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Exact integration for products of power of barycentric coordinates over d-simplexes in R n

Exact integral computation over a d-simplex in R n for products of powers of its barycentric coordinates is done in [9] by using mathematical induction and coordinate mappings. In this note we give a new proof using Laplace transformations without mathematical induction.

Local shape functions of a large variety of nite element on a d-simplex K Ă R n can be expressed in function of the barycentric coordinates tλ 0 , . . . , λ d u of K and their derivatives (see [START_REF] Arnold | Geometric decompositions and local bases for spaces of nite element dierential forms[END_REF] for examples).

In [START_REF] Vermolen | On an integration rule for products of barycentric coordinates over simplexes in rn[END_REF], the authors give a proof of the magic formula: let ν ν ν " pν 0 , . . . , ν d q P N d`1 , then ż K d ź i"0 λ νi i pq q qqdq q q " d!|K|

d ś i"0 ν i ! pd `d ř l"0 ν i q! ( 1 
)
where |K| is the volume of K. In their proof, mathematical induction and coordinate mappings are mainly used. In this note we give a new proof of this formula using Laplace transformations without mathematical induction. Firstly we recall denitions of a d-simplex in R n and of its barycentric coordinates. Therafter we introduce Laplace transforms to compute the volume of the unit d-simplex K Ă R d and the magic formula (1) over K. In the last section, we propose to compute the gradients of the barycentric coordinates by solving linear systems. We also present the mapping of an integral over a d-simplex in R n to the reference unit d-simplex, allowing to proove [START_REF] Arnold | Geometric decompositions and local bases for spaces of nite element dierential forms[END_REF]. [START_REF] Arnold | Geometric decompositions and local bases for spaces of nite element dierential forms[END_REF] 

Notations and denitions

Let n P N ˚be the space dimension and d P v0, nw. We recall the denition of a d-simplex in R n as well as its barycentric coordinates. Denition 1 (d-simplex) A d-simplex K Ă R n is the convex hull of pd `1q points q q q q q q q q q 0 , . . . ,q q q q q q q q q d of R n which form the vertices of K.

K " # q q q P R n | q q q " d ÿ i"0 θ i q q q q q q q q q i , with @i P v0, dw, θ i ě 0, and

d ÿ i"0 θ i " 1 + . (2) 
For example, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. It will be always assumed that a d-simplex is not degenerated, i.e., the set of vectors tq q q q q q q q q i ´q q q q q q q q q 0 u d i"1 is linearly independent.

Denition 2 (Barycentric coordinates) Let K Ă R n be a non-degenerate d-simplex and tq q q q q q q q q i u d i"0 its vertices. The parametrization of K with a convex combination of the vertices reads as follows K " # q q q P R n | q q q " d ÿ i"0 λ i pq q qqq q q q q q q q q i , with @i P v0, dw, λ i pq q qq ě 0, and

d ÿ i"0 λ i pq q qq " 1 + . (3) 
The coecients λ 0 pq q qq, . . . , λ d pq q qq are called the barycentric coordinates on K of q q q.

As immediat property, the barycentric coordinates on K satisfy λ i pq q q q q q q q q j q " δ i,j , @pi, jq P v0, dw.

2 Some results on the unit d-simplex

The unit d-simplex Kd Ă R d is dened by the d `1 vertices q q q q q q q q q 0 , q q q q q q q q q 1 , ¨¨¨, q q q q q q q q q d ( " 0 0 0, ê ê ê1 , ¨¨¨, ê ê êd ( where ê ê ê1 , . . . , ê ê êd ( is the standard basis of R d . We have Kd "

# q q q P R d | q q q " d ÿ i"0
λi pq q qqq q q q q q q q q i , with λi pq q qq ě 0, and

d ÿ i"0
λi pq q qq " 1

+ . (5) 
As immediat property, the barycentric coordinates p λi q d i"0 on Kd satisfy λi pq q q q q q q q q j q " δ i,j , @pi, jq P v0, dw.

and are explicitly given with q q q " px 1 , ¨¨¨, x d q t P Kd by λ0 pq q qq " 1 ´d ÿ

i"1

x i and @i P v1, dw, λi pq q qq " x i .

Indeed, as q q q q q q q q q 0 " 0 0 0, we have q q q " d ÿ i"0 λi pq q qqq q q q q q q q q i " d ÿ i"1 q q q q q q q q q i λi pq q qq From q q q q q q q q q i " ê ê êi , @i P v1, dw, we obtain d ÿ i"1 q q q q q q q q q i λi pq q qq " ¨q q q q q q q q q 1 ¨¨¨q q q q q q q q q d '¨λ 1 pq q qq . . . λd pq q qq ‹ '" I d ¨λ 1 pq q qq . . . λd pq q qq ‹ '" ¨λ 1 pq q qq . . . λd pq q qq ‹ ' and thus q q q " ¨x1 . . .

x d ‹ '" ¨λ 1 pq q qq . . . λd pq q qq ‹ '.

