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ABSTRACT

Automatic analysis of Sentinel image time series is rec-
ommended for monitoring agricultural land use in Europe.
To improve classification capacities, we propose a tempo-
ral structured classification combining Sentinel images and
former vintages of the Land-Parcel Identification System.
Inter-annual crop rotations are learned and combined with the
satellite images using a Conditional Random Field. The pro-
posed methodology is tested on a 233 km2 study area located
in France and with a 25 categories national nomenclature.
The classification results are globally improved.

Index Terms— Classification, Temporal regularization,
Conditional Random Fields, Agriculture, Monitoring, Sen-
tinel.

1. INTRODUCTION

Sentinel image time series exhibit unprecedented character-
istics that are perfectly tailored with agriculture monitoring.
Spatial resolution of both optical and radar images are very
consistent with a parcel-level approach. More remarkably,
the high temporal frequency of acquisition (5-6 days) and the
fact that this program is at least maintained until 2030 pave
the way to chronicle short and long-term evolutions. In Eu-
rope, several use-cases for agricultural monitoring with Sen-
tinel images have been proposed [1] such as for example crop
monitoring, controlling Common Agricultural Policy (CAP)
payments with remote sensing, updating and quality control
of the Land Parcel Identification System (LPIS) or precision
farming at the farm-level. In the LPIS, the information on
the agricultural parcels (cover types and areas) are usually
derived from annual declaration by the farmers followed by
manual controls by national paying agencies.

In this context, recent studies have assessed the classifi-
cation accuracy that can be obtained with Sentinel images on
agricultural land covers [2, 3, 4, 5]. However, in all of them
the nomenclature is restricted to few and most frequent annual
crops. Classes known to be challenging to determine with re-
mote sensing such as permanent grassland or permanent crops
are not taken into account. Furthermore when a parcel-based

approach is used, small parcels are usually ignored (< 250 ha
in [4]).

To overcome this issue, we believe that modelling the
spatio-temporal structures concerning agricultural parcels in
combination with the Sentinel image time series, can lead to
significant gains in accuracy with more exhaustive nomencla-
tures. These structures are of different types and can concern
for example (i) the choice of a crop type on a given parcel (an-
nual or multi-annual crop rotations), (ii) local similarities in
events (ploughing, seeding or harvesting dates) or (iii) man-
agement practices for the parcels belonging to a same farmer.
In this paper, we investigate the modelling and the integration
in the classification of inter-annual crop rotation information.

Two different approaches can be used to model rotations.
The first one consists in using a priori agronomist expert
knowledge. Several models have been proposed and assessed
[6]. However, the models are strongly dependent on the
study area and have no adaptation capacity to environmental
or agricultural management changes. The second approach
is learning rotations as way of overcoming the limitations
driven by the expert knowledge a priori approaches. The
data that can be used for learning are the former versions of
LPIS. This method has recently been studied by [7]. Never-
theless, only very few studies have focused on the integration
of crop rotation information into classification pipelines. A
prediction model based on the Markov logic is proposed by
[7]. However, there is no combination with remote sensing
observations.

The objective of this paper is then to propose a method to
integrate the crop rotation temporal structure into a Sentinel-
based classification process and to assess the capacity of the
method to improve classification results. The methodology
is explained in Section 2, the experimental set-up (study area
and datasets) along with result analysis are proposed in Sec-
tion 3. Conclusions are drawn in Section 4.

2. METHODOLOGY

The classification method proposed is made up with a data
term (Section 2.1) combined with a Conditional Random
Fields (CRF) for temporal structured prediction (Section 2.2).



2.1. Parcel-based multi-source and multi-temporal clas-
sification

The data term is obtained with common state-of-the art meth-
ods. Sentinel images were automatically downloaded from
the French national mirror Peps [8] (Sentinel-1) in the Ground
Range Detected (GRD) format and from the national down-
stream service Theia [9] (Sentinel-2) in ground geometry and
calibrated in Top of Canopy (TOC) reflectance. Dual polari-
sation GRD Sentinel-1 images were first calibrated to σ0 radar
backscattering coefficient. Orthorectification is performed us-
ing the SRTM digital terrain model and the georeferencing in-
formation supplied with the GRD files. The speckle is slightly
removed using a simple 5 × 5 Lee filter [10]. An extra radar
feature (σ0V H

σ0V V
) is computed. This ratio is known as being

more independent to the slope and moisture content effects of
each agricultural parcel [11]. For optical images, the missing
data (clouds) are filled in using provided cloud masks with a
multi-temporal spline interpolation. Average and standard de-
viation of these 3 radar channels and the 10 optical reflectance
bands are then computed for each date of the satellite time se-
ries for each agricultural parcel geometry of the LPIS. At the
parcel-based level, a Random Forest classifier is used. Deci-
sion tree votes are gathered to model the data term probabili-
ties p(yn|xn) of Equation 2, yn being the agricultural classes
considered and xn the parcel-based multi-source and multi-
temporal time serie features.

