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4.1. Introduction 

The development of hydrogen-based energetic supply chain leads to increased 
interest in hydrogen-material interactions phenomenon, especially for metallic 
materials (see (Djukic et al., 2016; Traidia et al., 2018) for a review of hydrogen-
assisted cracking models, (Ghosh et al., 2018) for a global description of these 
interactions for pipeline and pressure vessel, (Djukic et al., 2019) for a 
comprehensive review of the embrittlement mechanisms interactions in steels and 
iron, (Martin et al., 2019) for a review on hydrogen-enhanced localized plasticity 
experimental results, and the recent warning by (Lynch, 2019) on these 
mechanisms). Aside from the experimental aspect, driven by the progress of 
observation and characterization devices (such as nano-scales experiments (Alvaro 
et al., 2015; Barnoush et al., 2010; Deng and Barnoush, 2018; Müller et al., 2019), 
3D hydrogen localization by atom probe (Cheng et al., 2013; Koyama et al., 2017) 
or neutron tomography (Griesche et al., 2014; Pfretzschner et al., 2019), or 2D 
mapping by Kelvin Probe Force Microscopy (Evers et al., 2013; Melitz et al., 
2011)), modeling tools have made notable progress. This progress was helped on the 
one hand by the increase of computational capacities, and on the other hand, by the 
development or the adaptation of specific approaches, at several scales (see (Barrera 
et al., 2018) for a review). Extensive investigations, on several materials or systems, 
have been made from very local up to mesoscale using one the following numerical 
tools (see (Aubert et al., 2019) for a global picture of the multi-scale modeling 
approach): 

– Density Functional Theory -DFT-: (Lu et al., 2002) investigates the effect of H 
atoms on pure aluminum mechanicals properties, while (Jiang and Carter, 2004a) 
focused on hydrogen diffusion in Iron; (Metsue et al., 2018) investigates the 
interactions between vacancies and hydrogen in Nickel. Traction Separation laws 
have been derived from DFT results (Van der Ven and Ceder, 2003) for various 
material, as aluminum (Ehlers et al., 2016; 2017), iron (Jiang and Carter, 2004b) or 
nickel (Alvaro et al., 2015)); 

– Molecular Dynamic -MD-: for instance, investigations on the hydrogen 
assisted failure have been focused on pre-cracked Nickel single (Wen et al., 2004) or 
bicrystals (Song and Curtin, 2011), or aluminum single crystal coated by alumina 
(Verners et al., 2015). Hydrogen-material interactions have also been studied, as in 
pure iron nano-pillars (Xu et al., 2017), as well as hydrogen-vacancy interplay in 
tungsten material (Fu et al., 2018). A complete picture is given in (Tehranchi and 
Curtin, 2019)); 

– Kinetic Monte Carlo -KMC-: diffusion-related material parameters might be 
extracted from computations, as in zircon (Zhang et al., 2017). The influence of 



defects on diffusion might be accounted for too, as well as in (Ramasubramaniam et 
al., 2008) for dislocation in iron, or (Oda et al., 2015) for vacancies in tungsten. 

At the component scale, Finite Element (FE) provides the most popular 
framework for performing numerical simulation on structure in presence of 
hydrogen (to reproduce hydrogen-sensitivity characterization test, as in (Olden et al., 
2009) for SENT, (Charles et al., 2012) for Disk Pressure Test, (Charles et al., 2017a) 
for U-Bend, or (Ayadi et al., 2017) for shear and tensile test coupled with blistering). 
In Abaqus software, the hydrogen diffusion and trapping are usually sequentially 
solved, as in (Moriconi et al., 2014) for instance, while classical elastoplasticity is 
considered (but in few recent works, in which gradient plasticity models have also 
been proposed (Martínez-Pañeda et al., 2016)). Fully coupled resolution scheme, as 
the one used in (Charles et al., 2019), are not that numerous in Abaqus. 

Recently, investigations have been made at an intermediate scale: the single 
crystal one. This scale is strategically pertinent, because it fills the gap between low 
scales and high ones, allowing one to get a better picture of hydrogen effects on 
materials at the component scale, improving their reliability. Two main tools have 
been used in such an approach: dislocation dynamics (e.g., to get the influence of 
Hydrogen on dislocation motion in steel or iron in 2D (Taketomi et al., 2013) or 3D 
(Gu and El-Awady, 2018; Yu et al., 2019) configurations or to investigates the 
hydrogen dragging by mobile dislocations (Sills and Cai, 2016)), and crystal 
plasticity finite element method (CPFEM). To be more specific, among the finite 
elements studies at the polycrystal scale, few use crystal plasticity while most of 
them only deals with hydrogen transport through heterogeneous mediums. 

This chapter is mainly dedicated to the scale transition between hydrogen 
transport and plasticity-induced trapping modeling from the polycrystal scale (using 
CPFEM), up to the component one. At the crystal scale, mechanical properties and 
hardening are anisotropic ones, the medium being heterogeneous, while at the 
macro-scale, every property is isotropic and the model is homogeneous.  

Hydrogen transport and trapping is classically described by the diffusion 
formulation proposed by (Sofronis and McMeeking, 1989) and later improved by 
(Krom et al., 1999; Sofronis and McMeeking, 1989) (see below section 4.2.2), 
applied on a Small Scale Yielding configurations. This approach has been 
implemented in commercial or home-made finite element software, coupled (or not) 
with mechanical fields, and used in numerous studies to investigate specific features 
of hydrogen-material interactions in homogeneous structures, including 
embrittlement or interactions with thermal fields (not being exhaustive, e.g., to study 
the plastic strain localization during a tensile test on steel (Miresmaeili et al., 2010), 



to analyze the permeation test on steel samples (Legrand et al., 2012), to model or 
analyze crack propagation (Takayama et al., 2011) or hydrogen repartition after 
welding in steel pipes (Yan et al., 2014), after welding in steel pipes, or to analyze 
the effect of a thermomechanical field in a tungsten plasma-facing component 
(Benannoune et al., 2019a)).  

