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ON THE FRACTIONAL LANE-EMDEN EQUATION

JUAN DÁVILA, LOUIS DUPAIGNE, AND JUNCHENG WEI

Abstract. We classify solutions of finite Morse index of the fractional Lane-
Emden equation

(−∆)su = |u|p−1u in R
n.

1. Introduction

Fix an integer n ≥ 1 and let pS(n) denote the classical Sobolev exponent:

pS(n) =







+∞ if n ≤ 2

n+ 2

n− 2
if n ≥ 3

A celebrated result of Gidas and Spruck [20] asserts that there is no positive solution
to the Lane-Emden equation

(1.1) −∆u = |u|p−1u in R
n,

whenever p ∈ (1, pS(n)). For p = pS(n), the same equation is known to have (up to
translation and rescaling) a unique positive solution, which is radial and explicit (see
Caffarelli-Gidas-Spruck [4]). Let now pc(n) > pS(n) denote the Joseph-Lundgren
exponent:

pc(n) =







+∞ if n ≤ 10

(n− 2)2 − 4n+ 8
√
n− 1

(n− 2)(n− 10)
if n ≥ 11

This exponent can be characterized as follows: for p ≥ pS(n), the explicit singular

solution us(x) = A|x|− 2
p−1 is unstable if and only if p < pc(n). It was proved

by Farina [18] that (1.1) has no nontrivial finite Morse index solution whenever
1 < p < pc(n), p 6= pS(n).

Through blow-up analysis, such Liouville-type theorems imply interior regularity
for solutions of a large class of semilinear elliptic equations: they are known to be
equivalent to universal estimates for solutions of

(1.2) − Lu = f(x, u,∇u) in Ω,

where L is a uniformly elliptic operator with smooth coefficients, the nonlinearity
f scales like |u|p−1u for large values of u, and Ω is an open set of Rn. For precise
statements, see the work of Polacik, Quittner and Souplet [26] in the subcritical
setting, as well as its adaptation to the supercritical case by Farina and two of the
authors [11].

In the present work, we are interested in understanding whether similar results
hold for equations involving a nonlocal diffusion operator, the simplest of which
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is perhaps the fractional laplacian. Given s ∈ (0, 1), the fractional version of the
Lane-Emden equation1 reads

(1.3) (−∆)su = |u|p−1u in R
n.

Here we have assumed that u ∈ C2σ(Rn), σ > s and

(1.4)

ˆ

Rn

|u(y)|
(1 + |y|)n+2s

dy < +∞,

so that the fractional laplacian of u

(−∆)su(x) := An,s

ˆ

Rn

u(x)− u(y)

|x− y|n+2s
dy

is well-defined (in the principal-value sense) at every point x ∈ R
n. The normalizing

constant An,s =
22s−1

πn/2

Γ(n+2s
2 )

|Γ(−s)| is of the order of s(1 − s) as s converges to either 0

or 1.
The aforementioned classification results of Gidas-Spruck and Caffarelli-Gidas-

Spruck have been generalized to the fractional setting (see Y. Li [24] and Chen-Li-
Ou [8]). The corresponding fractional Sobolev exponent is given by

pS(n) =







+∞ if n ≤ 2s

n+ 2s

n− 2s
if n > 2s

Our main result is the following Liouville-type theorem for the fractional Lane-
Emden equation.

Theorem 1.1. Assume that n ≥ 1 and 0 < s < σ < 1. Let u ∈ C2σ(Rn) ∩
L1(Rn, (1 + |y|)n+2sdy) be a solution to (1.3) which is stable outside a compact set
i.e. there exists R0 ≥ 0 such that for every ϕ ∈ C1

c (R
n \BR0

),

(1.5) p

ˆ

Rn

|u|p−1ϕ2 dx ≤ ‖ϕ‖2
Ḣs(Rn)

.

• If 1 < p < pS(n) or if pS(n) < p and

(1.6) p
Γ(n2 − s

p−1 )Γ(s+
s

p−1 )

Γ( s
p−1 )Γ(

n−2s
2 − s

p−1 )
>

Γ(n+2s
4 )2

Γ(n−2s
4 )2

,

then u ≡ 0;
• If p = pS(n), then u has finite energy i.e.

‖u‖2
Ḣs(Rn)

=

ˆ

Rn

|u|p+1 < +∞.

If in addition u is stable, then in fact u ≡ 0.

Remark 1. For p > pS(n), the function

us(x) = A|x|− 2s
p−1(1.7)

1Unlike local diffusion operators, local elliptic regularity for equations of the form (1.2) where
this time L is the generator of a general Markov diffusion, cannot be captured from the sole
understanding of the fractional Lane-Emden equation. For example, further investigations will be
needed for operators of Lévy symbol ψ(ξ) =

´

Sn−1 |ω · ξ|2sµ(dω), where µ is any finite symmetric

measure on the sphere Sn−1.
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where

Ap−1 = λ

(

n− 2s

2
− 2s

p− 1

)

and where

(1.8) λ(α) = 22s
Γ(n+2s+2α

4 )Γ(n+2s−2α
4 )

Γ(n−2s−2α
4 )Γ(n−2s+2α

4 )

is a singular solution to (1.3) (see the work by Montenegro and two of the authors
[12] for the case s = 1/2, and the work by Fall [16, Lemma 3.1] for the general
case). In virtue of the following Hardy inequality (due to Herbst [22])

Λn,s

ˆ

Rn

φ2

|x|2s dx ≤ ‖φ‖2
Ḣs(Rn)

with optimal constant given by

Λn,s = 22s
Γ(n+2s

4 )2

Γ(n−2s
4 )2

,

us is unstable if only if (1.6) holds. Let us also mention that regular radial solutions
in the case s = 1/2 were constructed by Chipot, Chlebik ad Shafrir [9]. Recently,
Harada [21] proved that for s = 1/2, condition (1.6) is the dividing line for the
asymptotic behavior of radial solutions to (1.3), extending thereby the classical
results of Joseph and Lundgren [23] to the fractional Lane-Emden equation in the
case s = 1/2. A similar technique as in [9] allows us to show that the condition
(1.6) is optimal. Indeed we have:

Theorem 1.2. Assume p > pS(n) and that (1.6) fails. Then there are radial
smooth solutions u > 0 with u(r) → 0 as r → ∞ of (1.3) that are stable.