From (5), we have

d ÿ i"0
λi pq q qq " 1 and thus λ0 pq q qq " 1 ´d ÿ

i"1

λi pq q qq " 1 ´d ÿ

i"1

x i .

unit d-simplex volume

There are several ways to compute the volume | K| of the d-simplex K Ă R d which is given by the following integral:

| K| " ż K 1dq q q " ż 1 0 ż 1´x1 0 ż 1´x1´x2 0 . . . ż 1´px1`...`x d´1 q 0 1dx d . . . dx 3 dx 2 dx 1 .
An elegant way to perform this integration is explained in [START_REF] Jaynes | Probability Theory The Logic Of Science Edition 1[END_REF], section 18.10, and uses a Laplace transform. To use this method, we note that

K " R d `X t1 ´px 1 `. . . `xd q ě 0u. (8) 
So we also have

| K| " ż R d `Xt1´px1`...`x d qě0u 1dx d . . . dx 1 .
By using a dirac function and extending the integration domain to R d`1 `, we also have

| K| " ż R d`1 `δpx 1 `. . . `xd `xd`1 ´1qdx d`1 dx d . . . dx 1
To use the Laplace transform theory, we dene the function f by

f ptq " ż R d`1 `δpx 1 `. . . `xd `xd`1 ´tqdx d`1 dx d . . . dx 1 so that | K| " f p1q. The Laplace transform of f is given by Lpf qpsq " ż 8 0 f ptqe ´st dt " ż R d`1 `ˆż 8 0 δpx 1 `. . . `xd `xd`1 ´tqe ´st dt ˙dx d`1 dx d . . . dx 1 " ż R d`1 `expp´s d`1 ÿ i"1 x i qdx d`1 dx d . . . dx 1 " d`1 ź i"1 ż 8 0 expp´sx i qdx i " 1 s d`1 .
By using the inverse Laplace transform table (see [START_REF] Schi | The Laplace Transform[END_REF] for example), we have

L -1 ps Þ Ñ d! s d`1 qptq " t d .
As f " L -1 ˝Lpf q and by linearity of the inverse Laplace transform we obtain

f ptq " t d d! .
So the volume of the unit d-simplex is

| K| " 1 d! (9) 
2.2

Magic formula

Let ν ν ν " pν 0 , . . . , ν d q P N d`1 . The magic formula is given by

ż K d ź i"0 λνi i pq q qqdq q q " ś d i"0 ν i ! pd `řd i"0 ν i q! (10)
This formula is often used in P 1 -Lagrange nite element methods because P 1 -Lagrange basis functions on a d-simplex are the associated barycentic coordinates. For example, one can refer to [START_REF] Quarteroni | Numerical models for dierential problems[END_REF] (section 8.2.1, page 179, formula p8.3q), [START_REF] Vermolen | On an integration rule for products of barycentric coordinates over simplexes in rn[END_REF], [START_REF] Frey | Chapter 7. the nite element approximation[END_REF] section 7.3.3 page 126, [START_REF] Eisenberg | On nite element integration in natural co-ordinates[END_REF] for d P v1, 3w, [START_REF] Brenner | The Mathematical Theory of Finite Element Methods[END_REF] as exercise for d " 2 and d " 3. In this section, we propose a proof of this formula using Laplace transform theory. Let Îpνq denote the integral of (10). The barycentic coordinates λi are given in (7) and so with q q q " px 1 , . . . , x d q and using ( 8) we obtain

Îpνq " ż K p1 ´d ÿ i"1 x i q ν0 d ź i"1 x νi i dx d . . . dx 1 " ż R d `Xt1´px1`...`x d qě0u p1 ´d ÿ i"1 x i q ν0 d ź i"1
x νi i dx d . . . dx 1

From section 2.1, by using a dirac function and by extending the integration domain to R d`1 `we obtain with

ν d`1 " ν 0 Îpνq " ż R d`1 `δpx 1 `. . . `xd `xd`1 ´1qx ν0 d`1 d ź i"1 x νi i dx d`1 dx d . . . dx 1 " ż R d`1 `δpx 1 `. . . `xd `xd`1 ´1q d`1 ź i"1 x νi i dx d`1 dx d . . . dx 1
To use the Laplace transform theory, we dene the function f ν ν ν by

f ν ν ν ptq " ż R d`1 `δpx 1 `. . . `xd `xd`1 ´tq d`1 ź i"1
x νi i dx d`1 dx d . . . dx 1 so that Îpνq " f ν ν ν p1q. The Laplace transform of f ν ν ν is given by Lpf ν ν ν qpsq "

