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Endurance racing places high demands on energy metabolism pathways. Metabolomics

can be used to investigate biochemical responses to endurance exercise in humans,

laboratory animals, and horses. Although endurance horses have previously been

assessed in the field (i.e., during races) using broad-window Nuclear Magnetic

Resonance metabolomics, these studies included several different race locations, race

distances, age classes, and race statuses (finisher or elimination). The present NMR

metabolomics study focused on 40 endurance horses racing in three race categories

over 90, 120, or 160 km. The three races took place in the same location. Given that

energy metabolism is closely related to exercise intensity and duration (and therefore

distance covered), the study’s objective was to determine whether the metabolic

pathways recruited during the race varied as a function of the total ride distance. For

each horse, a plasma sample was collected the day before the race, and another

was collected at the end of the race. Sixteen, 15, and 9 horses raced over 90, 120,

and 160 km, respectively. Proton NMR spectra (500 MHz) were acquired for these

80 plasma samples. After processing, the spectra were divided into bins representing

the NMR variables and then classified using orthogonal projection on latent structure

models supervised by the sampling time (pre- or post-race) or the distance covered. The

models revealed that the post-race metabolomic profiles are associated to the total ride

distance groups. By combining biochemical assay results and NMR data in multiblock

models, we further showed that enzymatic activities and metabolites are significantly

associated to the race category. In the highest race category (160 km), there appears to
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be a metabolic switch from carbohydrate consumption to lipid consumption in order to

maintain glycaemia. Furthermore, signs of protein breakdown were more apparent in the

longest race category. The metabolic shift seen in the different racing categories could

be related to a mixture of three important factors that are the ride distance, the training

status and the inherited endurance capacity of the various horses competing.

Keywords: metabolomics, biochemistry, energetics, exercise physiology, endurance, NMR, long exercise, horse

INTRODUCTION

The positive or negative effects of exercise onmetabolic pathways

have been widely studied in humans and animal models. In
this field, untargeted multiparameter studies have emphasized
the ability of metabolomics to highlight the metabolic pathways
involved in exercise (Pechlivanis et al., 2013; Bassini and
Cameron, 2014). Metabolomics has been used to investigate
adaptive metabolism responses to endurance exercise, such as
marathon running in humans (Lewis et al., 2010) and treadmill
exercise to exhaustion in mice and rats (Le Moyec et al.,
2012; Monleon et al., 2014). Endurance horses have also been
investigated in the field (i.e., during real endurance races) using
NMR-based metabolomics (Le Moyec et al., 2014; Luck et al.,
2015). Equine athletes start training for endurance races at
the age of 4, and tend to compete until the age of 15 or so.

The total distance covered is split into 30–40 km loops, with
a veterinary control (“vet gate”) at the end of each loop. The

veterinarians ensure that horses are not suffering from lameness
or dehydration, and that their heart rate is low enough to
start another loop. This process is repeated until the horses
have covered 90, 120, or 160 km. Consequently, around 50%
of the starters tend to be eliminated because of fatigue, lack

of fitness, or another physiological or biomechanical disorder.
Hence, the challenge for a trainer is to enable his/her horse
to run as fast as possible while maintaining good health and

rapid cardiac recovery. At the end of the race, a veterinarian
checks the horse again and designates it as a finisher or a
non-finisher (i.e., elimination).

Endurance racing places high physiological demands on

energy metabolism pathways. Although horses have previously
been assessed in the field (i.e., during endurance races) with

NMR metabolomics, these studies included several different race

locations, race distances, age classes, and race statuses (finisher
or elimination). Despite the marked heterogeneity of the study

populations, a comparison of plasma taken before and after an

endurance race showed that the metabolic profile depends on
the characteristics of the exercise (Le Moyec et al., 2014). A

subsequent study showed that 6-year-old horses in a 90 km race
had a more glycolytic metabolic profile than older horses in a
longer (160 km) race (Luck et al., 2015). However, these studies
did not examine the difference between effects of age or race
category (i.e., total ride distance). In the present study, we had
the opportunity to standardize the environmental conditions (the
race location, weather conditions and ground surface) and thus
focus on changes in energy metabolism in relation to the race
categories (i.e., total ride distance of 90, 120, or 160 km). Given

that energy metabolism is closely related to the intensity and
duration of exercise (and therefore the race distance), the primary
objective of the present investigation was to determine the plasma
metabolic profile shift at the completion of three different racing
distances (90, 120, and 160 km).

MATERIALS AND METHODS

Inclusion Criteria and Sample Collection
Blood samples were collected from horses racing over 90, 120, or
160 km at an endurance competition in Fontainebleau (France)
on October 16th (in the afternoon before the event) and October
17th (at the end of the event) 2015. All the horses had been
road-transported to arrive in Fontainebleau between 4 and 36 h
before sampling. A total of 52 horses (out of 192) were initially
included in the study following the provision of informed consent
by the owners and riders. The study protocol had been reviewed
and approved (as part of the GenEndurance project) by the
local animal care and use committee (ComEth EnvA-Upec-
ANSES; reference: 11-0041, dated July 12th 2011). Venous blood
was drawn from the jugular vein into dry, EDTA and lithium
heparin tubes for biochemical assays and fluoride-oxalate tubes
for metabolomics analyses. Serum and plasma samples were
maintained at+5◦C until analysis.