It is by now standard knowledge that the fractional laplacian can be seen as a
Dirichlet-to-Neumann operator for a degenerate but local diffusion operator in the
higher-dimensional half-space R

n+1
+ :

Theorem 1.3 ([5, 25, 28]). Take s ∈ (0, 1), σ > s and u ∈ C2σ(Rn) ∩ L1(Rn, (1 +
|y|)n+2sdy). For X = (x, t) ∈ R

n+1
+ , let

ū(X) =

ˆ

Rn

P (X, y)u(y) dy,

where

P (X, y) = pn,s t
2s|X − y|−(n+2s)

and pn,s is chosen so that
´

Rn P (X, y) dy = 1. Then, ū ∈ C2(Rn+1
+ ) ∩ C(Rn+1

+ ),

t1−2s∂tū ∈ C(Rn+1
+ ) and














∇ · (t1−2s∇ū) = 0 in R
n+1
+ ,

ū = u on ∂Rn+1
+ ,

− lim
t→0

t1−2s∂tū = κs(−∆)su on ∂Rn+1
+ ,

where

(1.9) κs =
Γ(1− s)

22s−1Γ(s)
.
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Applying Theorem 1.3 to a solution of the fractional Lane-Emden equation, we
end up with the equation

(1.10)

{−∇ · (t1−2s∇ū) = 0 in R
n+1
+

− lim
t→0

t1−2s∂tū = κs|ū|p−1ū on ∂Rn+1
+

An essential ingredient in the proof of Theorem 1.1 is the following monotonicity
formula

Theorem 1.4. Take a solution to (1.10) ū ∈ C2(Rn+1
+ ) ∩ C(Rn+1

+ ) such that

t1−2s∂tū ∈ C(Rn+1
+ ). For x0 ∈ ∂Rn+1

+ , λ > 0, let

E(ū, x0;λ) =

λ2s
p+1

p−1
−n
(

1

2

ˆ

R
n+1

+
∩Bn+1(x0,λ)

t1−2s|∇ū|2 dx dt− κs
p+ 1

ˆ

∂Rn+1

+
∩Bn+1(x0,λ)

|ū|p+1 dx

)

+ λ2s
p+1

p−1
−n−1 s

p+ 1

ˆ

∂Bn+1(x0,λ)∩R
n+1

+

t1−2sū2 dσ.

Then, E is a nondecreasing function of λ. Furthermore,

dE

dλ
= λ2s

p+1

p−1
−n+1

ˆ

∂Bn+1(x0,λ)∩R
n+1

+

t1−2s

(

∂ū

∂r
+

2s

p− 1

ū

r

)2

dσ

Remark 2. In the above, Bn+1(x0, λ) denotes the euclidean ball in R
n+1 centered at

x0 of radius λ, σ the n-dimensional Hausdorff measure restricted to ∂Bn+1(x0, λ),
r = |X | the euclidean norm of a point X = (x, t) ∈ R

n+1
+ , and ∂r = ∇ · Xr the

corresponding radial derivative.

An analogous monotonicity formula has been derived by Fall and Felli [17] to
obtain unique continuation results for fractional equations. Previously, Caffarelli
and Silvestre derived an Almgren quotient formula for the fractional laplacian in [5]
and Caffarelli, Roquejoffre and Savin [6] obtained a related monotonicity formula
to study regularity of nonlocal minimal surfaces. Another monotonicity formula
for fractional problems was obtained by Cabré and Sire [3] and used by Frank,
Lenzmann and Silvestre [19].

The proof of Theorem 1.1 follows an approach used in our earlier work with
Kelei Wang [13] (see also [29]). First we derive suitable energy estimate (Section 2)
and handle the critical and subcritical cases (Section 3). In the supercritical case,
we make crucial use of a monotonicity formula Theorem 1.4, proved inSection 4.
Thanks to it, using a blown-down analysis (first three steps of Section 6), we prove
that the blow-down limit of a given solution is homogeneous. We then exclude
the existence of stable homogeneous singular solutions in the optimal range of p
(Section 5). Steps 5 and 6 of Section 6) are eventually devoted to prove that the
solution itself is trivial. Finally we prove Theorem 1.2 in Section 7.

2. Energy estimates

Lemma 2.1. Let u be a solution to (1.3). Assume that u is stable outside some
ball BnR0

⊂ R
n. Let η ∈ C∞

c (Rn \BnR0
) and for x ∈ R

n, define

(2.1) ρ(x) =

ˆ

Rn

(η(x) − η(y))2

|x− y|n+2s
dy
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Then,
ˆ

Rn

|u|p+1η2 dx +
1

p
‖uη‖2

Ḣs(Rn)
≤ An,s

p− 1

ˆ

Rn

u2ρ dx.

