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Nonhomogeneous boundary conditions for the

spectral fractional Laplacian

nicola abatangelo, louis dupaigne

Abstract

We present a construction of harmonic functions on bounded domains for the spectral fractional

Laplacian operator and we classify them in terms of their divergent profile at boundary. This is

used to establish and solve boundary value problems associated with nonhomogeneous boundary

conditions. We provide a weak-L1 theory to show how problems with measure data at the boundary

and inside the domain are well-posed. We study linear and semilinear problems, performing a sub-

and supersolution method. We finally show the existence of large solutions for some power-like

nonlinearities.

1 Introduction

Given a bounded domain Ω of the Euclidean space R
N , the spectral fractional Laplacian operator

(−△|Ω)
s
, s ∈ (0, 1), is classically defined as a fractional power of the Laplacian with homogeneous

Dirichlet boundary conditions, seen as a self-adjoint operator in the Lebesgue space L2(Ω), see (2) be-
low. This provides a nonlocal operator of elliptic type with homogeneous boundary conditions. Recent
bibliography on this operator can be found e.g. in Bonforte, Sire and Vázquez [5], Grubb [17], Caffarelli
and Stinga [7], Servadei and Valdinoci [22].

One aspect of the theory is however left unanswered: the formulation of natural nonhomogeneous
boundary conditions. A first attempt can be found in the work of Dhifli, Mâagli and Zribi [12]. The
investigations that have resulted in the present paper turn out, we hope, to shed some further light on
this question. We provide a weak formulation, which is well-posed in the sense of Hadamard, for linear
problems of the form 




(−△|Ω)
su = µ in Ω,
u

h1
= ζ on ∂Ω

(1)

where h1 is a reference function, see (8) below, with prescribed singular behaviour at the boundary.
Namely, h1 is bounded above and below by constant multiples of δ−(2−2s), where

δ(x) := dist(x, ∂Ω)

is the distance to the boundary and the left-hand side of the boundary condition must be understood as a
limit as δ converges to zero. In other words, unlike the classical Dirichlet problem for the Laplace operator,
nonhomogeneous boundary conditions must be singular. In addition, if the data µ, ζ are smooth, the
solution blows up at the fixed rate δ−(2−2s). This is very similar indeed to the theory of nonhomogeneous
boundary conditions for the classical (sometimes called "restricted") fractional Laplacian - although in
that case the blow-up rate is of order δ−(1−s) - as analysed from different perspectives by Grubb [16] and
the first author [1] of the present note. In fact, for the special case of positive s-harmonic functions, that
is when µ = 0, the singular boundary condition was already identified in previous works emphasizing the
probabilistic and potential theoretic aspects of the problem: see e.g. Bogdan, Byczkowski, Kulczycki,
Ryznar, Song and Vondraček [4] for an explicit example in the framework of the classical fractional
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Laplacian, as well as Song and Vondraček [25], Glover, Pop-Stojanovic, Rao, Šikić, Song and Vondraček
[14] and Song [24] for the spectral fractional Laplacian. Let us also mention the work of Guan [18], who
considered similar issues in the context of the regional fractional Laplacian and generalizations thereof.

Turning to nonlinear problems, even more singular boundary conditions arise: in the above system, if
µ = −up for suitable values of p, one may choose ζ = +∞, in the sense that the solution u will blow up
at a higher rate with respect to δ−(2−2s) and controlled by the (scale-invariant) one δ−2s/(p−1). Note that
the value ζ = +∞ is not admissible for linear problems. This was already observed by the first author
in the context of the fractional Laplacian, see [2], improving earlier work by Felmer and Quaas [13] and
this is what we prove here for the spectral fractional Laplacian. Interestingly, the range of admissible
exponents p is different according to which operator one works with.

Main results

For clarity, we list here the definitions and statements that we use, with reference to the sections of the
paper where the proofs can be found. First recall the definition of the spectral fractional Laplacian:

Definition 1. Let Ω ⊂ RN a bounded domain and let {ϕj}j∈N
be a Hilbert basis of L2(Ω) consisting

of eigenfunctions of the Dirichlet Laplacian −△|Ω, associated to the eigenvalues λj, j ∈ N, i.e.1 ϕj ∈
H1

0 (Ω) ∩ C
∞(Ω) and −△ϕj = λjϕj in Ω. Given s ∈ (0, 1), consider the Hilbert space2

H(2s) :=



v =

∞∑

j=1

v̂jϕj ∈ L2(Ω) : ‖v‖2H(2s) =

∞∑

j=0

λ2sj |v̂j |
2 <∞



 .

The spectral fractional Laplacian of u ∈ H(2s) is the function belonging to L2(Ω) given by the formula

(−△|Ω)
s
u =

∞∑

j=1

λsj ûj ϕj . (2)

Note that C∞
c (Ω) ⊂ H(2s) →֒ L2(Ω). So, the operator (−△|Ω)

s is unbounded, densely defined and
with bounded inverse (−△|Ω)

−s in L2(Ω). Alternatively, for almost every x ∈ Ω,

(−△|Ω)
su(x) = PV

∫

Ω

[u(x)− u(y)]J(x, y) dy + κ(x)u(x), (3)

where, letting pΩ(t, x, y) denote the heat kernel of −△|Ω,

J(x, y) =
s

Γ(1 − s)

∫ ∞

0

pΩ(t, x, y)

t1+s
dt and κ(x) =

s

Γ(1− s)

∫

Ω

(
1−

∫

Ω

pΩ(t, x, y) dy

)
dt

t1+s
(4)

are respectively the jumping kernel and the killing measure,3 see Song, Vondraček [25, formulas (3.3)
and (3.4)]. For the reader’s convenience, we provide a proof of (3) in the Appendix. We assume from
now on that

Ω is of class C1,1.

In particular, sharp bounds are known for the heat kernel pΩ, see (27) below, and provide in turn sharp
estimates for J(x, y), see (33) below, so that the right-hand side of (3) remains well-defined for every
x ∈ Ω under the assumption that u ∈ C2s+ε

loc (Ω)∩L1(Ω, δ(x)dx) for some ε > 0. This allows us to define
the spectral fractional Laplacian of functions which do not vanish on the boundary of Ω. As a simple
example, observe that the function u = 1 does not belong to H(2s) if s ≥ 1/4, yet it solves (1) for µ = κ
and ζ = 0.

1See Brezis [6, Theorem 9.31].
2When Ω is smooth, H(2s) coincides with the Sobolev space H2s(Ω) if 0 < s < 1/4, Hs

00
(Ω) if s ∈ {1/4, 3/4}, H2s

0
(Ω)

otherwise; see Lions and Magenes [19, Theorems 11.6 and 11.7 pp. 70–72].
3in the language of potential theory of killed stochastic processes. Note that the integral in (3) must be understood in

the sense of principal values. To see this, look at (33).
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Definition 2. The Green function and the Poisson kernel of the spectral fractional Laplacian are defined
respectively by

GsΩ(x, y) =
1

Γ(s)

∫ ∞

0

pΩ(t, x, y) t
s−1 dt, x, y ∈ Ω, x 6= y, s ∈ (0, 1], (5)

and by

P sΩ(x, y) := −
∂

∂νy
GsΩ(x, y), x ∈ Ω, y ∈ ∂Ω. (6)

where ν is the outward unit normal to ∂Ω.

In Section 2, we shall prove that P sΩ is well-defined (see Lemma 14) and review some useful identities
involving the Green function GsΩ and the Poisson kernel P sΩ. Now, let us define weak solutions of (1).

Definition 3. Consider the test function space

T (Ω) := (−△|Ω)
−s
C∞
c (Ω) (7)

and the weight

h1(x) =

∫

∂Ω

P sΩ(x, y) dσ(y), x ∈ Ω. (8)

Given two Radon measures µ ∈ M(Ω) and ζ ∈ M(∂Ω) with

∫

Ω

δ(x) d|µ|(x) < ∞, |ζ|(∂Ω) < ∞, (9)

a function u ∈ L1
loc(Ω) is a weak solution to





(−△|Ω)
s
u = µ in Ω
u

h1
= ζ on ∂Ω

(10)

if, for any ψ ∈ T (Ω), ∫

Ω

u (−△|Ω)
s
ψ =

∫

Ω

ψ dµ−

∫

∂Ω

∂ψ

∂ν
dζ. (11)

Remark 4. We emphasize that the boundary condition is encoded both in formula (11) and in the
choice of test functions T (Ω). We shall prove on the one hand that4 T (Ω) ⊆ C1

0 (Ω), see Lemma 28, so
that all integrals above are well-defined indeed and on the other hand that all weak solutions enjoy the
extra integrability condition u ∈ L1(Ω, δ(x)dx), see Lemma 5 below. In particular, equation (11) is a
weak formulation of (10), as we state now.

Lemma 5. 1. (weak solutions are distributional solutions) Assume that u ∈ L1
loc(Ω) is a weak solution

of (10). Then in fact, u ∈ L1(Ω, δ(x)dx) and (−△|Ω)
s
u = µ in the sense of distributions i.e. for

any ψ ∈ C∞
c (Ω), δ−1(−△|Ω)

sψ is bounded and

∫

Ω

u(−△|Ω)
s
ψ =

∫

Ω

ψ dµ,

moreover the boundary condition holds in the sense that for every φ ∈ C(Ω)

lim
t↓0

1

t

∫

{δ(x)<t}

u(x)

h1(x)
φ(x) dx =

∫

∂Ω

φ(x) dζ(x)

whenever µ ∈ M(Ω) satisfies (9) and ζ ∈ L1(∂Ω).

4but it is not true that C∞

c
(Ω) ⊆ T (Ω).
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2. (for smooth data, weak solutions are classical) Assume that u ∈ L1
loc(Ω) is a weak solution of (10),

where µ ∈ Cα(Ω) for some α such that α+2s 6∈ N and ζ ∈ C(∂Ω). Then, (−△|Ω)
s
u is well-defined

by (3) for every x ∈ Ω, (−△|Ω)
su(x) = µ(x) for all x ∈ Ω and for all x0 ∈ ∂Ω,

lim
x → x0

x∈Ω

u(x)

h1(x)
= ζ(x0).

3. (classical solutions are weak solutions) Assume that u ∈ C2s+ε
loc (Ω) is such that u/h1 ∈ C(Ω). Let

µ = (−△|Ω)
su be given by (3) and ζ = u/h1|∂Ω. Then, u is a weak solution of (10).