This transport and trapping equation is also used in all of the fewer studies 
conducted on polycrystalline configurations; among them, three main objectives 
might be found 

– the determination of polycrystalline aggregate effective diffusion properties; 

– an investigation of the hydrogen-assisted grain boundary failure; 

– the determination of the plastic activities in specific grains in conjunction with 
experimental results. These studies account nor for hydrogen diffusion neither for 
hydrogen-plasticity interactions. 

This chapter is dedicated to the average diffusion processes in polycrystals, 
accounting for both mechanical fields (stress, and plastic strain), and non-Fickian 
effects. After quickly describing the simulations that can found in the literature, and 
related to hydrogen-assisted failure or plastic strain repartition in a polycrystal, a 
survey of the finite element works dedicated to the determination of effective 
diffusion properties through polycrystals will be presented. 

CPFEM computations have been used to study the influence of stress and 
hydrogen concentration heterogeneities on failure. (Rimoli and Ortiz, 2010) has used 
a 3D pre-cracked regular polycrystal to model an AISI 4340 steel, using trap-free 
grain boundary diffusion and hydrogen-sensitive cohesive elements to model a 
transgranular crack propagation. (Benedetti et al., 2018) performed similar 
computations on steel, without any cracks, and for a given load, as (Benabou, 2019) 
for copper alloys. (Yu et al., 2017) focused on the effect of grain boundary 
disorientation on its hydrogen-assisted failure, considering a bi-crystal made of steel 
with elastic anisotropy and cohesive zones for the grain boundary. Finally, (Wu and 
Zikry, 2015) conducted 2D computations considering a bulk hydrogen trapping and 
transport process, and intergranular embrittlement modeled by an overlapping 
element method. 

Few diffusion-free CPFEM models have been used to correlate experimental 
data and numerical plastic localization (e.g., in steel (Aubert et al., 2016)) or failure 
(e.g., in aluminum alloys (Pouillier et al., 2012)). 



While claiming to work at the polycrystal scale, numerous investigations are 
dedicated to the determination of the effective diffusion process through stress-free 
heterogeneous structures; as a consequence, only a classical Fick law is used with 
heterogeneous diffusion coefficients. In these studies, mainly in 2D, the grain 
morphology might be regular or based on a Voronoi tessellation, and the diffusion 
properties depending on the studied materials. For Nickel material, grains 
boundaries act as diffusion short-cut, following the pioneering work of (Swiler et al., 
1997) and latter (Zhu et al., 2001); the grain boundary type (Legrand et al., 2013), 
their density (Jothi et al., 2015a), and their connectivity (Osman Hoch et al., 2015) 
are the main features for extracting an effective diffusion coefficient. Trapping at 
grain boundaries have been introduced in pure Nickel (Ilin et al., 2016) (Jothi et al., 
2015c) or Nickel alloys (Turk et al., 2018), without considering a coupling with 
mechanical fields. For two-phase steel polycrystals, diffusion short-cut mechanism 
has also been introduced, not coupled with mechanical fields (Yazdipour et al., 
2012); such work focuses mainly on the phase morphology influence on hydrogen 
transport, as in (Sezgin et al., 2019). Similar studies have also been performed on 3D 
aluminum polycrystals (Lacaille et al., 2014). 

The impacts of mechanical fields (pressure, and trapping by dislocation) on the 
average diffusivity are not well studied, and most of the works do not include crystal 
plasticity. For instance, (Olden et al., 2014) consider J2 plasticity in a two-phased 
steel, and focused on the influence of grain morphology on diffusion and trapping 
kinetic, while (Shibamoto et al., 2017) used a pre-computed pressure field and a 
regular grain shape, for the same aim. Last, (Jothi et al., 2014) only considers elastic 
anisotropy in Nickel polycrystals. 

CPFEM is used in a 3D regular iron polycrystal in (Charles et al., 2017b), and in 
a 2D Voronoi steel one in (Hassan et al., 2018): in these two works, the influence of 
a predeformation on hydrogen diffusion is investigated, accounting for both pressure 
stress and dislocation induced traps. Last, (Ilin et al., 2014) focused on hydrogen 
redistribution in a 2D steel polycrystal due to an applied load, and at the crystal 
scale, FE investigations have also been performed to investigate the experimentally 
measured diffusion anisotropy in Nickel single crystal (J.-X. Li et al., 2017), 
considering elastic anisotropy and vacancy-induced strain. Very few works have 
investigated the reformulation of crystal plasticity laws to account for the hydrogen 
effect on slips (Bal et al., 2017; Birnbaum and Sofronis, 1994; Cailletaud, 2009; 
Kumar et al., 2019; Vasios, 2015), or the correspondence between the diffusion 
process through a polycrystal and the equivalent homogeneous medium (Charles et 
al., 2018; Jothi et al., 2015b).  



From the previous picture, it appears that CPFEM is not commonly used in 
computations, and especially for the effective diffusion coefficient evaluation.  

The different modeling assumptions used in this chapter are first presented, as 
well as the tools developed required to perform multi-scale finite element 
computations (section 4.2). Afterward, two specific points are focused on to 
illustrate the consequences of scale transition in finite element modeling, while 
dealing with hydrogen transport and trapping: 

– on section 4.3, a reformulation of the dislocation-related trap density function 
is proposed for iron material, to get the same transport kinetic through a polycrystal 
and the corresponding homogenous sample.  

– section 4.4. is dedicated to the presentation of the model proposed by 
Dadfarnia (Dadfarnia et al., 2015), aiming at including hydrogen dragging by 
dislocation in a homogeneous medium. An adaptation of this approach at the crystal 
scale is proposed. The consequences at the polycrystal scale of such formalism, 
accounting for textures, have been investigated. 