Proof. Multiply (1.3) by uη2. Then,
ˆ

Rn

|u|p+1η2 dx =

ˆ

Rn

(−∆)su uη2 dx

=
An,s

2

ˆ

Rn

ˆ

Rn

(u(x)− u(y))(u(x)η(x)2 − u(y)η(y)2)

|x− y|n+2s
dx dy

=
An,s

2

ˆ

Rn

ˆ

Rn

u2(x)η2(x) − u(x)u(y)(η2(x) + η2(y)) + u2(y)η2(y)

|x− y|n+2s
dx dy

=
An,s

2

ˆ

Rn

ˆ

Rn

(u(x)η(x) − u(y)η(y))2 − (η(x) − η(y))2u(x)u(y)

|x− y|n+2s
dx dy

= ‖uη‖2
Ḣs(Rn)

− An,s

2

ˆ

Rn

ˆ

Rn

(η(x) − η(y))2u(x)u(y)

|x− y|n+2s
dx dy

Using the inequality 2ab ≤ a2 + b2, we deduce that

(2.2) ‖uη‖2
Ḣs(Rn)

−
ˆ

Rn

|u|p+1η2 dx ≤ An,s

2

ˆ

Rn

u2ρ dx

Since u is stable, we deduce that

(p− 1)

ˆ

Rn

|u|p+1η2 dx ≤ An,s

2

ˆ

Rn

u2ρ dx

Going back to (2.2), it follows that

1

p
‖uη‖2

Ḣs(Rn)
+

ˆ

Rn

|u|p+1η2 dx ≤ An,s

p− 1

ˆ

Rn

u2ρ dx

�

Lemma 2.2. For m > n/2 and x ∈ R
n, let

(2.3) η(x) = (1 + |x|2)−m/2 and ρ(x) =

ˆ

Rn

(η(x) − η(y))2

|x− y|n+2s
dy

Then, there exists a constant C = C(n, s,m) > 0 such that

(2.4) C−1
(

1 + |x|2
)−n

2
−s ≤ ρ(x) ≤ C

(

1 + |x|2
)−n

2
−s
.

Proof. Let us prove the upper bound first. Since ρ is a continuous function, we
may always assume that |x| ≥ 1. Split the integral

ˆ

Rn

(η(x) − η(y))2

|x− y|n+2s
dy

in the regions |x − y| < |x|/2, |x|/2 ≤ |x − y| ≤ 2|x|, and |x − y| > 2|x|. When
|x− y| ≤ |x|/2,

|η(x) − η(y)| ≤ C(1 + |x|2)−m+1

2 |x− y|.
So,
ˆ

|x−y|≤|x|/2

(η(x) − η(y))2

|x− y|n+2s
dy ≤ C(1 + |x|2)−m−1

ˆ

|x−y|≤|x|/2
|x− y|2−n−2s dy

≤ C(1 + |x|2)−m−s ≤ C
(

1 + |x|2
)−n

2
−s
.
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When |x|/2 ≤ |x− y| ≤ 2|x|,
ˆ

|x|/2≤|x−y|≤2|x|

(η(x) − η(y))2

|x− y|n+2s
dy ≤ C|x|−n−2s

ˆ

|y|≤2|x|
(η(x)2 + η(y)2) dy

≤ C|x|−n−2s(|x|−2m+n + 1) ≤ C(1 + |x|2)−n
2
−s,

where we used the assumption m > n
2 . When |x − y| > 2|x|, then |y| ≥ |x| and

η(y) ≤ C(1 + |x|2)−m/2. Then,
ˆ

|x−y|>2|x|

(η(x) − η(y))2

|x− y|n+2s
dy ≤ C(1 + |x|2)−m

ˆ

|x−y|>2|x|

1

|x− y|n+2s
dy

≤ C(1 + |x|2)−m−s ≤ C(1 + |x|2)−n
2
−s.

Let us turn to the lower bound. Again, we may always assume that |x| ≥ 1. Then,

ρ(x) ≥
ˆ

|y|≤1/2

(η(y)− η(x))2

|x− y|n+2s
dy ≥

( |x|
2

)−(n+2s) ˆ

|y|≤1/2

(η(y)− 2−m/2)2 dy

and the estimate follows. �

Corollary 2.3. Let m > n/2, η given by (2.3), R ≥ R0 ≥ 1, ψ ∈ C∞(Rn) be such
that 0 ≤ ψ ≤ 1, ψ ≡ 0 on Bn1 and ψ ≡ 1 on R

n \Bn2 . Let

(2.5) ηR(x) = η
( x

R

)

ψ

(

x

R0

)

and ρR(x) =

ˆ

Rn

(ηR(x) − ηR(y))
2

|x− y|n+2s
dy

There exists a constant C = C(n, s,m,R0) > 0 such that for all |x| ≥ 3R0

ρR(x) ≤ Cη
( x

R

)2

|x|−(n+2s) +R−2sρ
( x

R

)

Proof. Fix x such that |x| ≥ 3R0. Using the definition of ηR and Young’s inequality,
we have

1

2
ρR(x) ≤ η

( x

R

)2
ˆ

Rn

(

ψ
(

x
R0

)

− ψ
(

y
R0

))2

|x− y|n+2s
dy +

ˆ

Rn

ψ

(

y

R0

)2 (η
(

x
R

)

− η
(

y
R

)

)2

|x− y|n+2s
dy

≤ η
( x

R

)2
ˆ

Bn
2R0

1

|x− y|n+2s
dy +

ˆ

Rn

(η
(

x
R

)

− η
(

y
R

)

)2

|x− y|n+2s
dy

≤ Cη
( x

R

)2

|x|−(n+2s) +R−2sρ
( x

R

)

and the result follows. �

Lemma 2.4. Let u be a solution of (1.3) which is stable outside a ball BnR0
. Take

ρR as in Corollary 2.3 with m ∈ (n2 ,
n
2 + s(p+1)

2 ). Then, there exists a constant
C = C(n, s,m, p,R0) > 0 such that for all R ≥ 3R0,

ˆ

Rn

u2ρR dx ≤ C

(

ˆ

Bn
3R0

u2ρR dx+Rn−2s p+1

p−1

)

.