We present some facts about harmonic functions in Section 3 with an eye kept on their singular
boundary trace in Section 4. We prove the well-posedness of (10) in Section 5, namely

Theorem 6. Given two Radon measures µ ∈ M(Ω) and ζ ∈ M(∂Ω) such that (9) holds, there exists a
unique function u ∈ L1

loc(Ω) which is a weak solution to (10). Moreover, for a.e. x ∈ Ω,

u(x) =

∫

Ω

GsΩ(x, y) dµ(y) +

∫

∂Ω

P sΩ(x, y) dζ(y) (12)

and
‖u‖L1(Ω,δ(x)dx) ≤ C(Ω, N, s)

(
‖δµ‖M(Ω) + ‖ζ‖M(∂Ω)

)
. (13)

In addition, the following estimates hold:

‖u‖Lp(Ω,δ(x)dx) ≤ C1‖δµ‖M(Ω) if ζ = 0 and p ∈

[
1,

N + 1

N + 1− 2s

)
(14)

‖u‖Cα(ω) ≤ C2

(
‖µ‖L∞(ω) + ‖ζ‖M(∂Ω)

)
if ω ⊂⊂ Ω and α ∈ (0, 2s) (15)

‖u‖C2s+α(ω) ≤ C3

(
‖µ‖Cα(ω) + ‖ζ‖M(∂Ω)

)
if ω ⊂⊂ Ω and 2s+ α 6∈ N. (16)

In the above C1 = C1(Ω, N, s, p), C2 = C2(Ω, ω,N, s, α), C3 = C3(Ω, ω,N, s, α).

Remark 7. Note that the spectral fractional Laplacian shares the same interior regularity (15), (16)
with the fractional Laplacian (see Silvestre [23]) and the regional fractional Laplacian (see Mou and Yi
[21]), since this is due to the singularity rate of the kernel defining the operators, which is the same for
the three of them. In the context of the regional fractional Laplacian, a representation formula similar
to (12) can be derived from Guan [18, Theorem 1.3]. Note that the asymptotic behaviour of solutions
near the boundary is yet again different in that context.

In Section 6 we solve nonlinear Dirichlet problems, by proving

Theorem 8. Let g(x, t) : Ω×R+ −→ R+ be a Carathéodory function and h : R+ → R+ a nondecreasing
function such that g(x, 0) = 0 and for a.e. x ∈ Ω and all t > 0,

0 ≤ g(x, t) ≤ h(t) where h(δ−(2−2s))δ ∈ L1(Ω)

Then, problem 



(−△|Ω)
s
u = −g(x, u) in Ω
u

h1
= ζ on ∂Ω

(17)

has a solution u ∈ L1(Ω, δ(x)dx) for any ζ ∈ C(∂Ω), ζ ≥ 0. In addition, if t 7→ g(x, t) is nondecreasing
then the solution is unique.

The above theorem and the linear theory that we developped are insufficient to encompass the large
solutions that can appear and which have a higher rate of explosion. Precisely, with Section 7 we prove

Theorem 9. Let

p ∈

(
1 + s,

1

1− s

)
.
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Then, there exists a function u ∈ L1(Ω, δ(x)dx) ∩ C∞(Ω) solving





(−△|Ω)
s
u = −up in Ω,
u

h1
= +∞ on ∂Ω

(18)

in the following sense: the first equality holds pointwise and in the sense of distributions, the boundary
condition is understood as a pointwise limit. In addition, there exists a constant C = C(Ω, N, s, p) such
that

0 ≤ u ≤ Cδ−
2s

p−1 .

Remark 10. If one replaces the spectral fractional Laplacian by the classical fractional Laplacian (−△)s,
then an analogous of Theorem 9 holds for

p ∈

(
1 + 2s,

1 + s

1− s

)
,

see [2], as well as the pioneering works of Felmer and Quaas and Chen, Felmer and Quaas [9, 13]. We
suspect that both exponent ranges are optimal.

2 Green function and Poisson kernel

In the following three lemmas5, we establish some useful identities for the Green function defined by (5).

Lemma 11. ([15, formula (17)]) Let f ∈ L2(Ω). For almost every x ∈ Ω, GsΩ(x, ·)f ∈ L1(Ω) and

(−△|Ω)
−s
f(x) =

∫

Ω

GsΩ(x, y)f(y) dy for a.e. x ∈ Ω.

Proof. If ϕj is an eigenfunction of −△|Ω, then

∫

Ω

GsΩ(x, y)ϕj(y) dy =

∫ ∞

0

ts−1

Γ(s)

∫

Ω

pΩ(t, x, y)ϕj(y) dy dt

=

∫ ∞

0

ts−1

Γ(s)
e−λjtϕj(x) dt =

λ−sj
Γ(s)

ϕj(x)

∫ ∞

0

ts−1e−t dt = λ−sj ϕj(x) = (−△|Ω)
−s
ϕj(x)

By linearity, if f ∈ L2(Ω) is a linear combination of eigenvectors f =
∑M

j=1 f̂jϕj , then

∫

Ω

GsΩ(x, y)

M∑

j=1

f̂jϕj(y) dy =

M∑

j=1

f̂jλ
−s
j ϕj(x).

and so, letting

G
s
Ωf :=

∫

Ω

GsΩ(·, y) f(y) dy, (19)

we have

‖GsΩf‖
2
H(2s) =

M∑

j=1

λ2sj · |f̂j |
2λ−2s
j = ‖f‖2L2(Ω). (20)

Thus the map GsΩ : f 7−→ GsΩf uniquely extends to a linear isometry from L2(Ω) to H(2s), which
coincides with (−△|Ω)

−s. It remains to prove that the identity (19) remains valid a.e. for f ∈ L2(Ω).
By standard parabolic theory, the function (t, x) 7→

∫
Ω
pΩ(t, x, y)dy is bounded (by 1) and smooth in

[0, T ] × ω for every T > 0, ω ⊂⊂ Ω. Hence, for every x ∈ Ω, GsΩ(x, ·) ∈ L1(Ω). Assume first that
f = ψ ∈ C∞

c (Ω) and take a sequence {ψk}k∈N
in the linear span of the eigenvectors {ϕj}j∈N

such that
{ψk}k∈N

converges to ψ in L2(Ω). The convergence is in fact uniform and so (19) holds for f = ψ. Indeed,

5which hold even if the domain Ω is not C1,1.
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by standard elliptic regularity, there exist constants C = C(N,Ω), k = k(N) such that any eigenfunction
satisfies

‖▽ϕj‖L∞(Ω) ≤ (Cλj)
k‖ϕj‖L2(Ω) = (Cλj)

k.

In particular, taking C larger if needed,
∥∥∥ϕj
δ

∥∥∥
L∞(Ω)

≤ (Cλj)
k. (21)

Now write ψ =
∑∞

j=1 ψ̂jϕj and fix m ∈ N. Integrating by parts m times yields

ψ̂j =

∫

Ω

ψϕj = −
1

λj

∫

Ω

ψ△ϕj = −
1

λj

∫

Ω

△ψ ϕj = . . . =
(−1)m

λmj

∫

Ω

△mψ ϕj

which implies that

|ψ̂j | ≤
‖△mψ‖L2(Ω)

λmj
, (22)

i.e. the spectral coefficients of ψ converge to 0 faster than any polynomial. This and (21) imply that
{ψk}k∈N

converges to ψ uniformly, as claimed.
Take at last f ∈ L2 and a sequence {fk}k∈N

in C∞
c (Ω) of nonnegative functions such that {fk}k∈N

converges to |f | a.e. and in L2(Ω). By (20), ‖GsΩfk‖L2 ≤ ‖fk‖L2 and by Fatou’s lemma, we deduce that
GsΩ(x, ·)f ∈ L1(Ω) for a.e. x ∈ Ω and the desired identity follows.

Lemma 12. ([15, formula (8)]) For a.e. x, y ∈ Ω,
∫

Ω

G1−s
Ω (x, ξ)GsΩ(ξ, y) dξ = G1

Ω(x, y) (23)

Proof. Clearly, given an eigenfunction ϕj ,

(−△|Ω)
−s

(−△|Ω)
s−1

ϕj = λ−sj λs−1
j ϕj = (−△|Ω)

−1
ϕj

so (−△|Ω)
−s ◦ (−△|Ω)

s−1
= (−△|Ω)

−1 in L2(Ω). By the previous lemma and Fubini’s theorem, we
deduce that for ϕ ∈ L2(Ω) and a.e. x ∈ Ω,

∫

Ω2

G1−s
Ω (x, ξ)GsΩ(ξ, y)ϕ(y) dξ dy =

∫

Ω

G1
Ω(x, y)ϕ(y) dy

and so (23) holds almost everywhere.

Lemma 13. For any ψ ∈ C∞
c (Ω),

(−△|Ω)
s
ψ = (−△) ◦ (−△|Ω)

s−1
ψ = (−△|Ω)

s−1 ◦ (−△)ψ (24)

Proof. The identity clearly holds if ψ is an eigenfunction. If ψ ∈ C∞
c (Ω), its spectral coefficients have

fast decay and the result follows by writing the spectral decomposition of ψ. Indeed, thanks to (22) and
(21), we may easily work by density to establish (24).

Let us turn to the definition and properties of the Poisson kernel. Recall that, for x ∈ Ω, y ∈ ∂Ω, the
Poisson kernel of the Dirichlet Laplacian is given by

P 1
Ω(x, y) = −

∂

∂νy
G1

Ω(x, y).

Lemma 14. The function

P sΩ(x, y) := −
∂

∂νy
GsΩ(x, y)

is well-defined for x ∈ Ω, y ∈ ∂Ω and P sΩ(x, ·) ∈ C(∂Ω) for any x ∈ Ω. Furthermore, there exists a
constant C > 0 depending on N, s,Ω only such that

1

C

δ(x)

|x− y|N+2−2s
≤ P sΩ(x, y) ≤ C

δ(x)

|x− y|N+2−2s
. (25)

and ∫

Ω

G1−s
Ω (x, ξ)P sΩ(ξ, y) dξ = P 1

Ω(x, y). (26)

6



Remark 15. When Ω is merely Lipschitz, one must work with the Martin kernel in place of the Poisson
kernel, see [14].

Proof. of Lemma 14. Take x, z ∈ Ω, y ∈ ∂Ω. Then,

GsΩ(x, z)

δ(z)
=

1

Γ(s) δ(z)

∫ ∞

0

pΩ(t, x, z)t
s−1 dt =

|z − x|2s

Γ(s) δ(z)

∫ ∞

0

pΩ(|z − x|2τ, x, z)τs−1 dτ.

Since Ω has C1,1 boundary, given x ∈ Ω, pΩ(·, x, ·) ∈ C1((0,+∞) × Ω) and the following heat kernel
bound holds (cf. Davies, Simon and Zhang [10, 11, 28]):

[
δ(x)δ(y)

t
∧ 1

]
1

c1tN/2
e−|x−y|2/(c2t) ≤ pΩ(t, x, y) ≤

[
δ(x)δ(y)

t
∧ 1

]
c1
tN/2

e−c2|x−y|
2/t, (27)

where c1, c2 are constants depending on Ω, N only. So,

|z − x|2s

δ(z)
pΩ(|z − x|2τ, x, z)τs−1 ≤ C|z − x|2s−N−2δ(x)τs−2−N/2e−c2/τ (28)

and the reverse inequality

1

C
|z − x|2s−N−2δ(x)τs−2−N/2e−1/(c2τ) ≤

|z − x|2s

δ(z)
pΩ(|z − x|2τ, x, z)τs−1

also holds for τ ≥ δ(x)δ(z)|z − x|−2. As z → y ∈ ∂Ω, the right-hand-side of (28) obviously converges in
L1(0,+∞, dτ) so we may apply the generalized dominated convergence theorem to deduce that P sΩ(x, y)
is well-defined, satisfies (25) and

P sΩ(x, y) = −
∂

∂νy
GsΩ(x, y) = lim

z→y

GsΩ(x, z)

δ(z)
= −

1

Γ(s)

∫ ∞

0

∂

∂νy
pΩ(t, x, y) t

s−1 dt.