ż 8 0 f ν ν ν ptqe ´st dt " ż R d`1 `ˆż 8 0 δpx 1 `. . . `xd `xd`1 ´tqe ´st dt ˙d`1 ź i"1 x νi i dx d`1 dx d . . . dx 1 " ż R d`1 `expp´s d`1 ÿ i"1 x i q d`1 ź i"1 x νi i dx d`1 dx d . . . dx 1 " d`1 ź i"1 ż 8 0 x νi i expp´sx i qdx i " d`1 ź i"1 Lpt Þ Ñ t νi qpsq
In a classical Laplace transform table (see [START_REF] Schi | The Laplace Transform[END_REF] for example), we have

Lpt Þ Ñ t k k! qpsq " 1 s k`1
and by linearity of the Laplace transform

Lpt Þ Ñ t k qpsq " k! s k`1 .

So we obtain

Lpf ν ν ν qpsq " d`1 ź i"1 ν i ! s νi`1 " ś d`1 i"1 ν i ! s d`1`ř d`1 i"1 νi
By using the inverse Laplace transform table, we have

L -1 ps Þ Ñ 1 s k qptq " t k´1 k ´1 .
With the linearity of the inverse Laplace transform we obtain

f ν ν ν ptq " L -1 pLpf ν ν ν qpsqqptq " ś d`1 i"1 ν i ! pd `řd`1 i"1 ν i q! t d`ř d`1 i"1 νi .
As Îpνq " f ν ν ν p1q and ν d`1 " ν 0 , the equation ( 10) is proved.

3 Some results on a d-simplex in R n

3.1

Gradients of Barycentric coordinates on a d-simplex

Lemma 3 Let K Ă R n be a non-degenerate d-simplex and and tq q q q q q q q q i u d i"0 its vertices. The barycentric coordinates pλ i pq q qqq d i"0 are solution of the linear system

¨1 1 ¨¨¨1 0 . . . A t K A K 0 ‹ ‹ ‹ ' ¨λ0 pq q qq λ 1 pq q qq . . . λ d pq q qq ‹ ‹ ‹ ‹ ' "
¨1 A K pq q q ´q q q q q q q q q 0 q ‹ ‹ '

where A K P M n,d pRq is dened by A K " ¨q q q q q q q q q 1 ´q q q q q q q q q 0 ¨¨¨q q q q q q q q q d ´q q q q q q q q q 0 ' (12)

The barycentric coordinates are multivariate polynomials of rst degree and their gradients are given by

`∇ ∇ ∇ λ 1 pq q qq ¨¨¨∇ ∇ ∇ λ d pq q qq ˘" A K pA t K A K q -1 (13) 
and

∇ ∇ ∇ λ 0 pq q qq " ´d ÿ i"1 ∇ ∇ ∇ λ i pq q qq. (14) 
Proof: As ř d i"0 λ i pq q qq " 1, we have q q q " d ÿ i"0 λ i pq q qqq q q q q q q q q i ùñ q q q ´q q q q q q q q q 0 " d ÿ i"1 pq q q q q q q q q i ´q q q q q q q q q 0 qλ i pq q qq " A K ¨λ1 pq q qq . . .

λ d pq q qq ‹ '
Due to linear independence of tq q q q q q q q q i ´q q q q q q q q q 0 u d i"1 ,

H K def " A t K A K P M d,d pRq (15) 
is a regular matrix and the barycentric coordinates are solution of the linear system

A t K A K
¨λ1 pq q qq . . . λ d pq q qq ‹ '" A t K pq q q ´q q q q q q q q q 0 q and d ÿ i"0 λ i pq q qq " 1.

In matrix form these equations can be written as (11) and we deduce that the barycentric coordinates λ i are multivariate polynomials of rst degree. So their gradients are constants on K.