Proof. By Corollary 2.3, if R ≥ |x| ≥ 3R0, then

ρR(x) ≤ C(|x|−n−2s +R−2s)
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and so
ˆ

Bn
R\Bn

3R0

ρR(x)
p+1

p−1 ηR(x)
− 4

p−1 dx ≤ CRn−2s p+1

p−1 .

Similarly, if |x| ≥ R ≥ 3R0, then

ρR(x) ≤ CR−2s

(

1 +
|x|2
R2

)−n
2
−s

and so

ρR(x)
p+1

p−1 ηR(x)
− 4

p−1 ≤ CR−2s p+1

p−1

(

1 +
|x|2
R2

)−n+2s
2

p+1

p−1
+ 2m

p−1

Since m ∈ (n2 ,
n
2 + sp+1

2 ), we have 2m
p−1 − n+2s

2
p+1
p−1 < −n

2 and so
ˆ

Rn\Bn
3R0

ρR(x)
p+1

p−1 ηR(x)
− 4

p−1 dx ≤ CRn−2s p+1

p−1 .

Now,
ˆ

Rn

u2ρR dx =

ˆ

Bn
3R0

u2ρR dx+

ˆ

Rn\Bn
3R0

u2ρR η
− 4

p+1

R η
4

p+1

R dx

≤
ˆ

Bn
3R0

u2ρR dx+

(
ˆ

Rn

|u|p+1η2R dx

)
2

p+1
(
ˆ

Rn

ρ
p+1

p−1

R η
− 4

p−1

R dx

)

p−1

p+1

≤
ˆ

Bn
3R0

u2ρR dx+ CR(n−2s p+1

p−1
) p−1

p+1

(
ˆ

Rn

|u|p+1η2R dx

)
2

p+1

By a standard approximation argument, Lemma 2.1 remains valid with η = ηR and
ρ = ρR and so the result follows. �

Lemma 2.5. Assume that p 6= n+2s
n−2s . Let u be a solution to (1.3) which is stable

outside a ball BnR0
and ū its extension, solving (1.10). Then, there exists a constant

C = C(n, p, s, R0, u) > 0 such that
ˆ

Bn+1

R

t1−2sū2 dxdt ≤ CRn+2(1−s)− 4s
p−1

for any R > 3R0.

Proof. According to Theorem 1.3,

ū(x, t) = pn,s

ˆ

Rn

u(z)
t2s

(|x− z|2 + t2)
n+2s

2

dz

so that

ū(x, t)2 ≤ pn,s

ˆ

Rn

u(z)2
t2s

(|x− z|2 + t2)
n+2s

2

dz.

So,

ˆ

Bn+1

R

t1−2sū2 dxdt ≤ pn,s

ˆ

|x|≤R,z∈Rn

u(z)2

(

ˆ R

0

t

(|x− z|2 + t2)
n+2s

2

dt

)

dzdx

≤ C

ˆ

|x|≤R,z∈Rn

u2(z)
{

(

|x− z|2
)−n

2
+1−s −

(

|x− z|2 +R2
)−n

2
+1−s}

dzdx



8 J. DÁVILA, L. DUPAIGNE, AND J. WEI

Split this last integral according to |x− z| < 2R or |x− z| ≥ 2R. Then,
ˆ

|x|≤R,|x−z|<2R

u2(z)
{

(

|x− z|2
)−n

2
+1−s −

(

|x− z|2 +R2
)−n

2
+1−s}

dzdx ≤
ˆ

|x|≤R,|x−z|<2R

u2(z)
(

|x− z|2
)−n

2
+1−s

dzdx ≤ CR2(1−s)
ˆ

Bn+1

3R

u2(z) dz ≤

CR2(1−s)
(
ˆ

|u|p+1η2R

)
2

p+1

(

ˆ

Bn+1

3R

η
− 4

p−1

R

)

p−1

p+1

≤

CR2(1−s)+n p−1

p+1

(
ˆ

u2(z)ρR(z) dz

)
2

p+1

≤ CRn+2(1−s)− 4s
p−1 ,

where we used Hölder’sin equality, then Lemma 2.1 and then Lemma 2.4. For the
region |x− z| ≥ 2R, the mean-value inequality implies that
ˆ

|x|≤R,|x−z|≥2R

u2(z)
{

(

|x− z|2
)−n

2
+1−s −

(

|x− z|2 +R2
)−n

2
+1−s}

dzdx ≤

CR2

ˆ

|x|≤R,|x−z|≥2R

u2(z)|x− z|−(n+2s) dzdx ≤ CRn+2

ˆ

|z|≥R
u2(z)|z|−(n+2s) dz

≤ CR2

ˆ

|z|≥R
u2ρ dz ≤ CRn+2(1−s)− 4s

p−1 ,

where we used again Corollary 2.3 in the penultimate inequality and Lemma 2.4 in
the last one. �

Lemma 2.6. Let u be a solution to (1.3) which is stable outside a ball BnR0
and

ū its extension, solving (1.10). Then, there exists a constant C = C(n, p, s, u) > 0
such that

ˆ

Bn+1

R ∩R
n+1

+

t1−2s|∇ū|2 dx dt +
ˆ

Bn+1

R ∩∂Rn+1

+

|u|p+1 dx ≤ CRn−2s p+1

p−1

Proof. The Lp+1 estimate follows from Lemmata 2.1 and 2.4. Now take a cut-off

function η ∈ C1
c (R

n+1
+ ) such that η = 1 on R

n+1
+ ∩ (Bn+1

R \ Bn+1
2R0

) and η = 0 on

Bn+1
R0

∪ (Rn+1
+ \Bn+1

2R ), and multiply equation (1.10) by ūη2. Then,

κs

ˆ

∂Rn+1

+

|ū|p+1η2 dx =

ˆ

R
n+1

+

t1−2s
{

∇ū · ∇(ūη2)
}

dx dt

=

ˆ

R
n+1

+

t1−2s
{

|∇(ūη)|2 − ū2|∇η|2
}

dx dt.(2.6)

Since u is stable outside Bn+1
R0

, so is ū and we deduce that

1

p

ˆ

R
n+1

+

t1−2s|∇(ūη)|2 dx dt ≥
ˆ

R
n+1

+

t1−2s
{

|∇(ūη)|2 − ū2|∇η|2
}

dx dt.