From this last formula we deduce also that, for any fixed x ∈ Ω, the function P sΩ(x, ·) ∈ C(∂Ω): indeed,
having chosen a sequence {yk}k∈N

⊂ ∂Ω converging to some y ∈ ∂Ω, we have

|P sΩ(x, yk)− P sΩ(x, y)| ≤
1

Γ(s)

∫ ∞

0

∣∣∣∣
∂

∂νy
pΩ(t, x, yk)−

∂

∂νy
pΩ(t, x, y)

∣∣∣∣ t
s−1 dt

where, by (27)
∣∣∣∣
∂

∂νy
pΩ(t, x, y)

∣∣∣∣ ≤
c1 δ(x)

tN/2+1
e−c2|x−y|

2/t ≤
c1 δ(x)

tN/2+1
e−c2δ(x)

2/t for any y ∈ ∂Ω,

so that |P sΩ(x, yk)− P sΩ(x, y)| → 0 as k ↑ ∞ by dominated convergence.
By similar arguments, GsΩ is a continuous function on Ω

2
\ {(x, y) : x = y}. And so, by (23), we have

−
∂

∂νy

∫

Ω

G1−s
Ω (x, ξ)GsΩ(ξ, y) dξ = P 1

Ω(x, y).

Let us compute the derivative of the left-hand side alternatively. We have
∫

Ω

G1−s
Ω (x, ξ)

GsΩ(ξ, z)

δ(z)
dξ =

∫

R+×Ω

f(t, ξ, z) dtdξ,

where, having fixed x ∈ Ω,

f(t, ξ, z) =
G1−s

Ω (x, ξ)

Γ(s) δ(z)
pΩ(t, ξ, z)t

s−1 ≤ C|x− ξ|2s−N
[
δ(x)δ(ξ)

|x− ξ|2
∧ 1

]
ts−2−N/2δ(ξ)e−c2|z−ξ|

2/t

For fixed ε > 0, and ξ ∈ Ω \B(y, ε), z ∈ B(y, ε/2), we deduce that

f(t, ξ, z) ≤ C|x − ξ|2s−N ts−2−N/2e−cε/t ∈ L1((0,+∞)× Ω).
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Similarly, if t > ε,
f(t, ξ, z) ≤ C|x − ξ|2s−N ts−2−N/2 ∈ L1((ε,+∞)× Ω).

Now, ∫ ε

0

ts−1−N−2e−c2
|ξ−z|2

t dt ≤ |ξ − z|2s−N
∫ +∞

0

τs−1−N/2e−c2/τdτ.

Hence, there exists a constant C > 0 independent of ε such that
∫

(0,ε)×B(y,ε)

f(t, ξ, z)dt dξ ≤ Cε2+2s.

It follows from the above estimates and dominated convergence that

P 1
Ω(x, y) = lim

z→y

∫

(0,+∞)×Ω

f(t, ξ, z) dtdξ =

∫

Ω

G1−s
Ω (x, ξ)P sΩ(ξ, y)dξ (29)

i.e. (26) holds.

Remark 16. Thanks to the heat kernel bound (27), the following estimate also holds:

1

C

1

|x− y|N−2s

(
1 ∧

δ(x) δ(y)

|x− y|2

)
≤ GsΩ(x, y) ≤

C

|x− y|N−2s

(
1 ∧

δ(x) δ(y)

|x− y|2

)
(30)

for some constant C = C(Ω, N, s). Also observe for computational convenience that

1

2

(
1 ∧

δ(x) δ(y)

|x− y|2

)
≤

δ(x) δ(y)

δ(x) δ(y) + |x− y|2
≤

(
1 ∧

δ(x) δ(y)

|x− y|2

)
.

3 Harmonic functions and interior regularity

Definition 17. A function h ∈ L1(Ω, δ(x)dx) is s-harmonic in Ω if for any ψ ∈ C∞
c (Ω) there holds

∫

Ω

h (−△|Ω)
s
ψ = 0.

The above definition makes sense thanks to the following lemma.

Lemma 18. For any ψ ∈ C∞
c (Ω), (−△|Ω)

s
ψ ∈ C1

0 (Ω) and there exists a constant C = C(s,N,Ω, ψ) > 0
such that

|(−△|Ω)
s
ψ| ≤ Cδ in Ω. (31)

In addition, if ψ ≥ 0, ψ 6≡ 0, then

(−△|Ω)
s
ψ ≤ −Cδ in Ω \ suppψ. (32)

Proof. Thanks to (21) and (22), (−△|Ω)
s
ψ ∈ C1

0 (Ω) and

∣∣∣∣
(−△|Ω)

s
ψ

δ

∣∣∣∣ ≤
∞∑

j=1

λsj |ψ̂j |
∥∥∥ϕj
δ

∥∥∥
L∞(Ω)

<∞

and (31) follows. Let us turn to the case where ψ ≥ 0, ψ 6≡ 0. By the heat kernel bound (27), there
exists C = C(Ω, N, s) > 0 such that

1

C|x − y|N+2s

[
δ(x)δ(y)

|x− y|2
∧ 1

]
≤ J(x, y) ≤

C

|x− y|N+2s

[
δ(x)δ(y)

|x− y|2
∧ 1

]
. (33)
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Now, we apply formula (3) and assume that x ∈ Ω \ suppψ. Denote by x∗ a point of maximum of ψ and
let 2r = dist(x∗, suppψ). Then for y ∈ Br(x

∗), it holds ψ(y), δ(y) ≥ c1 > 0, |x− y| ≤ c2 and so

(−△|Ω)
s
ψ(x) = −

∫

Ω

ψ(y)J(x, y) dy

≤ −C

∫

Br(x∗)

ψ(y)

|x− y|N+2s

[
δ(x)δ(y)

|x − y|2
∧ 1

]
dy

≤ −C δ(x).

Lemma 19. The function P sΩ(·, z) ∈ L1(Ω, δ(x)dx) is s-harmonic in Ω for any fixed z ∈ ∂Ω.

Proof. Thanks to (25), P sΩ(·, z) ∈ L1(Ω, δ(x)dx). Pick ψ ∈ C∞
c (Ω) and exploit (24):

∫

Ω

P sΩ(·, z) (−△|Ω)
s
ψ =

∫

Ω

P sΩ(·, z) (−△|Ω)
s−1

[−△ψ].

Applying Lemma 11, the Fubini’s Theorem and (26), the above quantity is equal to
∫

Ω

P 1
Ω(·, z) (−△)ψ = 0.

Lemma 20. For any finite Radon measure ζ ∈ M(∂Ω), let

h(x) =

∫

∂Ω

P sΩ(x, z) dζ(z), x ∈ Ω. (34)

Then, h is s-harmonic in Ω. In addition, there exists a constant C = C(N, s,Ω) > 0 such that

‖h‖L1(Ω,δ(x)dx) ≤ C‖ζ‖M(∂Ω). (35)

Conversely, for any s-harmonic function h ∈ L1(Ω, δ(x)dx), h ≥ 0, there exists a finite Radon measure
ζ ∈ M(∂Ω), ζ ≥ 0, such that (34) holds.

Proof. Since P (x, ·) is continuous, h is well-defined. By (25),

δ(x)|h(x)| ≤ C

∫

∂Ω

d|ζ|(z)

|x− z|N−2s

so that h ∈ L1(Ω, δ(x)dx) and (35) holds. Pick now ψ ∈ C∞
c (Ω):

∫

Ω

h(x) (−△|Ω)
s
ψ(x) dx =

∫

∂Ω

(∫

Ω

P sΩ(x, z) (−△|Ω)
s
ψ(x) dx

)
dζ(z) = 0

in view of Lemma 19. Conversely, let h denote a nonnegative s-harmonic function. By Definition 17 and
by equation (24), we have for any ψ ∈ C∞

c (Ω)

0 =

∫

Ω

h(x)(−△|Ω)
s
ψ(x) dx =

∫

Ω

h(x) (−△|Ω)
s−1 ◦ (−△)ψ(x) dx =

=

∫

Ω

(∫

Ω

G1−s
Ω (x, ξ)h(ξ) dξ

)
(−△ψ(x) dx,

so that
∫
Ω
G1−s

Ω (x, ξ)h(ξ)dξ is a (standard) nonnegative harmonic function. In particular (cf. e.g. [3,
Corollary 6.15]), there exists a finite Radon measure ζ ∈ M(∂Ω) such that

∫
Ω
G1−s

Ω (x, ξ)h(ξ)dξ =∫
∂Ω P

1
Ω(x, y)dζ(y). We now exploit equation (26) to deduce that

∫

Ω

G1−s
Ω (x, ξ)

[
h(ξ)−

∫

∂Ω

P sΩ(ξ, y)dζ(y)

]
dξ = 0.
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Since ∫

Ω

ϕ1(x)

(∫

Ω

G1−s
Ω (x, ξ)h(ξ) dξ

)
dx =

∫

Ω

h (−△|Ω)
s−1

ϕ1 =
1

λ1−s1

∫

Ω

hϕ1 <∞,

it holds
∫
ΩG

1−s
Ω (x, ξ)h(ξ)dξ ∈ C∞(Ω) ∩L1(Ω, δ(x)dx). Thanks to (30), we are allowed to let GsΩ act on

it. By (23), this leads to
∫

Ω

G1
Ω(x, ξ)

[
h(ξ)−

∫

∂Ω

P sΩ(ξ, y) dζ(y)

]
dξ = 0.

Take at last ψ ∈ C∞
c (Ω) and ϕ = (−△|Ω)

−1ψ. Then,

0 =

∫

Ω

ϕ(x)

[∫

Ω

G1
Ω(x, ξ)

[
h(ξ)−

∫

∂Ω

P sΩ(ξ, y)dζ(y)

]
dξ

]
dx =

∫

Ω

ψ(ξ)

[
h(ξ)−

∫

∂Ω

P sΩ(ξ, y) dζ(y)

]
dξ

and so (34) holds a.e. and in fact everywhere thanks to Lemma 21 below.

We turn now to the proof of some interior regularity estimates which will be later used to establish
Lemma 5 on the relationship between classical and weak solutions. Similar and related results are
contained in Mou and Yi [21], but for a different operator - the regional fractional Laplacian. As in
[21, Theorems B, C and D], the idea here is to reduce the analysis to the fractional Laplacian case, as
treated by Silvestre [23].

Lemma 21. Take α > 0 such that 2s+ α 6∈ N and f ∈ Cαloc(Ω). If u ∈ L1(Ω, δ(x)dx) solves

(−△|Ω)
su = f in D′(Ω),

then u ∈ C2s+α
loc (Ω), the above equation holds pointwise, and given any compact sets K ⊂⊂ K ′ ⊂⊂ Ω,

there exists a constant C = C(s,N, α,K,K ′,Ω) such that

‖u‖C2s+α(K) ≤ C
(
‖f‖Cα(K′) + ‖u‖L1(Ω,δ(x)dx)

)
.