4.2. Modeling assumptions 

The modeling assumptions at the polycrystal scale are directly adapted from the 
one used at the macroscopic scale, considering few adaptations linked to the specific 
way plasticity occurs in crystals. 

4.2.1. Crystal plasticity mechanical behavior 

The anisotropic elasticity is defined through Cij elastic constants. 

The crystal plasticity is described by a classical viscous formulation (Asaro, 

1983) for numerical purpose only. The slip rate !γα  on the αth slip system, defined 

by its normal vector nα  and its slip direction mα , is related to the resolved shear 

stress τα  by a power-law relationship 

!γα = !a0
τα

τ c
α

τα

τ c
α

n−1

 [4.1] 



τ c
α  is the critical resolved shear stress, !a0  is a reference strain rate, and n the 

strain-rate sensitivity, chosen high enough to avoid viscous effects. From slip rates 
on each system, the global plastic strain rate tensor is 

!ε p = mα ⊗ nα( )
α

∑  !γα
 [4.2] 

τα  is obtained by 

τα =
1
2
mα ⊗ nα + nα ⊗mα( ) :σ

 [4.3] 

where σ  is the local stress field; ⊗ denotes the tensorial product, and ‘:’ the tensorial 
contraction. The hardening law is described by (Peirce et al., 1982) 

!τα = hαβ !γ
β

α

∑
 [4.4] 

where hαβ  represent the self-hardening and hαβ ,α≠β = qhαα  the latent one, with 

hαα = h0sech
2 h0γ
τ s −τ0  [4.5] 

γ = !γα dt
0

t

∫
α

∑ ! is the cumulated shear strain.! h0,! τ s ! and! τ0  are material 

parameters. !

No influence of hydrogen on mechanical behavior is taken into account in the 
present work. 

4.2.2. Hydrogen transport equation 

The hydrogen transport equation is based on the local balance between hydrogen 
concentration in normal interstitial lattice sites (NILS) and hydrogen concentration 
in trapping sites (Krom et al., 1999; Oriani, 1970)!



KTθL =
θT
1−θT  [4.6] 

where KT represents the equilibrium constant with KT=exp(-WB/RT) (WB being the 
trap binding energy). NILS hydrogen concentration CL relates to NILS density NL 
by CL=NLθL whereas trapped hydrogen density CT relates to trap density NT by 
CT=NTθT; θL and θT are respectively NILS and trapping sites occupancy, assuming 
that θL<<1. The hydrogen diffusion equation, as proposed by Sofronis et al. 
(Sofronis and McMeeking, 1989) is thus 

∂ CT +CL( )
∂t

+∇ϕL = 0  [4.7] 

ϕL is the Fickian flux, modified to account for the effect of hydrostatic pressure 
(Bogkris et al., 1971; Dederichs and Schroeder, 1978; J. C. M. Li et al., 1966; 
Sofronis and McMeeking, 1989): 

ϕL = −DL∇CL −
VH
RT
CL∇PH  [4.8] 

where DL is the hydrogen diffusion coefficient, R the perfect gas constant, T the 
absolute temperature, VH the partial molar volume of hydrogen in solid solution and 
PH the hydrostatic pressure, equal to -1/3 tr σ .  

The global transport and trapping equation might be derived from Equations 
[4.7] and [4.8], as 

CT 1−θT( )+CL
CL

∂CL
∂t

+∇ −DL∇CL −
VH
RT
CL∇PH

$

%
&&

'

(
))+θT

dNT
dε p
!ε p = 0

 [4.9] 

NT is here assumed to be only function of the equivalent plastic strain εp 
(Kumnick and Johnson, 1980), corresponding to a phenomenological description of 
the trapping by dislocations (see Equation [4.12] bellow). It is worth noting that 
Equation [4.6] might be replaced by the following kinetic reaction (McNabb and 
Foster, 1963) 

∂θT
∂t

= kθL 1−θT( )− pθT
 [4.10] 



where k and p represents the probability of respectively trapping and detrapping 
processes, so that KT=k/p. In this work, however, Oriani’s assumption has been 
considered (equation [4.6]). 

4.2.3. Implementation 

The previous constitutive laws have been implemented in Abaqus FE software, 
based on previous works (Charles et al., 2017b; 2017a); the main features are 
recalled below. Several user subroutines (Simulia, 2011) have been developed: 

– an UMAT one, based on the Huang one (Huang, 1991; Kysar, 1991), allowing 
to include anisotropic crystal plasticity in Abaqus (Equations [4.1] to [4.5]); 

– an UMATHT one, to define the coupled transport (Equation [4.9]); 

– an ORIENT subroutine to impose a local crystal orientation. 

The flowchart of the user subroutine integration in Abaqus is presented on 
Figure 4.1; the developments have been made in order to simultaneously solve the 
mechanical and diffusion problem. The procedure used is ‘coupled temp-disp’, 
based on the analogy between the thermal and Fick diffusion equations (Oh et al., 
2010). 

 

Figure 4.1. Coupled transport-trapping problem implementation in Abaqus. In red is 
underlined the data computed in the subroutines and transferred to other subroutines 

or Abaqus program. 
Kinetic trapping (Equation [4.10]) (Benannoune et al., 2018; Charles et al., 

2018), as well as transient thermal fields (Benannoune et al., 2019b; Vasikaran et al., 
2019) might also been included in computations. 



4.2.4. Mechanical parameters 

For all of the applications proposed in the present article, α-iron was considered. 
The anisotropic elasticity is described by the C11, C21, and C44 constants for cubic 
symmetry (see Table 4.1). 

C11 (MPa) C12 (MPa) C44 (MPa) 

236900 140600 116000 

Table 4.1. Elastic parameters for the crystal elastoplastic mechanical behavior (Lord 
and Beshers, 1965). 