In other words,

p′
ˆ

R
n+1

+

t1−2sū2|∇η|2 dx dt ≥
ˆ

R
n+1

+

t1−2s|∇(ūη)|2 dx dt,(2.7)

where 1
p′ +

1
p = 1. We then apply Lemma 2.5. �
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3. The subcritical case

In this section, we prove Theorem 1.1 for 1 < p ≤ pS(n).

Proof. Take a solution u which is stable outside some ball BnR0
. Apply Lemma

2.4 and let R → +∞. Since p ≤ pS(n), we deduce that u ∈ Ḣs(Rn) ∩ Lp+1(Rn).
Multiplying the equation (1.3) by u and integrating, we deduce that

(3.1)

ˆ

Rn

|u|p+1 = ‖u‖2
Ḣs(Rn)

,

while multiplying by uλ given for λ > 0 and x ∈ R
n by

uλ(x) = u(λx)

yields
ˆ

Rn

|u|p−1uλ =

ˆ

Rn

(−∆)s/2u(−∆)s/2uλ = λs
ˆ

Rn

wwλ,

where w = (−∆)s/2u. Following Ros-Oton and Serra [27], we use the change of

variable y =
√
λx to deduce that

λs
ˆ

Rn

wwλ dx = λ
2s−n

2

ˆ

Rn

w
√
λw1/

√
λ dy

Hence,

− n

p+ 1

ˆ

Rn

|u|p+1 =

ˆ

Rn

x · ∇|u|p+1

p+ 1
=

ˆ

Rn

(|u|p−1u)x · ∇u =

d

dλ

∣

∣

∣

∣

λ=1

ˆ

Rn

|u|p−1uuλ =
d

dλ

∣

∣

∣

∣

λ=1

λ
2s−n

2

ˆ

Rn

w
√
λw1/

√
λ dy =

2s− n

2

ˆ

Rn

w2 +
d

dλ

∣

∣

∣

∣

λ=1

ˆ

Rn

w
√
λw1/

√
λ dy =

2s− n

2
‖u‖2

Ḣs(Rn)

In the last equality, we have used the fact that w ∈ C1(Rn), as follows by elliptic
regularity. We have just proved the following Pohozaev identity

n

p+ 1

ˆ

Rn

|u|p+1 =
n− 2s

2
‖u‖2

Ḣs(Rn)

For p < pS(n), the above identity together with (3.1) force u ≡ 0. For p = pS(n), we

are left with proving that there is no stable nontrivial solution. Since u ∈ Ḣs(Rn),
we may apply the stability inequlatiy (1.5) with test function ϕ = u, so that

p

ˆ

Rn

|u|p+1 ≤ ‖u‖2
Ḣs(Rn)

.

This contradicts (3.1) unless u ≡ 0. �

In the following sections, we present several tools to study the supercritical case.

4. The monotonicity formula

In this section, we prove Theorem 1.4.
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Proof. Since the equation is invariant under translation, it suffices to consider the
case where the center of the considered ball is the origin x0 = 0. Let

(4.1)

E1(ū;λ) =

λ2s
p+1

p−1
−n
(

ˆ

R
n+1

+
∩Bn+1

λ

t1−2s |∇ū|2
2

dx dt−
ˆ

∂Rn+1

+
∩Bn+1

λ

κs
p+ 1

|ū|p+1dx

)

For X ∈ R
n+1
+ , let also

(4.2) U(X ;λ) = λ
2s

p−1 ū(λX).

Then, U satisfies the three following properties: U solves (1.10),

(4.3) E1(ū;λ) = E1(U ; 1),

and, using subscripts to denote partial derivatives,

(4.4) λUλ =
2s

p− 1
U + rUr .

Differentiating the right-hand side of (4.3), we find

dE1

dλ
(ū;λ) =

ˆ

R
n+1

+
∩Bn+1

1

t1−2s∇U · ∇Uλ dx dt− κs

ˆ

∂Rn+1

+
∩Bn+1

1

|U |p−1Uλ dx.

Integrating by parts and then using (4.4),

dE1

dλ
(ū;λ) =

ˆ

∂Bn+1

1
∩R

n+1

+

t1−2sUrUλ dσ

= λ

ˆ

∂Bn+1

1
∩R

n+1

+

t1−2sU2
λ dσ − 2s

p− 1

ˆ

∂Bn+1

1
∩R

n+1

+

t1−2sUUλ dσ

= λ

ˆ

∂Bn+1

1
∩R

n+1

+

t1−2sU2
λ dσ − s

p− 1

(

ˆ

∂Bn+1

1
∩R

n+1

+

t1−2sU2 dσ

)

λ

Scaling back, the theorem follows. �

5. Homogeneous solutions

Theorem 5.1. Let ū be a stable homogeneous solution of (1.10). Assume that
p > n+2s

n−2s and

(5.1) p
Γ(n2 − s

p−1 )Γ(s+
s

p−1 )

Γ( s
p−1 )Γ(

n−2s
2 − s

p−1 )
>

Γ(n+2s
4 )2

Γ(n−2s
4 )2

.