Similarly, if f ∈ L∞
loc(Ω) and α ∈ (0, 2s),

‖u‖Cα(K) ≤ C
(
‖f‖L∞(K′) + ‖u‖L1(Ω,δ(x)dx)

)
.

In particular, if h is s-harmonic, then h ∈ C∞(Ω) and the equality (−△|Ω)
sh(x) = 0 holds at every

point x ∈ Ω.

Proof. We only prove the former inequality, the proof of the latter follows mutatis mutandis. Given
x ∈ Ω, let

v(x) =

∫

Ω

G1−s
Ω (x, y)u(y) dy.

Observe that v is well-defined and

‖v‖L1(Ω,δ(x)dx) ≤ C(Ω, N, s)‖u‖L1(Ω,δ(x)dx). (36)

Indeed, letting ϕ1 > 0 denote an eigenvector associated to the principal eigenvalue of the Laplace
operator, it follows from the Fubini’s theorem and Lemma 11 that

∫

Ω

ϕ1(x)

∫

Ω

G1−s
Ω (x, y) |u(y)| dy dx = λs−1

1

∫

Ω

|u(y)|ϕ1(y) dy.

In addition, −△v = f in D′(Ω), since for ϕ ∈ C∞
c (Ω),

∫

Ω

v (−△)ϕ =

∫

Ω

u (−△|Ω)
sϕ,

thanks to the Fubini’s theorem, equation (24), Lemma 11 and Definition 17. Observe now that if
ϕ ∈ C∞

c (Ω), then

(−△|Ω)
1−sϕ =

s

Γ(1− s)

∫ +∞

0

ts−1

(
ϕ− e−t△|

Ωϕ

t

)
dt.
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The above identity is straightforward if ϕ is an eigenfunction and remains true for ϕ ∈ C∞
c (Ω) by density,

using the fast decay of spectral coefficients, see (22). So,

∫

Ω

uϕ dx =

∫

Ω

v(−△|Ω)
1−s

ϕ dx =

=
s

Γ(1− s)

∫

Ω

∫ ∞

0

v ts−1

(
ϕ− e−t△|

Ωϕ

t

)
dt dx =

=
s

Γ(1− s)

∫

Ω

∫ ∞

0

ϕts−1

(
v − e−t△|

Ωv

t

)
dt dx

and

u =
s

Γ(1− s)

∫ +∞

0

ts−1

(
v − e−t△|

Ωv

t

)
dt.

Choose f ∈ Cαc (R
N ) such that f = f in K ′, ‖f‖Cα(RN ) ≤ C‖f‖Cα(K′) and let

u(x) = cN,s

∫

RN

|x− y|−(N−2s)f(y) dy

solve (−△)su = f in R
N . It is well-known (see e.g. [23]) that ‖u‖C2s+α(RN ) ≤ C‖f‖Cα(RN ), for a constant

C depending only on s, α,N and the measure of the support of f . It remains to estimate u− u. Letting

v(x) = cN,1−s

∫

RN

|x− y|−(N−2(1−s))u(y) dy,

we have as previously that −△v = f and

u =
s

Γ(1− s)

∫ +∞

0

ts−1

(
v − e−t△v

t

)
dt,

where this time e−t△v(x) = 1
(4πt)N/2

∫
RN e

−
|x−y|2

4t v(y) dy. Hence,

Γ(1− s)

s
(u − u) =

∫ +∞

0

ts−1

(
(v − v)− e−t△(v − v)

t

)
dt+

∫ +∞

0

ts−1

(
e−t△|

Ωv − e−t△v

t

)
dt.

Fix a compact set K ′′ such that K ⊂⊂ K ′′ ⊂⊂ K ′. Since v − v is harmonic in K ′,

‖v − v‖C2s+α+2(K′′) ≤ C‖v − v‖L1(K′) ≤ C‖u‖L1(Ω,δ(x)dx).

By parabolic regularity,
∥∥∥∥
∫ +∞

0

ts−1

(
(v − v)− e−t△(v − v)

t

)
dt

∥∥∥∥
C2s+α(K)

≤ C‖u‖L1(Ω,δ(x)dx).

In addition, the function w = e−t△|
Ωv − e−t△v solves the heat equation inside Ω with initial condition

w(0, ·) = v−v. Since △(v−v) = 0 in K ′, it follows from parabolic regularity again that w(t, x)/t remains
bounded in C2s+α(K) as t→ 0+, so that again

∥∥∥∥
∫ +∞

0

ts−1

(
e−t△|

Ωv − e−t△v

t

)
dt

∥∥∥∥
C2s+α(K)

≤ C‖u‖L1(Ω,δ(x)dx).

Lemma 22. Take α > 0, α 6∈ N, and u ∈ C2s+α
loc (Ω) ∩ L1(Ω, δ(x)dx). Given any compact set K ⊂⊂

K ′ ⊂⊂ Ω, there exists a constant C = C(s,N, α,K,K ′,Ω) such that

‖(−△|Ω)
s
u‖Cα(K) ≤ C

(
‖u‖C2s+α(K′) + ‖u‖L1(Ω,δ(x)dx)

)
.
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Proof. With a slight abuse of notation, we write

(−△|Ω)
s−1u(x) =

∫

Ω

G1−s
Ω (x, y)u(y) dy.

By Lemma 21 we have

‖(−△|Ω)
s−1

u‖C2+α(K) ≤ C
(
‖u‖C2s+α(K′) + ‖(−△|Ω)

s−1
u‖L1(Ω,δ(x)dx)

)
≤

≤ C
(
‖u‖C2s+α(K′) + ‖u‖L1(Ω,δ(x)dx)

)
.

Obviously it holds also

‖(−△) ◦ (−△|Ω)
s−1

u‖Cα(K) ≤ ‖(−△|Ω)
s−1

u‖C2+α(K).

By (24),
(−△) ◦ (−△|Ω)

s−1u = (−△|Ω)
su in D′(Ω),

which concludes the proof.

Proposition 23. Let f ∈ L1(Ω, δ(x)dx) and u ∈ L1
loc(Ω). The function

u(x) =

∫

Ω

GsΩ(x, y) f(y) dy

belongs to Lp(Ω, δ(x)dx) for any p ∈

[
1,

N + 1

N + 1− 2s

)
.

Proof. We start by applying the Jensen’s Inequality,
∣∣∣∣
∫

Ω

GsΩ(x, y) f(y) dy

∣∣∣∣
p

≤ ‖f‖p−1
L1(Ω,δ(x)dx)

∫

Ω

∣∣∣∣
GsΩ(x, y)

δ(y)

∣∣∣∣
p

δ(y) f(y) dy,

so that ∫

Ω

|u(x)|p δ(x) dx ≤ ‖f‖pL1(Ω,δ(x)dx) sup
y∈Ω

∫

Ω

∣∣∣∣
GsΩ(x, y)

δ(y)

∣∣∣∣
p

δ(x) dx

and by (30) we have to estimate

sup
y∈Ω

∫

Ω

1

|x− y|(N−2s)p
·

δ(x)p+1

[|x− y|2 + δ(x)δ(y)]p
dx

Pick ε > 0. Clearly,

sup
{y : δ(y)≥ε}

∫

Ω

1

|x− y|(N−2s)p
·

δ(x)p+1

[|x− y|2 + δ(x)δ(y)]
p dx ≤ Cε.

Thanks to Lemma 40, we may now reduce to the case where the boundary is flat, i.e. when in a
neighbourhood A of a given point y ∈ Ω such that δ(y) < ε, there holds A ∩ ∂Ω ⊆ {yN = 0} and
A ∩ Ω ⊆ {yN > 0}. Without loss of generality, we assume that y = (0, yN ) and x = (x′, xN ) ∈
B × (0, 1) ⊆ RN−1 × R. We are left with proving that

∫

B

dx′
∫ 1

0

dxN
1

[|x′|2 + |xN − yN |2](N−2s)p/2
·

xp+1
N

[|x′|2 + |xN − yN |2 + xNyN ]
p

is a bounded quantity. Make the change of variables xN = yN t and pass to polar coordinates in x′, with
|x′| = yNρ. Then, the above integral becomes

y
−(N+1−2s)p+N+1
N

∫ 1/yN

0

dρ

∫ 1/yN

0

dt
ρN−2

[ρ2 + |t− 1|2](N−2s)p/2
·

tp+1

[ρ2 + |t− 1|2 + t]
p . (37)
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Now, we split the integral in the t variable into
∫ 1/2

0 +
∫ 3/2

1/2 +
∫ 1/yN
3/2 . Note that the exponent −(N +

1 − 2s)p + N + 1 is positive for p < (N + 1)/(N + 1 − 2s). We drop multiplicative constants in the
computations that follow. The first integral is bounded above by a constant multiple of

∫ 1/yN

0

dρ

∫ 1/2

0

dt
ρN−2

[ρ2 + 1]
(N−2s)p/2

·
tp+1

[ρ2 + 1 + t]
p .

∫ 1/yN

0

dρ
ρN−2

[ρ2 + 1]
(N+2−2s)p/2

which remains bounded as yN ↓ 0 since

p ≥ 1 >
N − 1

N + 2− 2s
implies (N + 2− 2s)p−N + 2 > 1.

The second integral is of the order of

∫ 1/yN

0

dρ

∫ 3/2

1/2

dt
ρN−2

[ρ2 + |t− 1|2](N−2s)p/2
·

1

[ρ2 + 1]
p =

=

∫ 1/yN

0

dρ

∫ 1/2

0

dt
ρN−2

[ρ2 + t2](N−2s)p/2
·

1

[ρ2 + 1]
p

=

∫ 1/yN

0

dρ
ρN−1−(N−2s)p

[ρ2 + 1]
p

∫ 1/(2ρ)

0

dt
1

[1 + t2]
(N−2s)p/2

.

∫ ∞

0

dρ
ρN−1−(N−2s)p

[ρ2 + 1]
p

which is finite since p < (N + 1)/(N + 1 − 2s) < N/(N − 2s) implies N − 1 − (N − 2s)p > −1 and
p ≥ 1 > N/(N + 2− 2s) implies 2p−N + 1 + (N − 2s)p > 1.

We are left with the third integral which is controlled by

∫ 1/yN

0

dρ ρN−2

∫ 1/yN

3/2

dt
tp+1

[ρ2 + t2]
(N+2−2s)p/2

≤

≤

∫ 1/yN

0

dρ ρN−(N+1−2s)p

∫ 1/(yNρ)

3/(2ρ)

dt
tp+1

[1 + t2]
(N+2−2s)p/2

.

∫ 1/yN

0

dρ ρN−(N+1−2s)p.

The exponent N − (N +1− 2s)p > −1 since p < (N +1)/(N +1− 2s), so this third integral is bounded
above by a constant multiple of y−1−N+(N+1−2s)p

N which simplifies with the factor in front of (37).

4 Boundary behaviour

We first provide the boundary behaviour of the reference function h1. Afterwards, in Proposition 25
below, we will deal with the weighted trace left on the boundary by harmonic functions induced by
continuous boundary data.