The values of h0, τ0  and τ s  were chosen to be representative of tensile test 

performed on pure iron single crystals (Franciosi et al., 2015; Le, 2013) (see Table 
4.2). Only the 12 slip systems {110}〈111〉 for bcc structures were used for the sake 
of simplicity. 

q h0 (MPa) τ0 (MPa) τ s  (MPa) 

1.1 175 30 100 

Table 4.2. Hardening parameters for the crystal elastoplastic mechanical behavior. 

!a0
 

and n values were chosen equal to respectively 0.001 s-1 and 110. Last, 

diffusion parameters at 300 K for  α-iron are reported on Table 4.3 (Hirth, 1980; 
Krom et al., 1999; Sofronis and McMeeking, 1989), assuming their coincidence at 
both component and crystal scale. 

DL (m2/s) VH (m3/mol) NL (atom/m3) WB (kJ/mol)  

1.27×10-8 2×10-6  8.46×1028 -60 

Table 4.3. Hydrogen-related parameters for α-iron. 

The mechanical behavior of the polycrystal Representative Elementary Volume 
(REV) is defined based on a Voce law, the yield stress σY being related to the 
equivalent plastic strain εp by 



σY =σ0 + Rsat 1− e
−Cε p"

#
$

%

&
'

 [4.11] 

σ0, Rsat and C are material parameters, identified from the mean polycrystalline 
tensile curves (Charles et al., 2017b). The obtained parameters are reported on 
Table 4.4, assuming an overall isotropic elasticity is described with the Young 
modulus E and the Poisson ratio ν 

E (GPa) ν σ0 (MPa) Rsat (MPa) C 

215 0.3 70.3 220.4 7.4 

Table 4.4 Mechanical parameters corresponding to the average polycrystal behavior. 

At both scale, as a first approximation, the same trap density was used 
corresponding to the one identified for α-iron (Johnson, 1988; Kumnick and 
Johnson, 1980; Sofronis and McMeeking, 1989) 

logNT = 23.26− 2.33e
−5.5ε p

 [4.12] 

4.3. Identification of a trap density function at the crystal scale 

In a previous work (Charles et al., 2017b), we have shown that, if no trapping by 
dislocations is considered, the mechanical heterogeneities induced by the 
polycrystalline features do not influence the overall hydrogen diffusion in samples, 
whatever the grain numbers. If trapping is included, however, important differences 
were observed: if the diffusion parameters identified at the macro scale might be 
used at the crystal one, the trap density must be adapted and the formulation 
presented on equation [4.12] is no longer relevant.  

We aim in the following to propose a reformulation of NT at the crystal scale so 
that the transport and plasticity-induced trapping process at both scales becomes 
equivalent: for a given polycrystal and its homogeneous equivalent model, several 
average plastic strains were considered, and the average diffusion processes were 
compared. Last, NT was identified at the crystal scale, based on the time-lag method 
(Fallahmohammadi et al., 2013; Kumnick and Johnson, 1980). 



4.3.1. Geometry, mesh, and boundary conditions applied on the 
polycrystals 

The considered polycrystalline aggregate is set as a parallelepipedic bar, with a 
square base surface equal to 0.0012/3 mm2 and a height h=0.43 mm, made of 
truncated octahedrons (see Figure 4.2). Each grain is meshed with 60 full 
integration 8 nodes tri-linear elements. 

 

Figure 4.2. A truncated octahedron (Charles et al., 2017b). 

The polycrystal geometry has been generated by the Neper program (Quey et al., 
2011) and imported in Abaqus CAE using python scripts (Simulia, 2011).  

Grains orientation have been defined by an ORIENT User Subroutine (Simulia, 
2011), using random sets of Euler angles (ϕ1,Φ,ϕ2), considering an overall isotropic 
texture. 

Computations are made of two-steps: first a purely mechanical simulation, 
secondly a diffusion one under a constant mechanical loading. 

4.3.1.1. Mechanical loading 

In the first step, a displacement is imposed on the upper surface, for to a given 
uniaxial strain (0, 10, 20, 30, 40 50 and 60%). Symmetric boundary conditions have 
been set on the lower one (Figure 4.3a), and uniform mixed-orthogonal (or block) 
on the lateral ones, to model periodicity (Charles et al., 2010; Salahouelhadj and 
Haddadi, 2010). 



  
(a) (b) 

Figure 4.3. Boundary conditions for (a) the mechanical computation up to a given 
macroscopic strain and (b) the diffusion computations considering a constant applied 

strain. For h=0.43 mm, the bar is made of 167 grains (Charles et al., 2017b). 

4.3.1.2. Diffusion and trapping 

In the second step, hydrogen transport occurs under constant strain. A zero 
normal flux is imposed on each polycrystal faces but on the lower one, where 
CL=C0=2.084×1021 atom/m3 (Sofronis and McMeeking, 1989) is instantaneously 
imposed at the beginning of the diffusion step (Figure 4.3b). This value is computed 
from the Sivert law established in (Johnson, 1974), and corresponds to the quantity 
of the steady state hydrogen concentration in a sample surrounded by an dihydrogen 
gas, the pressure of which being 1 bar. 

 Hydrogen transport and trapping then occur, based on equation [4.9]; the 
computation is stopped as soon as the steady state is reached.  



 

Figure 4.4. Voronoi tessellation of the polycrystal upper face designed to get the 
upper face mean CL value evolution with time; each red seed corresponds to a node 

(here, 465 nodes) (Charles et al., 2017b). 

For all computations, the diffusive hydrogen concentration values CL have been 
saved for all of the upper face nodes, and at each computed time, from which its 
statistical features have been derived. To compute the average 〈CL〉, the value of 
each node have been weighted by the surface of the corresponding cell in the 
Voronoi tessellation of the upper bar face (see Figure 4.4). 