Then, ū ≡ 0.

Proof. Take standard polar coordinates in R
n+1
+ : X = (x, t) = rθ, where r = |X |

and θ = X
|X| . Let θ1 = t

|X| denote the component of θ in the t direction and

Sn+ = {X ∈ R
n+1
+ : r = 1, θ1 > 0} denote the upper unit half-sphere.

Step 1. Let ū be a homogeneous solution of (1.10) i.e. assume that for some
ψ ∈ C2(Sn+),

ū(X) = r−
2s

p−1ψ(θ).
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Then,
ˆ

Sn
+

θ1−2s
1 |∇ψ|2 + β

ˆ

Sn
+

θ1−2s
1 ψ2 = κs

ˆ

∂Sn
+

|ψ|p+1,(5.2)

where κs is given by (1.9) and

β =
2s

p− 1

(

n− 2s− 2s

p− 1

)

.

Indeed, since ū solves (1.10) and is homogeneous, ψ solves






− div(θ1−2s
1 ∇ψ) + βθ1−2s

1 ψ = 0 on Sn+

− lim
θ1→0

θ1−2s
1 ∂θ1ψ = κs|ψ|p−1ψ on ∂Sn+,

(5.3)

Multiplying (5.3) by ψ and integrating, (5.2) follows.
Step 2. For all ϕ ∈ C1(Sn+),

κsp

ˆ

∂Sn
+

|ψ|p−1ϕ2 ≤
ˆ

Sn
+

θ1−2s
1 |∇ϕ|2 +

(

n− 2s

2

)2 ˆ

Sn
+

θ1−2s
1 ϕ2(5.4)

By definition, ū is stable if for all φ ∈ C1
c (R

n+1
+ ),

(5.5) κsp

ˆ

∂Rn+1

+

|ū|p−1φ2 dx ≤
ˆ

R
n+1

+

t1−2s|∇φ|2 dxdt

Choose a standard cut-off function ηǫ ∈ C1
c (R

∗
+) at the origin and at infinity i.e.

χ(ǫ,1/ǫ)(r) ≤ ηǫ(r) ≤ χ(ǫ/2,2/ǫ)(r). Let also ϕ ∈ C1(Sn+), apply (5.5) with

φ(X) = r−
n−2s

2 ηǫ(r)ϕ(θ) for X ∈ R
n+1
+ ,

and let ǫ→ 0. Inequality (5.4) follows.
Step 3. For α ∈ (0, n−2s

2 ), x ∈ R
n \ {0}, let

vα(x) = |x|−n−2s
2

+α

and v̄α its extension, as defined in Theorem 1.3. Then, v̄α is homogeneous i.e. there
exists φα ∈ C2(Sn+) such that for X ∈ R

n+1
+ \ {0},

v̄α(X) = r−
n−2s

2
+αφα(θ).

In addition, for all ϕ ∈ C1(Sn+),

(5.6)

ˆ

Sn
+

θ1−2s
1 |∇ϕ|2 +

(

(

n− 2s

2

)2

− α2

)

ˆ

Sn
+

θ1−2s
1 ϕ2

= κsλ(α)

ˆ

∂Sn
+

ϕ2 +

ˆ

Sn
+

θ1−2s
1 φ2α

∣

∣

∣

∣

∇
(

ϕ

φα

)∣

∣

∣

∣

2

Indeed, according to Fall [16, Lemma 3.1], v̄α is homogeneous. Using the calculus
identity stated by Fall-Felli in [17, Lemma 2.1], we get











− div(θ1−2s
1 ∇φα) +

(

(

n− 2s

2

)2

− α2

)

θ1−2s
1 φα = 0 on Sn+

φα = 1 on ∂Sn+.

(5.7)
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Multiply equation (5.7) by ϕ2/φα, integrate by parts, apply the calculus identity

∇φα · ∇ϕ2

φα
= |∇ϕ|2 −

∣

∣

∣

∣

∇ ϕ

φα

∣

∣

∣

∣

2

φ2α

and recall from Fall [16, Lemma 3.1] that

− lim
t→0

t1−2s∂tvα = κsλ(α)|x|−
n−2s

2
+α−2s,

where λ(α) is given by (1.8).
Step 4. For α ∈ (0, n−2s

2 )

φ0 ≤ φα on Sn+.(5.8)

Indeed, on Sn+,

div(θ1−2s
1 ∇φ0) =

(

n− 2s

2

)2

θ1−2s
1 φ0 ≥

(

(

n− 2s

2

)2

− α2

)

θ1−2s
1 φ0

so φ0 is a sub-solution of (5.7). By the maximum principle, the conclusion follows.
Step 5. End of proof. Fix α ∈ (0, n−2s

2 ) given by

α =
n− 2s

2
− 2s

p− 1

so that
(

n− 2s

2

)2

− α2 =
2s

p− 1

(

n− 2s− 2s

p− 1

)

= β,

where β is the constant appearing in (5.3).

Use the stability inequality (5.4) with ϕ = ψφ0

φα
:

(5.9) κsp

ˆ

∂Sn
+

|ψ|p+1 ≤
ˆ

Sn
+

θ1−2s
1

∣

∣

∣

∣

∇
(

ψφ0
φα

)∣

∣

∣

∣

2

+

(

n− 2s

2

)2 ˆ

Sn
+

θ1−2s
1

(

ψφ0
φα

)2

.