Lemma 24. Let h1 be given by (8). There exists a constant C = C(N,Ω, s) > 0 such that

1

C
δ−(2−2s) ≤ h1 ≤ Cδ−(2−2s). (38)

Proof. Restrict without loss of generality to the case where x lies in a neighbourhood of ∂Ω. Take
x∗ ∈ ∂Ω such that |x − x∗| = δ(x), which exists by compactness of ∂Ω. Take Γ ⊂ ∂Ω a neighbourhood
of x∗ in the topology of ∂Ω. By Lemma 40 in the Appendix, we can think of Γ ⊂ {xN = 0}, x∗ = 0 and
x = (0, δ(x)) ∈ R

N−1 × R without loss of generality. in such a way that it is possible to compute
∫

Γ

δ(x)

|x− z|N+2−2s
dσ(z) ≍

∫

Br

δ(x)

[|z′|2 + δ(x)2]N/2+1−s
dz′.
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Recalling (25), we have reduced the estimate to
∫

∂Ω

P sΩ(x, z) dσ(z) ≍

≍

∫

Br

δ(x)

[|z′|2 + δ(x)2]N/2+1−s
dz′ ≍

∫ r

0

δ(x) tN−2

[t2 + δ(x)2]N/2+1−s
dt

=

∫ r/δ(x)

0

δ(x)N tN−2

[δ(x)2t2 + δ(x)2]N/2+1−s
dt ≍ δ(x)2s−2

∫ r/δ(x)

0

tN−2 dt

[t2 + 1]N/2+1−s

and this concludes the proof, since

∫ r/δ(x)

0

tN−2 dt

[t2 + 1]N/2+1−s
≍ 1.

In the following we will use the notation

P
s
Ωg :=

∫

∂Ω

P sΩ(·, θ) g(θ) dσ(θ)

where σ denotes the Hausdorff measure on ∂Ω, whenever g ∈ L1(Ω).

Proposition 25. Let ζ ∈ C(∂Ω). Then, for any z ∈ ∂Ω,

PsΩζ(x)

h1(x)

x∈Ω
−−−→
x→z

ζ(z) uniformly on ∂Ω. (39)

Proof. Let us write

∣∣∣∣
PsΩζ(x)

h1(x)
− ζ(z)

∣∣∣∣ =
∣∣∣∣

1

h1(x)

∫

∂Ω

P sΩ(x, θ) ζ(θ) dσ(θ) −
h1(x) ζ(z)

h1(x)

∣∣∣∣ ≤

≤
1

h1(x)

∫

∂Ω

P sΩ(x, θ)|ζ(θ) − ζ(z)| dσ(θ) ≤ Cδ(x)3−2s

∫

∂Ω

|ζ(θ) − ζ(z)|

|x− θ|N+2−2s
dσ(θ) ≤

≤ Cδ(x)

∫

∂Ω

|ζ(θ) − ζ(z)|

|x− θ|N
dσ(θ).

It suffices now to repeat the computations in [1, Lemma 3.1.5] to show that the obtained quantity
converges to 0 as x→ z.

With an approximation argument started from the last Proposition, we can deal with a ζ ∈ L1(∂Ω)
datum.

Theorem 26. For any ζ ∈ L1(∂Ω) and any φ ∈ C0(Ω) it holds

1

t

∫

{δ(x)≤t}

PsΩζ(x)

h1(x)
φ(x) dx −−→

t↓0

∫

∂Ω

φ(y) ζ(y) dσ(y).

Proof. For a general ζ ∈ L1(∂Ω), consider a sequence {ζk}k∈N
⊂ C(∂Ω) such that

∫

∂Ω

|ζk(y)− ζ(y)| dσ(y) −−−→
k↑∞

0. (40)
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For any fixed k ∈ N, we have
∣∣∣∣∣
1

t

∫

{δ(x)<t}

PsΩζ(x)

h1(x)
φ(x) dx−

∫

∂Ω

φ(x) ζ(x) dσ(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
1

t

∫

{δ(x)<t}

PsΩζ(x) − PsΩζk(x)

h1(x)
φ(x) dx

∣∣∣∣∣ (41)

+

∣∣∣∣∣
1

t

∫

{δ(x)<t}

PsΩζk(x)

h1(x)
φ(x) dx−

∫

∂Ω

φ(x) ζk(x) dσ(x)

∣∣∣∣∣ (42)

+

∣∣∣∣
∫

∂Ω

φ(x) ζk(x) dσ(x) −

∫

∂Ω

φ(x) ζ(x) dσ(x)

∣∣∣∣ . (43)

Call λk := ζk − ζ: the term (41) equals

1

t

∫

{δ(x)<t}

P
s
Ωλk(x)

h1(x)
φ(x) dσ(x) =

∫

∂Ω

(
1

t

∫

{δ(x)<t}

P sΩ(x, y)

h1(x)
φ(x) dx

)
λk(y) dσ(y)

Call

Φ(t, y) :=
1

t

∫

{δ(x)<t}

P sΩ(x, y)

h1(x)
φ(x) dx.

Combining equations (25), (38) and the boundedness of φ, we can prove that Φ is uniformly bounded in
t and y. Indeed,

|Φ(t, y)| ≤
‖φ‖L∞(Ω)

t

∫

{δ(x)<t}

δ(x)3−2s

|x− y|N+2−2s
dx ≤

‖φ‖L∞(Ω)

t

∫

{δ(x)<t}

δ(x)

|x− y|N
dx

and reducing our attention to the flat case (see Lemma 40 in the Appendix for the complete justification)
we estimate (the ’ superscript denotes an object living in RN−1)

1

t

∫ t

0

∫

B′

xN

[|x′|2 + x2N ]
N/2

dx′ dxN ≤
1

t

∫ t

0

∫

B′
1/xN

dξ

[|ξ|2 + 1]
N/2

dxN ≤

∫

RN−1

dξ

[|ξ|2 + 1]
N/2

.

Thus
∫
∂Ω

Φ(t, y)λk(y)dσ(y) is arbitrarily small in k in view of (40).
The term (42) converges to 0 as t ↓ 0 because the convergence

PsΩζk(x)

h1(x)
φ(x)

x∈Ω
−−−→
x→z

ζk(z)φ(z)

is uniform in z ∈ ∂Ω in view of Proposition 25.
Finally, the term (43) is arbitrarily small with k ↑ +∞, because of (40). This concludes the proof of

the theorem, because

lim
t↓0

∣∣∣∣∣
1

t

∫

{δ(x)<t}

PsΩζ(x)

h1(x)
φ(x) dx−

∫

∂Ω

φ(x) ζ(x) dσ(x)

∣∣∣∣∣ ≤

≤ ‖Φ‖L∞((0,t0)×∂Ω)

∫

∂Ω

|ζk(y)− ζ(y)| dσ(y) + ‖φ‖L∞(∂Ω)

∫

∂Ω

|ζk(y)− ζ(y)| dσ(y)

and letting k ↑ +∞ we deduce the thesis as a consequence of 40.

Moreover we have also

Theorem 27. For any µ ∈ M(Ω), such that
∫

Ω

δ d|µ| <∞, (44)

and any φ ∈ C0(Ω) it holds
1

t

∫

{δ(x)≤t}

GsΩµ(x)

h1(x)
φ(x) dx −−→

t↓0
0. (45)
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Proof. By using the Jordan decomposition of µ = µ+ − µ− into its positive and negative part, we can
suppose without loss of generality that µ ≥ 0. Fix some s′ ∈ (0, s ∧ 1/2). Exchanging the order of
integration we claim that

∫

{δ(x)≤t}

GsΩ(x, y) δ(x)
2−2sdx ≤

{
C t2−2s′ δ(y)2s

′

δ(y) ≥ t

C t δ(y) δ(y) < t
(46)

where C = C(N,Ω, s) and does not depend on t, which yields

1

t

∫

Ω

(∫

{δ(x)<t}

GsΩ(x, y)
dx

h1(x)

)
dµ(y) ≤ C t1−2s′

∫

{δ(y)≥t}

δ(y)2s
′

dµ(y) + C

∫

{δ(x)<t}

δ(y) dµ(y).

The second addend converges to 0 as t ↓ 0 by (44). Since t1−2s′δ(y)2s
′

converges pointwisely to 0 in
Ω as t ↓ 0 and t1−2s′δ(y)2s

′

≤ δ(y) in {δ(y) ≥ t}, then the first addend converges to 0 by dominated
convergence. This suffices to deduce our thesis (45).

Let us turn now to the proof of the claimed estimate (46). For the first part we refer to [12, Proposition
7] to say

∫

{δ(x)≤t}

GsΩ(x, y) δ(x)
2−2sdx ≤ t2−2s′

∫

{δ(x)≤t}

GsΩ(x, y) δ(x)
−2s+2s′dx ≤ C t2−2s′ δ2s

′

.

We focus our attention on the case where ∂Ω is locally flat, i.e. we suppose that in a neighbourhood
A of y it holds A ∩ ∂Ω ⊆ {xN = 0} (see Lemma 40 in the Appendix to reduce the general case to this
one). So, since δ(x) = xN and retrieving estimate (30) on the Green function, we are dealing with (the
′ superscript denotes objects that live in RN−1)

∫ t

0

∫

B′(y′)

yN x
3−2s
N

|x′ − y′|2 + (xN − yN )2 + xN yN
·

dx′

[|x′ − y′|2 + (xN − yN )2]
(N−2s)/2

dxN .

From now on we drop multiplicative constants depending only on N and s. Suppose without loss of
generality y′ = 0. Set xN = yNη and switch to polar coordinates in the x′ variable:

∫ t/yN

0

∫ 1

0

y5−2s
N η3−2s

r2 + y2N (η − 1)2 + η y2N
·

rN−2dr

[r2 + y2N(η − 1)2]
(N−2s)/2

dη

and then set r = yNρ to get

y2N

∫ t/yN

0

η3−2s

∫ 1/yN

0

ρN−2

[ρ2 + (η − 1)2]
(N−2s)/2

·
dρ

ρ2 + (η − 1)2 + η
dη ≤

≤ y2N

∫ t/yN

0

η3−2s

∫ 1/yN

0

ρ

[ρ2 + (η − 1)2]
(3−2s)/2

·
dρ

ρ2 + (η − 1)2 + η
dη.

Consider now s ∈ (1/2, 1). The integral in the ρ variable is less than

∫ 1/yN

0

ρ

[ρ2 + (η − 1)2]
(5−2s)/2

dρ ≤ |η − 1|−3+2s

so that, integrating in the η variable,

y2N

∫ t/yN

0

η3−2s |η − 1|−3+2s dη ≤ t yN

and we prove (46) in the case s ∈ (1/2, 1). Now we study the case s ∈ (0, 1/2]. Split the integration in
the η variable into

∫ 2

0 and
∫ 1/yN
2 : the latter can be treated in the same way as above. For the other one
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we exploit the inequality ρ2 + (η − 1)2 + η ≥ 3
4 to deduce6:

y2N

∫ 2

0

η3−2s

(∫ 1/yN

0

ρ

[ρ2 + (η − 1)2 + η](3−2s)/2
·

dρ

ρ2 + (η − 1)2

)
dη ≤

≤ y2N

∫ 2

0

η3−2s

(∫ 1/yN

0

ρ

[ρ2 + (η − 1)2]
(3−2s)/2

dρ

)
dη ≤ y2N

∫ 2

0

η3−2s

|η − 1|1−2s
dη ≤ y2N .