4.3.2. Results 

The 〈CL/C0〉 evolution with time on the upper bar face has been computed for all 
of the considered applied strains, and for the two models (homogeneous and 
polycrystalline). To discuss the influence of trapping on hydrogen transport, the time 
lag method has been used (Barrer, 1951), the trap-free time lag tL and with trapping 
tT being extracted from computations results. These two times lag are supposed to be 
linked by the following linear relationship (Fallahmohammadi et al., 2013; Kumnick 
and Johnson, 1980) 

tT
tL
−1=α

NT
C0  [4.13] 

where α is a constant, wich depends on the considered test. 

4.3.2.1. Identification of NT(εp) at the crystal scale 

Plotting tL/tT versus NT for the homogeneous bar (Figure 4.5) shows a linear 
relationship, as expected, with a slope α=5.69; NT values have been computed using 
equation [4.12], knowing, for each computation, the value of the equivalent plastic 
stain εp. α differs from the value obtained in the previous study (Charles et al., 



2017b) for the same configuration (α=4), because in this latter, tL values has been 
computed using an explicit relationship (Barrer, 1951) and not extracted from 
computations. 

 

Figure 4.5. Evolution of tT/tL with NT for several applied strains. 

This α value might then be used to extract, from polycrystalline 〈CL/C0〉 curves, 
the trap density as a function of the average equivalent plastic strain in the 
polycrystal 〈εp〉 (Figure 4.6b). 〈εp〉 is computed as following 

ε p = Viε p
i

Gauss
Po int

∑
 [4.14] 

where Vi and ε p
i  are respectively the volume and equivalent plastic strain associated 

to the integration point n°i.  

As already observed (Charles et al., 2017b), the transport and trapping process in 
the polycrystalline structure is slower than in the equivalent homogeneous medium, 
inducing a higher identified trap density value. 



 
 

(a) (b) 

Figure 4.6. (a) Relationship between 〈εp〉 and εp, respectively the average equivalent 
plastic strain in the polycrystalline model and the equivalent plastic strain in the 

homogenous one. (b) variation of NT with both 〈εp〉 and εp, computed using the time-
lag method and α=5.69. It is worth noting that this value has been identified so that 
the NT variation with εp extracted from the homogeneous model computations fits 

with the theoretical curve NT(εp). 

Plotting εp versus 〈εp〉 leads to a linear relationship (Figure 4.6a): as a 
consequence, to have a coincidence between the transport and trapping process 
through a polycrystal and its equivalent homogeneous medium, it is only needed to 
impose at the crystal scale a trap density function of the equivalent plastic strain 
shcu that 

logNT = 23.26− 2.33e
−5.5×0.76×ε p

 [4.15] 

4.3.2.2. Validation 

The comparison of the transport and trapping process in the homogenous and in 
the polycrystalline samples predeformed at 20% is shown on Figure 4.7. As it can 
be seen, the average transport processes in the two samples becomes equivalent 
while using the modified NT formulation for the polycrystal (Equation [4.15]). The 
steady state value reached by 〈CL/C0〉 on the polycrystal upper face is greater than 1, 
due to differences in term of mean PH value between the lower and the upper faces 
(Charles et al., 2017b): as soon as the ∇PH contribution in Equation [4.9] is no 
longer accounted for (green triangles in Figure 4.7), differences between the 
average transport process through polycrystalline and homogeneous media vanished. 



 

Figure 4.7. Comparison of the 〈CL/C0〉 evolution with time on the sample upper face 
for the polycrystalline (green line) and for the homogeneous samples (red line). For 
the polycrystalline model, and for the sake of comparison is also plotted the 〈CL/C0〉 

evolution considering the initial NT formulation (dashed green line). 

To challenge the formulation proposed in Equation [4.15], we have 
simultaneously imposed the displacement and the hydrogen concentration depicted 
on Figure 4.3, for the two models, considering Equation [4.15] for the trap density 
at the crystal scale, and Equation [4.12] at the sample one. The 〈CL/C0〉 evolutions 
with time on the models upper face are plotted on Figure 4.8: as it can be seen, the 
modified NT formulation improve significantly the correspondence between the 
trapping and transport process at both component and polycrystal scales, even if 
further investigations are needed to improve this correspondence. 



 
 

 
 

(a)  (b) (c) 

Figure 4.8. Maps of CL/C0 at =2000 s for (a) the homogeneous and (b) the 
polycrystalline models. (c) 〈CL/C0〉 evolution with time for the two models 

(homogeneous in red and polycrystalline in green) on the samples upper face. 

This adaptation of NT is a first step toward a proper description of the trapping 
process at the crystal scale using diffusion-based equations. While especially dealing 
with trapping by dislocations, the scale transition computations point out that the 
equivalent plastic strain might not be the most relevant measure to describe the trap 
evolution; a much convincing one might be the dislocation density (see e.g. (Oudriss 
et al., 2012) for Nickel), but such an analysis is beyond the scope of the present 
numerical study.  

This trapped hydrogen, furthermore, can be transported by the dislocation 
movement. It is indeed showed by experimental works (see, among other, (Albrecht 
et al., 1982; Berkowitz and Heubaum, 1983; Donovan, 1976; Hirth and Johnson, 
1983; Hwang and Bernstein, 1986; 1983)) that hydrogen trapped near dislocations 
can diffuse during dislocations movement, creating an additional diffusion flux, 
which contributes to faster hydrogen transport due to the higher dislocation velocity 
than hydrogen diffusion rate. This hydrogen transport mechanism is then expected to 
significantly modify the occurrence and kinetics of material-hydrogen interactions 
and hydrogen embrittlement, and has to be accounted for in the hydrogen transport 
simulations.  