The ane map/transformation F K from the unit d-simplex K Ă R d to K Ă R n is given by q q q " A K q q q `q q q q q q q q q 0 " F K pq q qq. (16) So we have A t K pq q q ´q q q q q q q q q 0 q " A t K A K q q q " H K q q q and thus F -1 K : K Ă R n ÝÑ K Ă R d is dened by q q q " H -1 K A t K pq q q ´q q q q q q q q q 0 q " F -1 K pq q qq. (17

)
So we have λ i pq q qq " p λi ˝F-1 K qpq q qq and λi pq q qq " pλ i ˝FK qpq q qq (18)

One can remark that if d " n then A K is a regular square matrix and H -1

K A t K " A -1 K .
Now, we may compute partial derivative of λ i and @i P v0, dw, @j P v1, nw, we obtain with q q q " px 1 , . . . , xd q and q q q " px 1 , . . . , x n q Bλ i Bx j pq q qq "

d ÿ l"1 B λi Bx j pF -1 K pq q qqq BF -1 K,l Bx j pq q qq From (17), denoting B K " H -1 K A t K P M d,m pRq gives BF -1 K,l
Bxj pq q qq " pB K q l,j . The barycentric coordinates are polynomials of rst degree, so their gradients are constants and we obtain

∇ ∇ ∇ λ i " B t K ∇ ∇ ∇ λi (in fact B K is the Jacobian matrix of F -1 K ).
The matrix H K is regular and symmetric, so B t K " A K H -1 K and we obtain

∇ ∇ ∇ λ i " A K H -1 K ∇ ∇ ∇ λi . (19) 
From ( 7), we deduced that

´∇ ∇ ∇ λ1 ¨¨¨∇ ∇ ∇ λd ¯" I d (20) 
and thus

`∇ ∇ ∇ λ 1 pq q qq ¨¨¨∇ ∇ ∇ λ d pq q qq ˘" A K H -1 K ´∇ ∇ ∇ λ1 ¨¨¨∇ ∇ ∇ λd " A K H -1 K .
As ř d i"0 λ i pq q qq " 1, we immediately have

∇ ∇ ∇ λ 0 pq q qq " ´d ÿ i"1 ∇ ∇ ∇ λ i pq q qq.
From (13) and ( 14), we immediatly have: Remark 4 The gradients of the barycentric coordinates are linear combinations of tq q q q q q q q q 1 ´q q q q q q q q q 0 , . . . ,q q q q q q q q q d ´q q q q q q q q q 0 u.

3.2

Integration over a d-simplex

If K is a non-degenerated d-simplex in R d , from (16) we have J F K pq q qq " A K .
Then A K is a regular square matrix and we have the classical formula:

ż K f pq q qqdq q q " |detpA K q| ż K f ˝FK pq q qqdq q q (21) 
The following theorem extend this result to d-simplex in R n , with 1 ď d ď n.

Theorem 5 Let K Ă R n be a non-degenerated d-simplex and f : K ÝÑ R.

ż K f pq q qqdq q q " ˇˇdetpA t K A K q ˇˇ1{2 ż K f ˝FK pq q qqdq q q (22)
where K is the unit d-simplex in R n , A K P M d,n pRq is dened by A K " ´q q q q q q q q q 1 ´q q q q q q q q q 0 q q q q q q q q q 2 ´q q q q q q q q q 0 ¨¨¨q q q q q q q q q d ´q q q q q q q q q 0 ¯(23)

and F K : K ÝÑ K is given by F K pq q qq " A K q q q `q q q q q q q q q 0 (24)

Proof: The set v v v 1 , . . . , v v v d (
is linearly independent so we can extend it to a basis v v v 1 , . . . , v v v n ( . We denote by A P M n,n pRq the matrix such that the i-th column is the vector v v v i for all i P v1, nw. So we have

A " ´AK v v v d`1 ¨¨¨v v v n ¯(25)
By the QR-factorization theorem apply to the matrix A P M n pRq, there is an orthogonal matrix Q P M n pRq and a regular upper triangular matrix R P M n pRq such that A " QR So we have

Q t A " R
and we dene the matrix Ā P M n,d pRq to be the rst d columns of R:

Ā " Q t A K .
We can also note that Ā " ´q q q q q q q q q 1 ´q q q q q q q q q 0 q q q q q q q q q 2 ´q q q q q q q q q 0 ¨¨¨q q q q q q q q q d ´q q q q q q q q q 0 ¯" ´q q q q q q q q q 1 q q q q q q q q q 2 ¨¨¨q q q q q q q q q d ¯.

Let F : R n ÝÑ R n be the bijective function dened by Fpx x xq " Q t px x x ´q q q q q q q q q 0 q " x x x (26) and q q q q q q q q q i " Fpq q q q q q q q q i q " Q t pq q q q q q q q q i ´q q q q q q q q q 0 q, @i P v0, dw.