Note now that, in our set of assumptions, yN = δ(y) < t. So y2N ≤ tyN and we get to the desired
conclusion (46) also in the case s ∈ (0, 1/2].

5 The Dirichlet problem

Recall the definition of test functions (7).

Lemma 28. T (Ω) ⊆ C1
0 (Ω) ∩ C

∞(Ω). Moreover, for any ψ ∈ T (Ω) and z ∈ ∂Ω,

−
∂ψ

∂ν
(z) =

∫

Ω

P sΩ(y, z) (−△|Ω)
s
ψ(y) dy. (47)

Proof. Take ψ ∈ T (Ω) and let f = (−△|Ω)
s
ψ. Since f ∈ C∞

c (Ω), the spectral coefficients of f have fast
decay (see (22)) and so the same holds true for ψ. It follows that ψ ∈ C1

0 (Ω) and T (Ω) ⊆ C1
0 (Ω). By

Lemma 11, for all x ∈ Ω,

ψ(x) =

∫

Ω

GsΩ(x, y) f(y) dy

Using Lemma 14, (28) and the dominated convergence theorem, (47) follows.
Since (−△|Ω)

s is self-adjoint in H(2s), we know that the equality (−△|Ω)
s
ψ = f holds in D′(Ω) and

the interior regularity follows from Lemma 21.

Lemma 29 (Maximum principle for classical solutions). Let u ∈ C2s+ε
loc (Ω) ∩ L1(Ω, δ(x) dx) such that

(−△|Ω)
su ≥ 0 in Ω, lim inf

x→∂Ω
u(x) ≥ 0.

Then u ≥ 0 in Ω. In particular this holds when u ∈ T (Ω).

Proof. Suppose x∗ ∈ Ω such that u(x∗) = min
Ω
u < 0. Then

(−△|Ω)
s
u(x∗) =

∫

Ω

[u(x∗)− u(y)] J(x, y) dy + κ(x∗)u(x∗) < 0,

a contradiction.

Lemma 30 (Maximum principle for weak solutions). Let µ ∈ M(Ω), ζ ∈ M(∂Ω) be two Radon measures
satisfying (9) with µ ≥ 0 and ζ ≥ 0. Consider u ∈ L1

loc(Ω) a weak solution to the Dirichlet problem (10).
Then u ≥ 0 a.e. in Ω.

Proof. Take f ∈ C∞
c (Ω), f ≥ 0 and ψ = (−△|Ω)

−s
f ∈ T (Ω). By Lemma 29, ψ ≥ 0 in Ω and by Lemma

28 −∂ψ
∂ν ≥ 0 on ∂Ω. Thus, by (11),

∫
Ω uf ≥ 0. Since this is true for every f ∈ C∞

c (Ω), the result
follows.

6In the computation that follows, in the particular case s = 1

2
the term |1− η|2s−1 must be replaced by − ln |1− η|, but

this is harmless.
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5.1 Proof of Theorem 6

Uniqueness is a direct consequence of the comparison principle, Lemma 30. Let us prove that formula
(12) defines the desired weak solution. Observe that if u is given by (12), then u ∈ L1(Ω, δ(x)dx). Indeed,

∫

Ω

∣∣∣∣ϕ1(x)

∫

Ω

GsΩ(x, y)dµ(y)

∣∣∣∣ dx ≤

∫

Ω

∫

Ω

GsΩ(x, y)ϕ1(x)dx d|µ|(y)

=
1

λs1

∫

Ω

ϕ1(y) d|µ|(y) ≤ C‖δµ‖M(Ω) (48)

This, along with Lemma 20, proves that u ∈ L1(Ω, δ(x)dx) and (13). Now, pick ψ ∈ T (Ω) and compute,
via the Fubini’s Theorem, Lemma 11 and Lemma 28,

∫

Ω

u(x)(−△|Ω)
s
ψ(x) dx =

=

∫

Ω

(∫

Ω

GsΩ(x, y)dµ(y)

)
(−△|Ω)

s
ψ(x) dx+

∫

Ω

(∫

∂Ω

P sΩ(x, z) dζ(z)

)
(−△|Ω)

s
ψ(x) dx =

=

∫

Ω

(∫

Ω

GsΩ(x, y)(−△|Ω)
sψ(x) dx

)
dµ(y) +

∫

∂Ω

(∫

Ω

P sΩ(x, z)(−△|Ω)
sψ(x) dx

)
dζ(z) =

=

∫

Ω

ψ(y) dµ(y)−

∫

∂Ω

∂ψ

∂ν
(z) dζ(z).

�

5.2 Proof of Lemma 5

Proof of 1. Consider a sequence {ηk}k∈N ⊂ C∞
c (Ω) of bump functions such that 0 ≤ η1 ≤ . . . ≤ ηk ≤

ηk+1 ≤ . . . ≤ 1 and ηk(x) ↑ χΩ(x) as k ↑ ∞. Consider ψ ∈ C∞
c (Ω) and define fk := ηk(−△|Ω)

s
ψ ∈

C∞
c (Ω), ψk := (−△|Ω)

−s
fk ∈ T (Ω).

Let us first note that the integral ∫

Ω

u (−△|Ω)
s
ψ

makes sense in view of (31) and (13). The sequence {fk}k∈N
trivially converges a.e. to (−△|Ω)

s
ψ, while

|ψk(x)− ψ(x)| ≤

∫

Ω

GsΩ(x, y)|(−△|Ω)
sψ(y)| · (1− ηk(y)) dy

converges to 0 for any x ∈ Ω by dominated convergence. Since u is a weak solution, it holds
∫

Ω

u fk =

∫

Ω

ψk dµ−

∫

∂Ω

∂ψk
∂ν

dζ.

By dominated convergence
∫
Ω
u fk →

∫
Ω
u(−△|Ω)

s
ψ and

∫
Ω
ψk dµ →

∫
Ω
ψ dµ. Indeed for any k ∈ N,

|fk| ≤ |(−△|Ω)
s
ψ| and |ψk| ≤

1

λs1

∥∥∥∥
(−△|Ω)

s
ψ

ϕ1

∥∥∥∥
L∞(Ω)

ϕ1,

where the latter inequality follows from the maximum principle or the representation formula ψk(x) =∫
Ω
GsΩ(x, y)fk(y)dy. Finally, the convergence

∫

∂Ω

∂ψk
∂ν

dζ −−−→
k↑∞

0

holds by dominated convergence, since
∫

∂Ω

∂ψk
∂ν

dζ =

∫

Ω

P
s
Ωζ fk
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by the Fubini’s Theorem, and PsΩζ ∈ L1(Ω, δ(x)dx) while |fk| ≤ |(−△|Ω)
s
ψ| ≤ Cδ by Lemma (18), so

that ∫

Ω

P
s
Ωζ fk −−−→

k↑∞

∫

Ω

P
s
Ωζ f = 0

because PsΩζ is s-harmonic and f ∈ C∞
c (Ω).

The proof of the boundary trace can be found in Theorems 26 and 27, by recalling the representation
formula provided by Theorem 6 for the solution to (10). �

Proof of 2. Recall that u is represented by

u(x) =

∫

Ω

GsΩ(x, y)µ(y) dy +

∫

∂Ω

P sΩ(x, y) ζ(y) dσ(y).

By Point 1. and Lemma 21, u ∈ C2s+α
loc (Ω). Moreover, u ∈ L1(Ω, δ(x)dx) thanks to (13). So, we can

pointwisely compute (−△|Ω)
s
u by using (3) and (54): this entails by the self-adjointness of the operator

in (54) that ∫

Ω

(−△|Ω)
s
uψ =

∫

Ω

u(−△|Ω)
s
ψ =

∫

Ω

µψ, for any ψ ∈ C∞
c (Ω)

and we must conclude that (−△|Ω)
s
u = µ a.e. By continuity the equality holds everywhere.

We turn now to the boundary trace. The contribution given by GsΩµ is irrelevant, because it is a
bounded function as it follows from

|GsΩµ(x)| ≤ C‖µ‖L∞(Ω)

∫

Ω

dy

|x− y|N−2s

where we have used (30). Therefore, by Propositions 25, there also holds for all x0 ∈ ∂Ω,

lim
x→x0,x∈Ω

u(x)

h1(x)
= lim
x→x0,x∈Ω

GsΩµ(x) + PsΩζ(x)

h1(x)
= ζ(x0).

�
Proof of 3. By Lemma 22 µ ∈ Cεloc(Ω). In addition, we have assumed that ζ ∈ C(∂Ω). Consider

v(x) =

∫

Ω

GsΩ(x, y)µ(y) dy +

∫

∂Ω

P sΩ(x, z) ζ(z) dσ(z)

the weak solution associated to data µ and ζ. By the previous point of the Lemma, v is a classical
solution to the equation, so that in a pointwise sense it holds

(−△|Ω)
s(u− v) = 0 in Ω,

u− v

h1
= 0 on ∂Ω.

By applying Lemma 29 we conclude that |u− v| ≤ εh1 for any ε > 0 and thus u− v ≡ 0. �

6 The nonlinear problem

Lemma 31 (Kato’s Inequality). For f ∈ L1(Ω, δ(x)dx) let w ∈ L1(Ω, δ(x)dx) weakly solve





(−△|Ω)
s
w = f in Ω
w

h1
= 0 on ∂Ω.

For any convex Φ : R → R, Φ ∈ C2(R) such that Φ(0) = 0 and Φ(w) ∈ L1
loc(Ω), it holds

(−△|Ω)
sΦ(w) ≤ Φ′(w)(−△|Ω)

sw.

Moreover, the same holds for Φ(t) = t+ = t ∧ 0.
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Proof. Let us first assume that f ∈ Cαloc(Ω). In this case, by Lemma 21, w ∈ C2s+α
loc (Ω) and the equality

(−△|Ω)
s
w = f holds in a pointwise sense. Then

(−△|Ω)
s
Φ ◦ w(x) =

∫

Ω

[Φ(w(x)) − Φ(w(y))] J(x, y) dy + κ(x)Φ(w(x))

= Φ′(w(x))

∫

Ω

[w(x) − w(y)] J(x, y) dy + κ(x)Φ(w(x))

−

∫

Ω

[w(x) − w(y)]2 J(x, y)

∫ 1

0

Φ′′(w(x) + t[w(y) − w(x)])(1 − t) dt dy

≤ Φ′(w(x)) (−△|Ω)
s
w(x)

where we have used that Φ′′ ≥ 0 in R and that Φ′(t) ≤ tΦ(t), which follows from Φ(0) = 0.
We deal now with f ∈ L∞(Ω). Pick {fj}j∈N

⊆ C∞
c (Ω) converging to f in L1(Ω, δ(x), dx) and bounded

in L∞(Ω). The corresponding {wj = GsΩfj}j∈N
converges to w in L1(Ω, δ(x)dx), is bounded in L∞(Ω)

and without loss of generality we assume that fj → f and wj → w a.e. in Ω. We know that for any
ψ ∈ T (Ω), ψ ≥ 0 ∫

Ω

Φ(wj) (−△|Ω)
s
ψ ≤

∫

Ω

fj Φ
′(wj)ψ.