Note that a particular case of the identity (5.6) is

ˆ

Sn
+

θ1−2s
1 |∇ϕ|2 +

(

n− 2s

2

)2 ˆ

Sn
+

θ1−2s
1 ϕ2 = κsΛn,s

ˆ

∂Sn
+

ϕ2 +

ˆ

Sn
+

θ1−2s
1 φ20

∣

∣

∣

∣

∇
(

ϕ

φ0

)∣

∣

∣

∣

2

(5.10)

Using (5.10) (with ϕ = ψφ0

φα
), (5.9) becomes

κsp

ˆ

∂Sn
+

|ψ|p+1 ≤ κsΛn,s

ˆ

∂Sn
+

ψ2 +

ˆ

Sn
+

θ1−2s
1 φ20

∣

∣

∣

∣

∇
(

ψ

φα

)
∣

∣

∣

∣

2

.

By (5.8), we deduce that

κsp

ˆ

∂Sn
+

|ψ|p+1 ≤ κsΛn,s

ˆ

∂Sn
+

ψ2 +

ˆ

Sn
+

θ1−2s
1 φ2α

∣

∣

∣

∣

∇
(

ψ

φα

)∣

∣

∣

∣

2

.

Using again the identity (5.6), we deduce that

κsp

ˆ

∂Sn
+

|ψ|p+1 ≤ κs(Λn,s − λ(α))

ˆ

∂Sn
+

ψ2 +

ˆ

Sn
+

θ1−2s
1 |∇ψ|2 + β

ˆ

Sn
+

θ1−2s
1 ψ2
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Comparing with (5.2), it follows that

(p− 1)

ˆ

∂Sn
+

|ψ|p+1 ≤ (Λn,s − λ(α))

ˆ

∂Sn
+

ψ2.(5.11)

But from (5.2) and (5.6)
ˆ

∂Sn
+

|ψ|p+1 ≥ λ(α)

ˆ

∂Sn
+

ψ2

Combined with (5.11), we find that

λ(α)p ≤ Λn,s

unless ψ ≡ 0. �

6. Blow-down analysis

Proof of Theorem 1.1. Assume that p > pS(n). Take a solution u of (1.3) which is
stable outside the ball of radius R0 and let ū be its extension solving (1.10).
Step 1. limλ→+∞ E(ū, 0;λ) < +∞.

Since E is nondecreasing, it suffices to show that E(ū, 0;λ) is bounded. Write
E = E1 + E2, where E1 is given by (4.1) and

E2(ū;λ) = λ2s
p+1

p−1
−n−1 s

p+ 1

ˆ

∂Bn+1(0,λ)∩R
n+1

+

t1−2sū2 dσ

By Lemma 2.6, E1 is bounded. Since E is nondecreasing,

E(ū;λ) ≤ 1

λ

ˆ 2λ

λ

E(u; t) dt ≤ C + λ2s
p+1

p−1
−n−1

ˆ

Bn+1

2λ
∩R

n+1

+

t1−2sū2.

Applying Lemma 2.5, we deduce that E is bounded.

Step 2. There exists a sequence λi → +∞ such that (ūλi) converges weakly in
H1
loc(R

n+1
+ ; t1−2sdxdt) to a function ū∞.

This follows from the fact that (ūλi) is bounded in H1
loc(R

n+1
+ ; t1−2sdxdt) by

Lemma 2.6.

Step 3. ū∞ is homogeneous
To see this, apply the scale invariance of E, its finiteness and the monotonicity

formula: given R2 > R1 > 0,

0 = lim
i→+∞

E(ū;λiR2)− E(ū;λiR1)

= lim
i→+∞

E(ūλi ;R2)− E(ūλi ;R1)

≥ lim inf
i→+∞

ˆ

(Bn+1

R2
\Bn+1

R1
)∩R

n+1

+

t1−2sr2−n+
4s

p−1

(

2s

p− 1

ūλi

r
+
∂ūλi

∂r

)2

dx dt

≥
ˆ

(Bn+1

R2
\Bn+1

R1
)∩R

n+1

+

t1−2sr2−n+
4s

p−1

(

2s

p− 1

ū∞

r
+
∂ū∞

∂r

)2

dx dt

Note that in the last inequality we only used the weak convergence of (ūλi) to ū∞

in H1
loc(R

n+1
+ ; t1−2sdxdt). So,

2s

p− 1

ū∞

r
+
∂ū∞

∂r
= 0 a.e. in R

n+1
+ .
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And so, u∞ is homogeneous.

Step 4. ū∞ ≡ 0
Simply apply Theorem 5.1.

Step 5. (ūλi) converges strongly to zero in H1(Bn+1
R \Bn+1

ε ; t1−2sdxdt) and (uλi)

converges strongly to zero in Lp+1(Bn+1
R \ Bn+1

ε ) for all R > ǫ > 0. Indeed, by

Steps 2 and 3, (ūλi) is bounded in H1
loc(R

n+1
+ ; t1−2sdxdt) and converges weakly to

0. It follows that (ūλi) converges strongly to 0 in L2
loc(R

n+1
+ ; t1−2sdxdt). Indeed,

by the standard Rellich-Kondrachov theorem and a diagonal argument, passing to
a subsequence we obtain

ˆ

R
n+1

+
∩(Bn+1

R \A)

t1−2s|ūλi |2 dxdt → 0,

as i→ ∞, for any Bn+1
R = Bn+1

R (0) ⊂ R
n+1 and A of the form A = {(x, t) ∈ R

n+1
+ :

0 < t < r/2}, where R, r > 0. By [15, Theorem 1.2],
ˆ

R
n+1

+
∩Bn+1

r (x)

t1−2s|ūλi |2 dxdt ≤ Cr2
ˆ

R
n+1

+
∩Bn+1

r (x)

t1−2s|∇ūλi |2 dxdt

for any x ∈ ∂Rn+1
+ , |x| ≤ R, with a uniform constant C. Covering Bn+1

R ∩ A with

half balls Bn+1
r (x) ∩ R

n+1
+ , x ∈ ∂Rn+1

+ with finite overlap, we see that
ˆ

Bn+1

R ∩A
t1−2s|ūλi |2 dxdt ≤ Cr2

ˆ

Bn+1

R ∩A
t1−2s|∇ūλi |2 dxdt ≤ Cr2,

and from this we conclude that (ūλi) converges strongly to 0 in L2
loc(R

n+1
+ ; t1−2sdxdt).