By construction q q q q q q q q q 0 " 0 0 0 and, @i P v1, dw, q q q q q q q q q i is the i-th column of the upper triangular matrix R. So we have @i P v0, dw, q q q q q q q q q i P Vectpe e e 1 , . . . , e e e d q

where e e e 1 , . . . , e e e n ( is the standard basis of R n . The set q q q q q q q q q 0 , . . . , q q q q q q q q q d ( are the vertices of the d-simplex K " FpKq and we deduce K Ă Vectpe e e 1 , . . . , e e e d q.

(27)

By change of variables, we obtain ż K f pq q qqdq q q " ż K f ˝F -1 pq q qq| detpJ F -1 pq q qqq|dq q q where J F -1 is the Jacobian matrix of F-1 . From (26), we have J F -1 pq q qq " Q and as Q is an orthogonal matrix, detpJ F -1 pq q qqq " 1. So we obtain ż K f pq q qqdq q q " ż K f ˝F -1 pq q qqdq q q.

(28)

Let P P M d,n pRq dened by P " `Id O d,n´d ȃnd @i P v0, dw, q q q q q q q q q i " Pq q q q q q q q q i P R d .

From (27), we deduce @i P v0, dw, q q q q q q q q q i " P t q q q q q q q q q i " ˆq q q q q q q q q i 0 0 0 ˙.

Let ḡ " f ˝F -1 and K be the d-simplex in R d with vertices q q q q q q q q q i , i P v0, dw. We denote by P : K Ă R d ÝÑ K Ă R n the application dened by Pp q q qq " P t q q q. We denote by ḡ : K ÝÑ R the application dened by ḡp q q qq " ḡ ˝Pp q q qq " ḡˆq q q 0 0 0 ˙.

3.3

Volume of a d-simplex

The volume/measure of the d-simplex K Ă R n is given by |K| " ż K 1dq q q (33)

Using formula (22) with f " 1 gives

|K| " |detpA t K A K q| 1{2 ż K 1dq q q " |detpA t K A K q| 1{2 | K|.
From ( 9), we nally obtain

|K| " |detpA t K A K q| 1{2 d! . (34) 
In [START_REF] Hanson | Geometry for n-Dimensional Graphics[END_REF] this formula is proved with geometrical arguments. We can also remark that if d " n then A K is a square matrix and we obtain the classical formula

|K| " |detpA K q| d! . ( 35 
)

Magic formula

In this section an exact computation of the integral over a d-simplex K Ă R n for products of power of its barycentric coordinates given by ( 1) is proved by using previous results obtained by Laplace transforms.

Using formula (22) with f pq q qq " ś d i"0 λ νi i pq q qq gives ż K d ź i"0 λ νi i pq q qqdq q q " |detpA t K A K q| 1{2 ż K d ź i"0 pλ i ˝FK pq q qqq νi dq q q

From (18) and (34), we obtain

ż K d ź i"0
λ νi i pq q qqdq q q " d!|K| ż K d ź i"0 λνi i pq q qqdq q q

Using formula (10) gives [START_REF] Arnold | Geometric decompositions and local bases for spaces of nite element dierential forms[END_REF] 
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So we obtain ż K ḡpq q qqdq q q " ż K ḡp q q qqd q q q (29)

Let Ā P M d pRq be the matrix dened by Ā " ´q q q q q q q q q 1 ´q q q q q q q q q 0 q q q q q q q q q 2 ´q q q q q q q q q 0 ¨¨¨q q q q q q q q q d ´q q q q q q q q q 0 ¯.

We can remark that Ā " P Ā and Ā " P t Ā.

Let F : K ÝÑ K the bijective function dened by Fpq q qq " Āq q q `q q q q q q q q q 0

We can now apply the classical change of variables ż K ḡp q q qqd q q q " ż K ḡ ˝F pq q qq| detpJ F pq q qqq|dq q q "| detp Āq| ż K ḡ ˝F pq q qqdq q q To resume from ( 22) and (29), we have ż K f pq q qqdq q q " | detp Āq| ż K ḡ ˝F pq q qqdq q q (31)

We can note that ḡ ˝F " f ˝F -1 ˝P ˝F Let F K " F-1 ˝P ˝F , we have as expected F K pq q qq " F-1 ˝P ˝F pq q qq " F-1 pP t p Āq q qqq " F-1 p Āq q qq " Q Āq q q `q q q q q q q q q 0 " A K q q q `q q q q q q q q q 0 . and we obtain ż K f pq q qqdq q q " | detp Āq| ż K f ˝FK pq q qqdq q q (32)

To obtain formula (22), it remains to prove that | detp Āq| " | detpA t K A K q| 1{2 . We have

As Ā is a square matrix, we have detp Āt Āq " detp Āq 2 and thus