2.2. Temporal-structured classification of parcels

In order to model the temporal structure of the crop rotations,
we used the graphical model given in Figure 1. This first order
Markov chain can be generalized to greater orders. However,
because of the specifications of LPIS data, only the first order
has been applied and assessed in this paper. Indeed, the LPIS
are known at the parcel-block level (i.e. a group of contigu-
ous parcels with the same operator but possibly different land
covers) before 2015. The agricultural parcel class of a given
n year is modeled by a random variable Yn. We consider this
variable only influenced by the previous year variable Yn−1.
The satellite observations of each n year Xn are taken into
account with a Conditional Random Field (CRF).
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Fig. 1. Conditional Random Field.

With such a modelling and under the hypothesis of the

independance between transitions Yn and observations Xn,
the factorisation of the graphical model given in Figure 1 can
be written with Equation 2.

pθ(y|x) ∝ p(y1)× p(y1|x1)×
n∏
i=2

(p(yi|yi−1) × p(yi|xi))

(1)
Nevertheless, the use of X = {X1, X2, ..., Xn−1} in

dashed line in Figure 1 is not necessary. The former LPIS
versions give a robust knowledge of the realization of the
random variables Y = {Y1, Y2, ..., Yn−1}. Indeed, errors
concerning crop types in the initial declaration by farmers
are in minority and furthermore this information is thereafter
controlled by National Paying Agencies. Therefore, we pro-
pose a simpler form given in Equation 2. The data term is
estimated with the Random Forest method (Section 2.1) and
a temporal structure term p(yn|yn−1) is necessary.

pθ(yn|xn, y1, . . . , yn−1) ∝ p(yn|yn−1)︸ ︷︷ ︸
temporal structure

× p(yn|xn)︸ ︷︷ ︸
data term

(2)

To estimate the regularization term p(yn|yn−1), we learn
a transition matrix M̂ built up with a series of parcel-block
LPIS. An hypothesis of spatio-temporal homogeneity of the
parcels is considered. Only geometrically stable and pure in
terms of land cover parcel-blocks are used. Equation 3 shows
how to estimate the p(yn|yn−1) with past agricultural land
cover transitions.

M̂k,l =
nk,l

nk

with nk,l the number of transitions k → l (for all parcels of all
years considered) and nk the number of occurences of the
agricultural class k (for all the parcels of the n-1 first years)

(3)

3. RESULTS

3.1. Experimental Set-up

The method has been tested on a 233 km2 study area located
60 km at the East of Paris. A national 25 classes land cover
classification was used to estimate the transition matrix of
Equation 3 on a French department administrative area (5 915
km2). 36 891 geometrically stable and pure in terms of land
covers parcel blocks contribute to the estimation of the M̂
matrix.

As for the data term, only the land cover classes present
on the study area were learned. This agricultural classes and
the number parcels considered are Corn (350 parcels), Barley
(158), Other Cereals (889), Rape seed (85), Protein (peas)
(76), Fiber plants (76), Forage crops (46), Permanent grass-
land (725), Fruit trees (30), Vegetables (131). These classes
are categories and can possibly gather a large number of agri-
cultural land covers (16 different classes for Other Cereals)
on the department area. The average area of the parcels on the



study area is 4.5 ha with high standard deviation (σ = 6.5 ha).
The 2016 parcel-based LPIS has been used for training and
validation of the data term.

Table 1 gives the number of features used for the estima-
tion of the data term. Sentinel-2 acquisition technical prob-
lems on the particular orbit covering the study area had lim-
ited the amount of optical images available.

Sentinel-1 (radar) Sentinel-2 (optical)
Number of dates 85 12
Features per date 6 20

Total 509 240

Table 1. Features used for the estimation of the data term.

In the following a configuration named unstructured cor-
responds to the results of the parcel-based classification. The
Random Forest was trained with 100 decision trees using all
aggregated attributes from Table 1 and a maximum depth of
the trees of 15. Then a second configuration called struc-
tured in the rest of the paper corresponds the product of the
two probabilities defined in Equation 2 for classification. The
2015 parcel-based LPIS was needed to determine the neces-
sary previous land cover observed on a parcel. 5 years (2010-
2014) of the parcel-block LPIS were used for the estimation
of the transition matrix. For the unstructured and temporal
structured classification, 50% of the parcels were used for
training and 50% for validation, and the results proposed are
the average of 10 iterations.

The classification was assessed with global metrics (over-
all accuracy (OA), weighted (F-score-w) and unweighted F-
score by the number of samples of each classes) and per-class
metrics (F-score, recall and precision).