By the continuity of Φ and Φ′ we have Φ(wj) → Φ(w), Φ′(wj) → Φ′(w) a.e. in Ω and that {Φ(wj)}j∈N
,

{Φ′(wj)}j∈N
are bounded in L∞(Ω). Since {fj}j∈N

is converging to f in L1(Ω, δ(x)dx), then
∫

Ω

Φ(wj) (−△|Ω)
s
ψ −→

∫

Ω

Φ(w) (−△|Ω)
s
ψ and

∫

Ω

fj Φ
′(wj)ψ −→

∫

Ω

f Φ′(w)ψ

by dominated convergence.
For a general f ∈ L1(Ω, δ(x)dx) define fj,k := (f ∧ j) ∨ (−k), j, k ∈ N. Also, split the expression of

Φ = Φ1 − Φ2 into the difference of two increasing function: this can be done in the following way. The
function Φ′ is continuous and increasing in R, so that it can either have constant sign or there exists
t0 ∈ R such that Φ′(t0) = 0. If it has constant sign than Φ can be increasing or decreasing and we can
choose respectively Φ1 = Φ,Φ2 = 0 or Φ1 = 0,Φ2 = −Φ. Otherwise we can take

Φ1(t) =

{
Φ(t) t > t0

Φ(t0) t ≤ t0
and Φ2(t) =

{
0 t > t0

Φ(t0)− Φ(t) t ≤ t0
.

We already know that for any ψ ∈ T (Ω), ψ ≥ 0
∫

Ω

Φ(wj,k) (−△|Ω)
s
ψ ≤

∫

Ω

fj,k Φ
′(wj,k)ψ.

On the right-hand side we can use twice the monotone convergence, letting j ↑ ∞ first and then k ↑ ∞. On
the left hand side, by writing Φ = Φ1 −Φ2 again we can exploit several times the monotone convergence
by splitting
∫

Ω

Φ(wj,k) (−△|Ω)
s
ψ =

∫

Ω

Φ1(wj,k) [(−△|Ω)
s
ψ]+ −

∫

Ω

Φ1(wj,k) [(−△|Ω)
s
ψ]− +

−

∫

Ω

Φ2(wj,k) [(−△|Ω)
s
ψ]+ +

∫

Ω

Φ2(wj,k) [(−△|Ω)
s
ψ]−

to deduce the thesis.
Finally, note that Φ(t) = t+ can be monotonically approximated by

Φj(t) =
1

2

√
t2 +

1

j2
+
t

2
−

1

2j

which is convex, C2 and Φj(0) = 0. So
∫

Ω

Φj(w) (−△|Ω)
s
ψ ≤

∫

Ω

f Φ′
j(w)ψ.

Since Φj(t) ↑ t+ and 2Φ′
j(t) ↑ 1 + sgn(t) = 2χ(0,+∞)(t), we prove the last statement of the Lemma.
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Theorem 32. Let f(x, t) : Ω × R −→ R be a Carathéodory function. Assume that there exists a
subsolution and a supersolution u, u ∈ L1(Ω, δ(x)dx) ∩ L∞

loc(Ω) to




(−△|Ω)
s
u = f(x, u) in Ω
u

h1
= 0 on ∂Ω

(49)

Assume in addition that f(·, v) ∈ L1(Ω, δ(x)dx) for every v ∈ L1(Ω, δ(x)dx) such that u ≤ v ≤ u a.e.
Then, there exist weak solutions u1, u2 ∈ L1(Ω, δ(x)dx) in [u, u] such that any solution in the interval
[u, u] satisfies

u ≤ u1 ≤ u ≤ u2 ≤ u a.e.

Moreover, if the nonlinearity f is decreasing in the second variable, then the solution is unique.

Proof. According to Montenegro and Ponce [20], the mapping v 7→ F (·, v), where

F (x, t) := f(x, [t ∧ u(x)] ∨ u(x)), x ∈ Ω, t ∈ R,

acts continuously from L1(Ω, δ(x)dx) into itself. In addition, the operator

K : L1(Ω, δ(x)dx) −→ L1(Ω, δ(x)dx)

v(x) 7−→ K(v)(x) =

∫

Ω

GsΩ(x, y)F (y, v(y))dy

is compact. Indeed, take a bounded sequence {vn}n∈N
in L1(Ω, δ(x)dx). On a compact set K ⊂⊂ Ω,

u, u are essentially bounded and so must be the sequence {F (·, vn)}n∈N
. By Theorem 6 and Lemma

21, {K(vn)}n∈N
is bounded in Cαloc(K) ∩ Lp(Ω, δ(x)dx), p ∈ [1, (N + 1)/(N + 1 − 2s)). In particular, a

subsequence {vnk
}k∈N

converges locally uniformly to some v. By Hölder’s inequality, we also have

‖vnk
− v‖L1(Ω\K,δ(x)dx) ≤ ‖vnk

− v‖Lp(Ω\K,δ(x)dx)‖1Ω\K‖Lp′(Ω\K,δ(x)dx).

Hence,
‖vnk

− v‖L1(Ω,δ(x)dx) ≤ ‖vnk
− v‖L∞(K,δ(x)dx)‖δ‖L1(Ω) + C‖1Ω\K‖Lp′(Ω\K,δ(x)dx.

Letting k → +∞ and then K → Ω, we deduce that K is compact and by the Schauder’s Fixed Point
Theorem, K has a fixed point u ∈ L1(Ω, δ(x)dx). We then may prove that u ≤ u ≤ u by means of the
Kato’s Inequality (Lemma 31) as it is done in [20], which yields that u is a solution of (49).

The proof of the existence of the minimal and a maximal solution u1, u2 ∈ L1(Ω, δ(x)dx) can be
performed in an analogous way as in [20], as the only needed tool is the Kato’s Inequality.

As for the uniqueness, suppose f is decreasing in the second variable and consider two solutions
u, v ∈ L1(Ω, δ(x)dx) to (49). By the Kato’s Inequality Lemma 31, we have

(−△|Ω)
s
(u− v)+ ≤ χ{u>v}[f(x, u)− f(x, v)] ≤ 0 in Ω

which implies (u − v)+ ≤ 0 by the Maximum Principle Lemma 30. Reversing the roles of u and v, we
get also (v − u)+ ≤ 0, thus u ≡ v in Ω.

6.1 Proof of Theorem 8

Problem (17) is equivalent to




(−△|Ω)
s
v = g(x,PsΩζ − v) in Ω
v

h1
= 0 on ∂Ω

(50)

that possesses u = PsΩζ as a supersolution and u = 0 as a subsolution. Indeed, by equation (38) we have

0 ≤ P
s
Ωζ ≤ ‖ζ‖L∞(Ω)h1 ≤ C‖ζ‖L∞(Ω)δ

−(2−2s)

Thus any v ∈ L1(Ω, δ(x)dx) such that 0 ≤ v ≤ PsΩζ satisfies

g(x, v) ≤ h(v) ≤ h(cδ−(2−2s)) ∈ L1(Ω, δ(x)dx).

So, all hypotheses of Theorem 32 are satisfied and the result follows. �
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7 Large solutions

Consider the sequence {uj}j∈N
built by solving





(−△|Ω)
s
uj = −upj in Ω

uj
h1

= j on ∂Ω.
(51)

Theorem 8 guarantees the existence of such a sequence if δ−(2−2s)p ∈ L1(Ω, δ(x)dx), i.e. p < 1/(1− s).
We claim that the sequence is increasing in Ω: indeed the solution to problem (51) is a subsolution for
the same problem with boundary datum j+1. In view of this, the sequence {uj}j∈N admits a pointwise
limit, possibly infinite.

7.1 Construction of a supersolution

Lemma 33. There exist δ0, C > 0 such that

(−△|Ω)
s
δ−α ≥ −C δ−αp, for δ < δ0 and α =

2s

p− 1
.

Proof. We use the expression in equation (3). Obviously,

(−△|Ω)
s
δ−α(x) =

∫

Ω

[δ(x)−α − δ(y)−α]J(x, y) dy + δ(x)−ακ(x) ≥

∫

Ω

[δ(x)−α − δ(y)−α]J(x, y) dy.

For any fixed x ∈ Ω close to ∂Ω, split the domain Ω into three parts:

Ω1 =

{
y ∈ Ω : δ(y) ≥

3

2
δ(x)

}
,

Ω2 =

{
y ∈ Ω :

1

2
δ(x) < δ(y) <

3

2
δ(x)

}
,

Ω3 =

{
y ∈ Ω : δ(y) ≤

1

2
δ(x)

}
.

For y ∈ Ω1, since δ(y) > δ(x), it holds δ(x)−α − δ(y)−α > 0 and we can drop the integral on Ω1. Also,
since it holds by equation (33)

J(x, y) ≤
C

|x− y|N+2s
,

the integration on Ω2 can be performed as in [2, Second step in Proposition 6] providing

PV

∫

Ω2

[δ(x)−α − δ(y)−α] J(x, y) dy ≥ −C δ(x)−α−2s = −C δ(x)−αp.

To integrate on Ω3 we exploit once again (33) under the form

J(x, y) ≤ C ·
δ(x) δ(y)

|x− y|N+2+2s

to deduce ∫

Ω3

[δ(x)−α − δ(y)−α] J(x, y) dy ≥ −C δ(x)

∫

Ω3

δ(y)1−α

|x− y|N+2+2s
.

Again, a direct computation as in [2, Third step in Prooposition 6] yields
∫

Ω3

[δ(x)−α − δ(y)−α] J(x, y) dy ≥ −C δ(x)−α−2s = −C δ(x)−αp.
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Lemma 34. If a function v ∈ L1(Ω, δ(x)dx) satisfies

(−△|Ω)
s
v ∈ L∞

loc(Ω), (−△|Ω)
s
v(x) ≥ −C v(x)p, when δ(x) < δ0, (52)

for some C, δ0 > 0, then there exists u ∈ L1(Ω, δ(x)dx) such that

(−△|Ω)
su(x) ≥ −u(x)p, throughout Ω. (53)

Proof. Let λ := C1/(p−1) ∨ 1 and Ω0 = {x ∈ Ω : δ(x) < δ0}, then

(−△|Ω)
s
(λv) ≥ − (λv)

p
, in Ω0.

Let also µ := λ‖(−△|Ω)
s
v‖L∞(Ω\Ω0) and define u = µGsΩ1 + λv. On u we have

(−△|Ω)
s
u = µ+ λ(−△|Ω)

s
v ≥ λ|(−△|Ω)

s
v|+ λ(−△|Ω)

s
v ≥ −up throughout Ω.

Corollary 35. There exists a function u ∈ L1(Ω, δ(x)dx) such that the inequality

(−△|Ω)
su ≥ −up, in Ω,

holds in a pointwise sense. Moreover, u ≍ δ−2s/(p−1).