Now, using (2.7), (ūλi) converges strongly to 0 in H1
loc(R

n+1
+ \ {0}; t1−2sdxdt)

and by (2.6), the convergence also holds in Lp+1
loc (Rn \ {0}).

Step 6. ū ≡ 0.
Indeed,

E1(ū;λ) = E1(ū
λ; 1) =

ˆ

R
n+1

+
∩Bn+1

1

t1−2s |∇ūλ|2
2

dx dt−
ˆ

∂Rn+1

+
∩Bn+1

1

κs
p+ 1

|ūλ|p+1dx

=

ˆ

R
n+1

+
∩Bn+1

ǫ

t1−2s |∇ūλ|2
2

dx dt −
ˆ

∂Rn+1

+
∩Bn+1

ǫ

κs
p+ 1

|ūλ|p+1dx+

ˆ

R
n+1

+
∩Bn+1

1
\Bn+1

ǫ

t1−2s |∇ūλ|2
2

dx dt−
ˆ

∂Rn+1

+
∩Bn+1

1
\Bn+1

ǫ

κs
p+ 1

|ūλ|p+1dx

= εn−2s p+1

p−1E1(ū;λε) +

ˆ

R
n+1

+
∩Bn+1

1
\Bn+1

ǫ

t1−2s |∇ūλ|2
2

dx dt−
ˆ

∂Rn+1

+
∩Bn+1

1
\Bn+1

ǫ

κs
p+ 1

|ūλ|p+1dx

≤ Cεn−2s p+1

p−1 +

ˆ

R
n+1

+
∩Bn+1

1
\Bn+1

ǫ

t1−2s |∇ūλ|2
2

dx dt−
ˆ

∂Rn+1

+
∩Bn+1

1
\Bn+1

ǫ

κs
p+ 1

|ūλ|p+1dx

Letting λ → +∞ and then ε → 0, we deduce that limλ→+∞ E1(ū;λ) = 0. Using
the monotonicity of E,

E(ū;λ) ≤ 1

λ

ˆ 2λ

λ

E(t) dt ≤ sup
[λ,2λ]

E1 + Cλ−n−1+2s p+1

p−1

ˆ

Bn+1

2λ \Bn+1

λ

ū2



ON THE FRACTIONAL LANE-EMDEN EQUATION 15

and so limλ→+∞E(ū;λ) = 0. Since u is smooth, we also have E(ū; 0) = 0. Since
E is monotone, E ≡ 0 and so ū must be homogeneous, a contradiction unless
u ≡ 0. �

7. Construction of radial entire stable solutions

Let ūs denote the extension of the singular solution us (1.7) to R
n+1
+ defined by

ūs(X) =

ˆ

Rn

P (X, y)u(y) dy.

Let Bn+1
1 denote the unit ball in R

n+1 and for λ ≥ 0, consider

(7.1)















div (t1−2s∇u) = 0 in Bn+1
1 ∩ R

n+1
+

u = λūs on ∂Bn+1
1 ∩ R

n+1
+

− lim
t→0

(t1−2sut) = κsu
p on Bn+1

1 ∩ {t = 0}.

Take λ ∈ (0, 1). Since us is a positive supersolution of (7.1), there exists a minimal
solution u = uλ. By minimality, the family (uλ) is nondecreasing and uλ is axially
symmetric, that is, uλ(x, t) = uλ(r, t) with r = |x| ∈ [0, 1]. In addition, for a fixed
value λ ∈ (0, 1), uλ is bounded, as can be proved by the truncation method of
[1], see also [10] and radially decreasing by the moving plane method (see [7] for a
similar setting). From now on let us assume that pS(n) < p and

p
Γ(n2 − s

p−1 )Γ(s+
s

p−1 )

Γ( s
p−1 )Γ(

n−2s
2 − s

p−1 )
≤ Γ(n+2s

4 )2

Γ(n−2s
4 )2

,

which means that the singular solution us is stable. Then, uλ ↑ us as λ ↑ 1, using
the classical convexity argument in [2] (see also Section 3.2.2 in [14]). Let λj ↑ 1
and

mj = ‖uλj‖L∞ = uλj (0), Rj = m
p−1

2s
j ,

so that mj , Rj → ∞ as j → ∞. Set

vj(x) = m−1
j uλj (x/Rj).

Then 0 ≤ vj ≤ 1 is a bounded solution of














div (t1−2s∇vj) = 0 in Bn+1
Rj

∩R
n+1
+

vj = λj ūs on ∂Bn+1
Rj

∩ R
n+1
+

− lim
t→0

(t1−2s(vj)t) = κsv
p
j on Bn+1

Rj
∩ {t = 0}.

Moreover vj ≤ ūs in Bn+1
Rj

∩ R
n+1
+ and vj(0) = 1. Using elliptic estimates we find

(for a subsequence) that (vj) converges uniformly on compact sets of R
n+1

+ to a
function v that is axially symmetric and solves

{

div (t1−2s∇v) = 0 in R
n+1
+

− lim
t→0

(t1−2svt) = κsv
p on R

n × {0}.

Moreover 0 ≤ v ≤ 1, v(0) = 1 and v ≤ ūs. This v restricted to R
n×{0} is a radial,

bounded, smooth solution of (1.3) and from v ≤ ūs we deduce that v is stable.
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