3.2. Result analysis

The transition matrix estimated contains very relevant infor-
mation. For instance, strong inter-annual crop rotation are
observed. The probability to grow Other Cerals (common
wheat) after Rape seed is 97.09% or Protein (peas) to Other
Cereals (94.85%). The permanent grassland remains stable
(94.45%), such as permanent crops like Fruit trees (83.65%).

Table 2 shows the global results after 10 iterations. The
results are proposed only with the radar features or the opti-
cal features (Table 1) or with their aggregation. Taking into
account the temporal structure improves all the global metrics
for all the feature configurations. In OA, we observe a gain of
+2.7% for the radar configuration, +4.6% for the optical and
+2.6% for the combined optical and radar one).

However the improvement of classification accuracy is
not homogeneous for the different agricultural classes. Ta-
ble 3 evaluates the effect of taking into account the temporal
structure on each class, with the optical and radar features.

First, we can notice that there is a strong improvement
on the stable over time agricultural classes such as Perma-

Table 2. Global classification metrics after 10 iterations.
Unstructured

Configuration Overall Unweighted Weighted
Accuracy F-score F-score

OA F-score F-score-w
Radar 0.892 0.734 0.878

Optical 0.824 0.624 0.809
Radar+Optical 0.890 0.744 0.885

Structured
Radar 0.919 0.776 0.911

Optical 0.870 0.675 0.853
Radar+Optical 0.916 0.762 0.906

nent grasslands (+8.7% in F score) and Fruit trees (+93% in
F score). Almost all the Fruit trees validation samples were
classified as Permanent grasslands in the unstructured con-
figuration. The temporal structure is also useful to separate
classes that have similar data terms. This is for example the
cases for Forage crops (+70.5% in F score) and Permanent
grasslands. These two classes are very similar in the optical
and radar features. As a result, Forage crops are almost for
the most part classified as permanent grasslands. The tempo-
ral structure enables to make the distinction.

Then, for annual crops that are used with regular rota-
tion patterns, the class metrics are improved. (Protein (peas)
(+0.4%), Rape seed (+1%), Other Cereals (+0.7%). How-
ever, when the transitions are less respected by farmers, the
temporal structure can cause a loss in the classification accu-
racy. This is the case for Corn (−6.3%) or Barley (−8.2%).
For the Barley class, the decrease (Recall) is partially due to
the misclassification of the Fiber Plants class. For Corn and
Barley the decrease could be explained by the fact that these
crops are used in 3-years rotation, a structure that the 1st-oder
Markov chain can not capture completely.

Finally, there is a major drawback with the Fiber plants
class (−97.4% in F score). For that particular case, the data
term is reliable (97.4% in F-score) and after temporal regu-
larization almost all the Fiber plants are classified as Barley.
The result could be explained by the fact that there is a very
small amount of geometrically stable Fiber plants on the area.
The strong general transition rule learned for the Fiber plants
could not be useful for those specific parcels.

4. CONCLUSION

In conclusion, we proposed a framework to take into account
the crop rotation temporal structure in the classification. The
classification is globally improved. The method is based on
learning both data term and temporal structure. As a result,
it can be easily applied to other areas. Indeed, the LPIS are
produced at national scale each year. Results have however
to be produced on numerous and diverse areas. Several im-



Table 3. Effect on temporal structure on Class Metrics
Class F-score Recall Precision

Unstructured
Corn 0.941 0.929 0.953

Barley 0.898 0.937 0.862
Other cereals 0.947 0.956 0.9378

Rape seed 0.959 0.975 0.944
Protein 0.949 0.932 0.968

Fiber plants 0.974 1 0.950
Forage crops 0 0.1 0

Permanent grasslands 0.868 0.814 0.930
Fruit trees 0.010 0.090 0
Vegetables 0.895 0.914 0.877

Class Structured
Corn 0.878 0.831 0.935

Barley 0.816 0.785 0.849
Other cereals 0.954 0.941 0.968

Rape seed 0.969 0.985 0.954
Protein 0.953 0.967 0.939

Fiber plants 0 0 0.1 0
Forage crops 0.705 0.778 0.648

Permanent grasslands 0.955 0.943 0.967
Fruit trees 0.940 1 0.892
Vegetables 0.451 0.970 0.297

provement of the method can be proposed. Greater order of
the Markov chain could be tested in the future with the up-
coming parcel-based versions of the LPIS. Other structures
could also be modeled such as spatial relationship between
parcels.The exhaustiveness and the few mistakes contained in
the LPIS give valuable label information. The approach pro-
posed is this paper will be tested in prototype of operational
systems. In this article we only assessed the effet of temporal
structure after 1-year of satellite observations. The objective
would be to apply the method to partial time series to propose
a pre-filled LPIS declaration for the farmers
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