4.4. Adaptation of the Dadfarnia’s model at the crystal scale 

Recently, Dadfarnia and al. (Dadfarnia et al., 2015) extended the Sofronis and 
McMeeking model (Krom et al., 1999; Krom and Bakker, 2000; Sofronis and 
McMeeking, 1989) to include hydrogen transport by dislocation by adding an extra 
flux term. Applied to the simulation of hydrogen concentration ahead a crack tip in 
small scale yielding with isotropic elastoplastic material (as in previous works 
(Sofronis and McMeeking, 1989)), they showed through a parametric study the 
effect of the hydrogen transport by dislocation both for bcc and fcc materials, which 
permits to improve the simulation of hydrogen transport.  

We do not aim here to review their assumptions and modeling, but just to 
propose a direct adaptation of this approach at the crystal scale, to illustrate the 
influence of discrete predetermined transport directions on this formalism on the one 
hand, and its consequence on the transport process through a polycrystalline media 
on the other hand. 

4.4.1. Formulation at the polycrystal scale 

Following (Dadfarnia et al., 2015), equation [4.7] must be rewritten as 

∂ CL +CT( )
∂t

+∇. ϕL +ϕd( ) = 0
 [4.16] 

where ϕd is the hydrogen flux associated with mobile dislocation, defined as 
θT NT

mvd . vd is the dislocation velocity, and NT
m  the part of NT associated with 

mobile dislocation. This expression might be generalized to various slip systems, so 
that 

ϕd = ϕd
α

α

∑
 [4.17] 

with  

ϕd
α =θT NT

m,αvd
α

 [4.18] 



ϕd
α

 
is the hydrogen flux carried by the movement of mobile dislocations along 

the slip direction of the αth slip system. vd
α

 
represents the dislocation velocity in the 

slip plan α, in which the trap density associated with mobile dislocation is NT
m,α . 

Following (Dadfarnia et al., 2015), this function can be calculated from mobile 
dislocation density ρm

α  as follow:  

NT
m,α =

λρm
α

a  [4.19] 

where a is lattice parameter and λ=√2 or √3 for bcc or fcc lattice. Orowan’s law 
links the slip rate in slip system α 

!γα = bρm
α vd

α

 [4.20] 

vd
α  is the velocity vector’s magnitude and b the Burger’s one. Hence, vd

α  is 

determined by vd
α = vd

α mα , where mα  represents the slip direction of dislocations 

movement in the αth slip system. It is important to underline that we do not account 
for potential transport towards the −mα  direction. From equation [4.19], one 
obtains  

ρm
α =

!γα

b vd
α  [4.21] 

Substituting [4.20] into [4.21] leads to 

NT
m,α vd

α =
λ !γα

ba  [4.22] 

Therefore, the flux of hydrogen transported by mobile dislocations along the αth 
slip system is 



ϕd
α =θT

!γα

b vd
α
mα

 [4.23] 

Then, using equation [4.23], the extension to various slip systems of the 
hydrogen transport by mobile dislocations in the hydrogen transport used by 
Dadfarnia et al. (Dadfarnia et al., 2015) leads to 
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NT being here assumed to be only a function of the equivalent plastic strain εp 

(Kumnick and Johnson, 1980) and, assuming equilibrium between trapped and 
diffusive hydrogen (Oriani, 1970). The lattice parameter a and the burger vector b 
were set to 0.287 nm and 0.248 nm respectively (Dadfarnia et al., 2015). 

4.4.2. Application to single crystals  

A α-Fe bcc single crystal is here considered; only the 12 slip systems 
{110}〈111〉 for bcc structures are considered in the present study (the numbering of 
these slip systems is given in Appendix 4.7). The considered single crystal is a cube 
of side 1 mm, regularly meshed with 1000 tri-linear full integration hexahedral 
elements (Figure 4.9).  

 
Figure 4.9. Single crystal configuration. (XYZ) denotes the global orthonormal 

coordinate systems.  



First, the applied (mechanical and hydrogen related) boundary conditions are 
presented; selected crystal orientations are then described, as are the used material 
parameters. 

4.4.3. Boundary and initial conditions 

Mechanical loading is applied on a single crystal pre-charged with hydrogen. 

4.4.3.1. Mechanical boundary conditions 

Mechanical symmetry boundary conditions are applied on the bottom face of the 
cube, while a 0.05 mm displacement is applied to the top one (corresponding to an 
average strain of 5% in the Y direction), to allow to capture the effect of plasticity 
triggering on hydrogen repartition. The applied displacement rate is set to 0.05 mm/s 
(corresponding to an applied strain rate of 5.10-2 s-1); this high value is expected to 
decrease the purely Fickian contribution ϕL in the global hydrogen flux, enhancing 
the ϕd one. 

4.4.3.2. Initial hydrogen concentration 

The sample is precharged in hydrogen so that, before any mechanical loading, 
CL=C0 everywhere in the bulk, with C0=2.084×1021 atoms/m3 (Johnson, 1974; 
Sofronis and McMeeking, 1989; Taha and Sofronis, 2001). Hydrogen-related 
symmetry conditions are applied on all external faces so as the normal hydrogen 
flux is zero (Figure 4.10).  

 
Figure 4.10. Single crystal configuration. (XYZ) denotes the global orthonormal 

coordinate systems. Displacement is applied along the Y direction. 

∀ M in the single crystal, 
CL(t=0)=C0. 



Plastic strain on slip systems induced by the mechanical loading is expected to 
redistribute the hydrogen in the crystal, due to the concomitant effects of trapping 
and extra term ϕd, and the subsequent CL heterogeneous distribution. In the whole 
section 4.5, the contribution of the hydrostatic pressure to the global hydrogen flux 
has been neglected (i.e., VH has been set to 0).  

4.4.4. Crystal orientations 

To investigate the influence of slip system configurations on the hydrogen 
transport, two cases have been chosen for the macroscopic tensile direction Y - see 
Figure 4.10): 

• 123!" #$  as Y direction, for which a single glide is expected (n°9, see 

Appendix 4.7, leading to ϕd =ϕd
9 ). To get ϕd in the XY plane, the Z 

vector is set to 143 : for such a coordinate system, m9//-0.78X+0.6Y. 