Proof. Apply Lemma 34 with v = δ−2s/(p−1): the corresponding u will be of the form

u = µGsΩ1 + λδ−2s/(p−1).

7.2 Existence

Lemma 36. For any j ∈ N, the solution uj to problem (51) satisfies the upper bound

uj ≤ u, in Ω,

where u is provided by Corollary 35.

Proof. Write uj = jh1 − vj where




(−△|Ω)
svj = (jh1 − vj)

p in Ω
vj
h1

= 0 on ∂Ω.

and 0 ≤ vj ≤ jh1. Since (jh1 − vj)
p ∈ L∞

loc(Ω), we deduce that vj ∈ Cαloc(Ω) for any α ∈ (0, 2s). By
bootstrapping vj ∈ C∞(Ω) and, by Lemma 21, also uj ∈ C∞(Ω). This says that uj is a classical solution
to problem (51). Now, we have that, by the boundary behaviour of u stated in Corollary 35, uj ≤ u
close enough to ∂Ω (depending on the value of j) and

(−△|Ω)
s
(u− uj) ≥ upj − up, in Ω.

Since upj − up ∈ C(Ω) and limx→∂Ω u
p
j − up = −∞, there exists x0 ∈ Ω such that uj(x0)p − u(x0)

p =

m =: maxx∈Ω (uj(x)
p − u(x)p). If m > 0 then (−△|Ω)

s
(u− uj)(x0) ≥ m > 0: this is a contradiction, as

Definition 3 implies. Thus m ≤ 0 and uj ≤ u throughout Ω.

Theorem 37. For any p ∈

(
1 + s,

1

1− s

)
there exists a function u ∈ L1(Ω, δ(x)dx) solving

{
(−△|Ω)

s
u = −up in Ω

δ2−2su = +∞ on ∂Ω

both in a distributional and pointwise sense.
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Proof. Consider the sequence {uj}j∈N provided by problem 51: it is increasing and locally bounded
by Lemma 36, so it has a pointwise limit u ≤ u, where u is the function provided by Corollary 35.
Since p > 1 + s and u ≤ Cδ−2s/(p−1), then u ∈ L1(Ω, δ(x)dx). Pick now ψ ∈ C∞

c (Ω), and recall that
δ−1(−△|Ω)

s
ψ ∈ L∞(Ω): we have, by dominated convergence,

∫

Ω

uj(−△|Ω)
s
ψ −−−→

j↑∞

∫

Ω

u(−△|Ω)
s
ψ,

∫

Ω

upjψ −−−→
j↑∞

∫

Ω

upψ

so we deduce ∫

Ω

u(−△|Ω)
s
ψ = −

∫

Ω

upψ.

Note now that for any compact K ⊂⊂ Ω, applying Lemma 21 we get for any α ∈ (0, 2s)

‖uj‖Cα(K) ≤ C
(
‖uj‖

p
L∞(K) + ‖uj‖L1(Ω,δ(x)dx)

)
≤ C

(
‖u‖pL∞(K) + ‖u‖L1(Ω,δ(x)dx)

)

which means that {uj}j∈N
is equibounded and equicontinuous in C(K). By the Ascoli-Arzelà Theorem,

its pointwise limit u will be in C(K) too. Now, since

(−△|Ω)
s
u = −up in D′(Ω),

by bootstrapping the interior regularity in Lemma 21, we deduce u ∈ C∞(Ω). So, its spectral fractional
Laplacian is pointwise well-defined and the equation is satisfied in a pointwise sense. Also,

lim inf
x→∂Ω

u(x)

h1(x)
≥ lim inf

x→∂Ω

uj(x)

h1(x)
= j

and we obtain the desired boundary datum.

A Appendix

A.1 Another representation for the spectral fractional Laplacian

Lemma 38. For any u ∈ H(2s) and almost every x ∈ Ω, there holds

(−△|Ω)
s
u(x) = PV

∫

Ω

[u(x)− u(y)]J(x, y) dy + κ(x)u(x),

where J(x, y) and κ(x) are given by (4).

Proof. Assume that u = ϕj is an eigenfunction of the Dirichlet Laplacian associated to the eigenvalue
λj . Then, (−△|Ω)

s
u = λsju, e

t△|Ωu =
∫
Ω pΩ(t, ·, y)u(y) dy = e−tλju and for all x ∈ Ω

Γ(1− s)

s
(−△|Ω)

s
u(x) =

=

∫ ∞

0

(
u(x)− et△|Ωu(x)

) dt

t1+s
(54)

=

∫ ∞

0

(
u(x)−

∫

Ω

pΩ(t, x, y)u(y) dy

)
dt

t1+s

= lim
ǫ→0

∫ ∞

0

∫

Ω\B(x,ǫ)

pΩ(t, x, y)[u(x) − u(y)] dy
dt

t1+s
+

∫ ∞

0

u(x)

(
1−

∫

Ω

pΩ(t, x, y) dy

)
dt

t1+s

= PV

∫

Ω

[u(x)− u(y)]J(x, y) dy + κ(x)u(x) (55)

By linearity, equality holds on the linear span of the eigenvectors. Now, if u ∈ H(2s), a sequence {un}n∈N

of functions belonging to that span converges to u in H(2s). In particular, (−△|Ω)
sun converges to

(−△|Ω)
s
u in L2(Ω). Note also that for v ∈ L2(Ω),

s

Γ(1 − s)

∣∣∣∣
∫

Ω

∫ ∞

0

(
u(x)− et△|Ωu(x)

) dt

t1+s
· v(x) dx

∣∣∣∣ =
∣∣∣∣∣

+∞∑

k=1

λskûkv̂k

∣∣∣∣∣ ≤ ‖u‖H(2s)‖v‖L2(Ω)
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so that we may also pass to the limit in L2(Ω) when computing (54) along the sequence {un}n∈N
. By

the Fubini’s theorem, for almost every x ∈ Ω, all subsequent integrals are convergent and the identities
remain valid.

A.2 The reduction to the flat case

In this paragraph we are going to justify the computation of the asymptotic behaviour of integrals of the
type ∫

A∩Ω

F (δ(x), δ(y), |x − y|) dy as δ(x) ↓ 0,

where A is a fixed neighbourhood of x with A ∩ ∂Ω 6= ∅, by just looking at
∫ 1

0

dt

∫

B

dy′ F
(
δ(x), t,

√
|y′|2 + |t− δ(x)|2

)
.

The first thing to be proved is that

|x− y|2 ≍ |x0 − y0|
2 + |δ(x) − δ(y)|2,

where x0, y0 are respectively the projections of x, y on ∂Ω.

Lemma 39. There exists ε = ε(Ω) > 0 such that for any x ∈ Ω, x = x0 + δ(x)▽δ(x0), x0 ∈ ∂Ω, with
δ(x) < ε and any y ∈ Ω with δ(y) < ε and |y0 − x0| < ε

1

2

(
|x0 − y0|

2 + |δ(x) − δ(y)|2
)
≤ |x− y|2 ≤

3

2

(
|x0 − y0|

2 + |δ(x)− δ(y)|2
)
.

Proof. Call Ωε = {x ∈ Ω : δ(x) < ε}. Write x = x0 + δ(x)▽δ(x0), y = y0 + δ(y)▽δ(y0). Then

|x− y|2 = |x0 − y0|
2 + |δ(x)− δ(y)|2 + δ(y)2|▽δ(x0)− ▽δ(y0)|

2 + 2[δ(x)− δ(y)]〈x0 − y0,▽δ(x0)〉 +

+ 2δ(y)〈x0 − y0,▽δ(x0)− ▽δ(y0)〉+ 2δ(y)[δ(x)− δ(y)]〈▽δ(x0),▽δ(x0)− ▽δ(y0)〉. (56)

Since, for ε > 0 small, δ ∈ C1,1(Ωε) and

|▽δ(x)− ▽δ(y)|2 ≤ ‖δ‖2C1,1(Ωε)
|x− y|2

〈x0 − y0,▽δ(x0)〉 = O(|x0 − y0|
2)

|〈x0 − y0,▽δ(x0)− ▽δ(y0)〉| ≤ ‖δ‖C1,1(Ωε)|x0 − y0|
2

|δ(x)− δ(y)| = ‖δ‖C1,1(Ωε)|x− y|

|〈▽δ(x0),▽δ(x0)− ▽δ(y0)〉| ≤ ‖δ‖C1,1(Ωε)|x0 − y0|

The error term we obtained in (56) can be reabsorbed in the other ones by choosing ε > 0 small enough
to have

δ(y)2|▽δ(x0)− ▽δ(y0)|
2 + 2|δ(x)− δ(y)| · |〈x0 − y0,▽δ(x0)〉|+ 2δ(y)|〈x0 − y0,▽δ(x0)− ▽δ(y0)〉| +

+ 2δ(y)|δ(x) − δ(y)| · |〈▽δ(x0),▽δ(x0)− ▽δ(y0)〉| ≤
1

2

(
|x0 − y0|

2 + |δ(x) − δ(y)|2
)
.

Lemma 40. Let F : (0,+∞)3 → (0,+∞) be a continuous function, decreasing in the third variable.
and Ωε = {x ∈ Ω : δ(x) < ε}, with ε = ε(Ω) > 0 provided by the previous lemma. Consider x =
x0 + δ(x)▽δ(x0), x0 ∈ ∂Ω, and the neighbourhood A of the point x, defined by A = {y ∈ Ωε : y =
y0 + δ(y)▽δ(y0), |x0 − y0| < ε}. Then there exist constants 0 < c1 < c2, c1 = c1(Ω), c2 = c2(Ω) such that

c1

∫ ε

0

dt

∫

B′
ε

dy′ F
(
δ(x), t, c2

√
|y′|2 + |t− δ(x)|2

)
≤

∫

A

F (δ(x), δ(y), |x − y|) dy ≤

≤ c2

∫ ε

0

dt

∫

B′
ε

dy′ F
(
δ(x), t, c1

√
|y′|2 + |t− δ(x)|2

)
.

where the ’ superscript denotes objects that live in RN−1.
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Proof. By writing y = y0 + δ(y)▽δ(y0), y0 ∈ ∂Ω and using the Fubini’s Theorem, we can split the
integration into the variables y0 and t = δ(y):

∫

A

F (δ(x), δ(y), |x − y|) dy ≤

∫

Bε(x0)∩∂Ω

(∫ ε

0

F (δ(x), t, |x − y0 − t▽δ(y0)|) dt

)
dσ(y0).

Using the monotony of F and the above lemma, we get
∫

A

F (δ(x), δ(y), |x − y|) dy ≤

∫

Bε(x0)∩∂Ω

(∫ ε

0

F
(
δ(x), t, c

√
|x0 − y0|2 + |δ(x)− t|2

)
dt

)
dσ(y0)

where c is a universal constant. Representing Bε(x0)∩∂Ω via a diffeomorphism γ with a ball B′
ε ⊂ RN−1

centered at 0, we can transform the integration in the y0 variable into the integration ontoB′
ε. The volume

element |Dγ| will be bounded above and below by

0 < c1 ≤ |Dγ| ≤ c2,

in view of the smoothness assumptions on ∂Ω.
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