proof is immediate.
Under the hypothesis of the second case, we have

and, p realize a transmission condition in o, hence

1% 1 1
PJ+1—S|U"7J\( Y) = P (]I+|0‘ —0’|]P))

Thus, we obtain
(I+ ] ofyy O’|]P)j+1)(]1+|0' 7O'|]P'LL)—H+|O'J+1 af | PY.
Taking determinant of previous formula, we get
det (I+ | 0, — o | ]P’;L_,’_l) det (I+ | 0} — o | ]P’;L) =det (I+ | 05,y — o} | P}).

Moreover, we have

Sjavy—ott | (Pi1) = Sjov,, —of (5|a;fa|(P?))

As p realize a transmission condition in o we obtain
v v v "
ol —o |+ |0 —o =0y — 0|
thus
Sov

2 J+1|( J+1) Sl‘TV - ;‘(P.’;)

Then, we have
Vie{j+1 .0 B =P,
That’s close proof of Lemma BlO

6. PROOF oF THEOREM [

To proof this theorem, we apply stationary phase technics to the formula (@1
and compare the result to the geometrical optic approximation.

6.1. Stationary phase lemma. Due to (5.3) (MY regular) we can apply the iter-
ative stationary phase lemma to uP (z) (see [Cuv94]) : Vo € Q\ T
up (x) — w2y (2)
o=

" . ) i%j; sgnMJV-

3 s € 7 €
(_) (_) Z 1/2Dl(y) [z—a|

veCi(z) H det MY
pa

Thus, using definition of D;(v) with v € C;(z), we obtain

—ikepy (wiv)

+ O(3).

a;-’|

- ’ Ia] “\’ n(0741) ’
( ) ( 57 Ul H < + >
Due to formula (.3 and E4 (lemma ), we have

1
Z sgn M} = 2!
j=1
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and
. 1/2 . . .
[[detmy| = HKJ""EUJ'M |det(T+ A/PY)| 2
j=1 j=1 J
(o)
11 E— |det(I+ |ofyy — o | PY)]
j=1 J J

= [{&nla?))l,

o¥, , —o¥ oV — oV
‘< {/Jrl {/ 7”(U;)>‘ = ‘<{j7z,17n(o-;/)> ) *25- 7lv
|01 = o5 |0y — o
we find that
up (z) = uf  (z)
-1 l etk (z5v) __
(6:2) -y v:(ff’l’w%i’)GCl(I) (ll:[1 det(I+|o 70"\?’”)) det(I+|e—oy [BY) /
= 541795 155 7P
+
O(z)

6.2. Comparison with geometrical optic approximation. To compare the
previous formula with geometrical optic approximation given by formula [B.1I), we
have to study the contributions of the sets C;(x) and R;(x). We clearly have
Ri(z) C Ci(z). Using lemma Bl we obtain

Remark 4. The contributions of points in C(x) \ R(z) cancel each other.

Let z € Q\ 7. Suppose that C;(x) = 0 for [ > n, we conclude the proof of
Theorem [M using the following remark

Remark 5. The only components of C(x) having a real contribution are :

o allv = (oy) € Ci(x) coming through x such that v realize a transmission
condition in of and

Vt>0 of —t£ef

e allv=(of, -~ ,0%) € Rj(z) coming through x (j <n).

That’s close proof of Theorem [[1O

7. PROOF OF THEOREM

To proof this theorem, we apply stationary phase technics to the formula (4]
and compare the result to the geometrical optic approximation ([B.2]).
Due to (B.H) (MY regular) we can apply the iterative stationary phase lemma to

ui¥ (z)(see [Cuv94]),we obtain Vo € Q\ T

uf (@) = up? ()

!
iT > sgnMY
N l R =1 J _oV —ikepy (z3v)
) ) 3 i) (o) 2 s ot
veC(x) IT detbr i !
j=1

j=
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Thus, we use ([B.3)), (5.4) and the definition of N to get :

w (x) —upY ()

3 e~k (wiv)
_ 1/2
(7.2) v=(cf, 07 )EC(x) <1H1det(ﬂ+|0;?+l—a;\?§’)> det (I+|z—o} |PY)
j=1
+
O(%)

15

To compare the previous formula with geometrical optic approximation given by

formula ([3.2]), we use previous results from the proof of theorem [Il

8. CONCLUSION

We have proved the validity of the iterative Kirchhoff formulas (£1I)) and (£4)
at high frequency. Numerical results for Dirichlet problem (D)) can be founded in

[Cuv9d].
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