• 111!" #$  as Y direction, where multiple slip systems are expected (n°1 to 

6, see Appendix 4.7). Z is set parallel to 110 . 

4.4.5. Results 

The results of the hydrogen map evolutions due to plastic strain on the two above 
described configurations are presented, with a particular focus on the 123  direction.  

4.4.5.1. Traction along the 123  direction 

On Figure 4.11 is reported the spatial repartition the total cumulated shear strain 
γ and the one the slip system (9), γ9, showing it is the only activated system, as 
expected from the computations of the Schmid factors computation in a pure tensile 
configuration (Appendix 4.7). 



 

 

 
(a)  (b) 

Figure 4.11. Comparison at the end of the mechanical loading of the (a) γ and (b) γ9 
repartition maps. 

 
Figure 4.12. Visualization of the hydrogen flux ϕ  (∼ϕd). It can be observed that, as 

expected, this flux is collinear to m9, in the (XY) plane. The yellow dot represents the 
central node. 

!



The hydrogen flux ϕ=ϕL+ϕd induced by the single crystal deformation is shown 
on Figure 4.12, and appears to be connected to plasticity development, along the m9 
direction.  

It is worth noting that the purely Fickian contribution in ϕ  is negligible: 
||ϕd||/|ϕ ||≥99.1, i.e ϕ∼ϕd. On Figure 4.13a is presented the evolution with time of 
||ϕ||, θT, θL and !γ9  on the central node (yellow dot on Figure 4.12), illustrating that 

an extra hydrogen transport appears as soon as !γ9  is non zero. The related flux first 

evolved with !γ9 , θT begin constant and equal to 1. θL decreases continuously, 
because of that flux and the applied diffusion boundary conditions on the single 
crystal. When θL becomes low enough, and due to the Oriani’s expression 
(Equation [4.6]), θT quickly decreases, and so does the hydrogen flux. The CL 
repartition in the single crystal is highly affected as illustrated on Figure 4.13b, and 
appears to be mainly localized on the faces pointed out by m9 (see Figure 4.12).  

 

 
 

(a) (b) 

Figure 4.13. (a) Evolution with time of the hydrogen flux ||ϕ ||, the trapped and 
diffusive hydrogen site occupancy θT and θL, and the slip rate !γ9  at the center of the 
single crystal (yellow dot on Figure 4.12). θL

max  represents the θL value at t=0, which 
is equal to 2.46×10-8. (b) Diffusive hydrogen repartition at t=1 s. 



4.4.5.2. Traction along the 111 direction 

 

 

 
(a) (b) 

Figure 4.14. (a) Evolution with time of γ, γ1 and ||ϕ ||, (b) CL repartition at t=1 s. 

On Figure 4.14a are reported the evolution with time of γ, γ1 and ||ϕ ||; in this 
configuration, ||ϕd||/|ϕ ||≥98.5 (the purely Fickian contribution is thus negligible, with 
ϕ∼ϕd).  

It can be seen that γ is six times greater than γ1; in this symmetric orientation, six 
equivalent slip systems operate in this configuration (n°1 to 6), with the same 

cumulated slip. In such a configuration, ϕd / / mα

α=1

6

∑ = 3Y , which is consistent 

with Figure 4.14b: CL accumulates on the upper face of the sample, pointed out by 

the mα

α=1

6

∑  vector. Such redistribution indicates a potential acceleration of the 

hydrogen transport process towards the traction direction. 



Applied 
strain 
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123  111 

5.10-3 s-1 

    

5.10-4 s-1 

    

5.10-5 s-1 

    

5.10-6 s-1 

    



Figure 4.15. Dimensionless diffusive hydrogen repartition for the single crystals 
submitted to a displacement in the 123  and 111 directions, for various applied strain 

rates. It has been checked that, if ϕd=0, CL=Cref everywhere in the sample, for the 
two configurations. 

4.4.5.3. Influence of the applied strain rate 

Computations have been performed for various applied strain rates (5.10-3, 
5.10-4, 5.10-5 and 5.10-6 s-1), to exhibit the competition of between ϕL and ϕd in the 
two single crystals. The CL/Cref maps at the end of the mechanical loading are 
reported on Figure 4.15, in which Cref denotes the homogeneous concentration at the 
end of the mechanical loading in the reference case, defined by ϕd=0.!

4.4.6. Consequences on hydrogen transport through a polycrystalline 
bar 

The above computations suggest that the ϕd contribution might have a significant 
impact on the global hydrogen transport process, depending on the single crystal 
orientation, the loading direction, and the applied strain rate. In [111] orientation, ϕd 
was shown to contribute to increase hydrogen transport in the tensile direction, 
whereas it is not the case for the [ 123 ] orientation. Then at the polycrystal scale, 
these effects are expected to be influenced by the crystallographic texture of the 
polycrystal. 



 

 

(a) (b) 

Figure 4.16. (a) Boundary conditions applied on the polycrystalline bar. (b) Temporal 
variation of U(t). 

To investigate this coupling, several computations have been performed on a 
parallelepipedic polycrystal (1×1×10 mm3), on which both displacement rate and 
hydrogen concentrations conditions have been imposed (Figure 4.16a).  

The bar is meshed with 10000 tri-linear linear cubic elements, so that one finite 
element represents one grain, for the sake of simplicity and computation cost. Such 
an aggregate contains enough grains to be considered as a representative elementary 
volume for the transport and trapping process (Charles et al., 2017b). 

The applied boundary conditions have been set as following (Figure 4.16b): 

1. an hydrogen concentration CL =C0  is instantaneously imposed on the 

polycrystal lower face, as well as a constant displacement rate !U  on 
the upper face, up to an average strain in the traction direction of 5%; 

2. on the lateral faces, uniform mixed-orthogonal boundary conditions are 
imposed (Charles et al., 2010; Salahouelhadj and Haddadi, 2010), as 



well as a zero normal hydrogen flux, to mimic mechanical and diffusion 
periodicity. 

After all computations, the average 〈CL〉 value of the diffusive hydrogen 
repartition on the bar upper face is extracted, following the same methodology than 
the one presented in (Charles et al., 2017b), and its evolution with the normalized 
time t/tmax is plotted, tmax being the time needed to reach 5% strain. 

Two parameters are focused on: the applied displacement rate (assuming an 
overall isotropic texture), and the texture (for a given applied displacement rate). To 
enhance the hydrogen transport by dislocations contribution to the total hydrogen 
flux ϕ , computed ϕd have been multiplied by 100 in the computations presented in 
the next section, following Dadfarnia (Dadfarnia et al., 2015).  

4.4.6.1. Influence of the strain rate for an isotropic texture 

The considered applied strain rates are the same than in the section 4.4.5.3. For 
each of them, two computations are made: one with the ϕd contribution, and one 
without. The 〈CL〉 evolutions with time are plotted on Figure 4.17a. 

 

 

(a) (b) 

Figure 4.17. (a) Evolution of 〈CL/C0〉 on the upper face for all of the used strain rates 
considering the ϕd contribution (dashed lines) or not (full lines). (b) Polycrystal 〈111〉 
pole figures. The decreases of 〈CL/C0〉 for an applied strain rate of 10-6 s-1 is due to 

the increase of trap density due to plastic strain development 
(see (Benannoune et al., 2018)). 

The main information extracted from these computations is that the ϕd 
contribution has, in average, negligible effect on the global hydrogen transport 



process, recalling that this flux has been multiplied by 100 in the Figure 4.17a 
results. Such a result might be qualitatively explained by a statistical effect of the 
grain orientations over the polycrystal: diffusion acceleration due to a well-oriented 
grain (e.g, a 111 one) is counter-balanced by a bad oriented one (e.g. a 123  one). 
However this is not the case for non-isotropic textures. 

4.4.6.2. Texture influence 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 4.18. (a-g) considered 〈111〉 fiber textures with decreasing sharpness. (h) 
corresponds to the isotropic case of Figure 4.17b. For case (a) computations were 

performed with and without any transport by dislocations. 

!



 

Figure 4.19. 〈CL〉 evolution with time on the polycrystal upper face for different 
textures. The isotropic texture results correspond to the one plotted on Figure 4.17b. 

To exhibit the texture influence on the hydrogen transport process, and based on 
the results obtained on [111] single crystal in section 4.4.5.2, several 111 fibers 
textures with Y axis have been considered, as shown in Figure 4.18. These textures 
have been generated considering a given scattering around a fixed orientation set. 
The applied strain rate was 10-6 s-1, as from Figure 4.17 the effect of plastic strain 
on the apparent hydrogen diffusion was the most evident for this value. 〈CL〉 results 
on the polycrystal upper face are plotted on Figure 4.19 for all computations. 

The results are similar for the sharpest fiber textures (a-c), but significantly differ 
from the isotropic case (h). Between the two, it can be noticed that the effect of the 
texture remains pronounced, even for textures with apparent moderate fiber 
reinforcements (see the differences between (g) and (h) for example)  

It can also be underlined that if no extra hydrogen transport is considered (black 
line (h) and blue dots on Figure 4.19), no differences appears in the 〈CL〉 evolution 
with time, showing that there is, in average, no influence of the polycrystal texture 
on the hydrogen transport and trapping process, as for the isotropic texture. For the 
chosen configurations, the equivalent plastic strain state repartition appears to be 
statistically equivalent in the samples (see Figure 4.20), and therefore the effect of 
crystal orientations on trapping is limited effect since it is controlled by the local 
equivalent plastic strain. More precise accounting for the trapping process at the slip 
system scale would be needed to improve the modeling, which was out of scope of 
the present study. 



 

 

 

 

(a)  (b) (c) 

Figure 4.20. Equivalent plastic strain repartition in the polycrystal at the end of the 
mechanical loading with the textures of (a) Figure 4.18a and of (b) Figure 4.18h. (c) 

Statistical distribution of the equivalent plastic strain in the two samples. 

4.5. Conclusion 

In this chapter, we have focused on the hydrogen transport and trapping 
relationship, while considered at the crystal and component scales. We have linked, 
especially, the average time-to-diffusion thought deformed samples and the one 
along with an equivalent homogeneous sample. As we have shown, the hydrogen 
trapping in single crystal and its subsequent transport have non-trivial consequences 
at the component scale due to the polycrystal features (mechanical anisotropy, slip 
system, texture,…). The link we are developing under Abaqus software, using a 
fully mechanical-hydrogen transport and trapping resolution scheme, might help to 
redefine the global material parameters (as the effective diffusion coefficient) or 
evolution laws (as the diffusion equation), at the macro-scale.  



The polycrystal scale in conjunction with crystal plasticity provides a convenient 
frame for studying the material-hydrogen interactions, and especially, the interplay 
between defects (as vacancies or dislocations) and hydrogen transport and trapping.  

In the case of hydrogen dragging by dislocations, or any relevant phenomenon at 
that scale, as proposed in the literature, it is possible to include in computations the 
effect of a given crystal structure and material texture, opening the path to texture 
engineering for decreasing (or increasing) the transport process. Of course, the used 
formalism has to be challenged, and, especially, modified to account for the 
specificities of that scale (e.g., using the dislocation density as a parameter for the 
trap density). Further developments are thus needed, provided by both models and 
experiments at lower scales, to improve the description of the hydrogen and material 
interactions and to test assumptions extracted from experiments.  
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