The day of the race, the weather was cool and cloudy, with a
temperature between 6 and 13◦C, a total of 2mm of precipitation
and a humidity between 90 and 100%. Each rider was free to
manage his horse according to his habits. For another part of
the study, we collected data on the horses’ diet before and during
the race. There are of course individual variations, nevertheless,
the management of horses is basically the same: all have the
opportunity to drink, eat a small amount of concentrates, and
hay between each loop. From the second loop, the riders can stop
at predefined crew points (every 10 km) to offer water to their
horse. Blood samples were collected during the afternoon the
day before the endurance race and between 20 and 30min after
the end of the race, i.e., about 24 h after pre-race sampling: the
comparison of pre- and post-race results is therefore not affected
by potential circadian variations in metabolism. Similarly, all
samples were taken away from food intakes. The time schedule
of each race is reported in the Supplemental Table S1. Plasma
samples collected for NMR analysis were frozen immediately
after centrifugation and stored at −80◦C. Forty of the 52 horses
finished the race, and so the corresponding 80 samples were
included in the present analysis. Sixteen horses raced over 90 km,
15 raced over 120 km, and 9 raced over 160 km.
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Acquisition and Processing of NMR
Spectroscopy Data
Plasma samples were thawed at room temperature. In 5mm
NMR tubes, 600 µL of plasma were added to 100 µL deuterium
oxide (for field locking). Proton spectra were acquired at 500
MHz and 300K on a Bruker Avance III spectrometer with a 5mm
reversed QXI Z-gradient high-resolution Bruker probe. One-
dimensional Carr-Purcell-Meiboom-Gill (CPMG) free induction
decay (FID) acquisition sequence was used. The acquisition
methods were described previously (Luck et al., 2015). Shortly,
the CPMG sequence was applied using a tau value (T2-Filter)
of 31ms, water signal suppression during the relaxation time
and 64 scans. The CPMG sequence is used to suppress the
broad signal from proteins and lipids according to their short T2
relaxation time.

Automatic signal processing was performed with an in-house
routine code using NMRpipe. The same Fourier transform with
a 0.3Hz line broadening, chemical shift calibration (according to
the C1-alpha-glucose doublet at 5.23 ppm), and spectral phasing
was performed manually. The processing method also included
an integral calculation of 0.001 ppm regions from 9.5 to 0 ppm
(referred to as bins). This generated an X matrix, used for
multivariate statistical analysis, in which each line is a spectrum
(i.e., a sample from a horse) and each column is a bin (labeled
with its mean chemical shift).

Multivariate Analysis
The X matrix (containing NMR data) was normalized according
to the spectra using the probabilistic quotient method (Dieterle
et al., 2006) and the bins, corresponding to variables in the
statistical analysis, were centered and scaled to the unit variance.

The two analytical methods applied were also described
previously (Luck et al., 2015): unsupervised principal component
analysis (PCA) and the supervised orthogonal projection on
latent structure (O-PLS performed using an in-house routine
written in MATLAB (The MathWorks, Natick, MA, USA) based
on the method described by Trygg and Wold (2002). The PCA
was first applied to detect any separation between groups and
the O-PLS analysis was performed to identify differences between
sample spectra as a function of supervising factors. These factors
were coded in a so-called Ymatrix, which included the time point
(pre- or post-race) and the distance covered by the finisher horses
(90, 120, or 160 km). The quality of the O-PLSmodel was assessed
by calculating the R2Y fit parameter and the Q2Y cross-validated
coefficient of determination parameter. Only models achieving
Q2Y value over 0.5 were considered. A permutation test (n =

999 permutations) was performed as another means of internally
validating method (Triba et al., 2015). This process also checks
for the absence of artifactual over-fitting by the O-PLS models;
all those presented here met this condition.

A score plot and a loading plot were computed to illustrate
the results of the O-PLS models. The loading plot represents
the covariance between the Y-response matrix and the signal
intensity of the various spectral domains. Colors were also used in
the loading plot, depending on the Pearson’s correlation between
the corresponding bin intensity and the Y variable. Metabolites

were considered to be discriminating when they corresponded to
bins with a correlation value of I0.5I ormore. In such a case, it was
considered that the level or relative amount of the corresponding
metabolite was modified according to the supervising factor. The
p-value corresponding to the null “Ho: no correlation” is given
for R = l0.5l in each model in Table 2. The calculated p-values
correspond the p-values of a Student test between the two groups.

In the present study, we removed inter-individual variability
by using the paired method (Westerhuis et al., 2010). Inside this
within X matrix (excluding the inter-individual variability), only
post-race samples were used to compute an O-PLS model with
race distance as the supervising factor.

In order to perform a more integrated analysis, biochemistry
and NMR data were considered in an unsupervised multiblock
common component and specific weights analysis (CCSWA)
(Qannari et al., 2001). This method enables the simultaneous
analysis of heterogeneous data from the same samples. Each type
of data constitutes a block; in the present study, the blocks XBIO

and XNMR corresponded to the biochemical assay and NMR
datasets, respectively. The CCSWA is used to identify common
components, i.e., a common source of variability in the two
blocks. However, each block can make a specific contribution
(i.e., a specific weight) to the common component. These specific
weights have to be considered when interpreting the model’s
output. Before building the CCSWA model, the biochemical
assay and NMR datasets are scaled so that each block and
each variable within a block have the same initial weight. Thus,
variables that constituted XBIO and XNMR were scaled to unit
variance, and the resulting matrices were scaled so that they had
the same variance.

Biochemical Assays
Plasma samples taken before and after the race were assayed
on an RX Imola system for the following analytes: total
protein, creatinine, creatine phosphokinase (CK), aspartate
amino transferase (ASAT), total bilirubin, gamma glutamyl
transferase, serum amyloid A (SAA), beta hydroxybutyrate
(BHB), and non-esterified fatty acids (NEFAs).

RESULTS

Horses and Race Data
The mean characteristics of the horse’s group in the three race
categories are presented in Table 1. For each horse, their heart
rates measured at each vet-gate and their speeds on each step are
shown in the Supplemental Table S2. Groups were not different
for horse breeds withmainly purebred Arabian then half-Arabian
horses. For age, the three groups were not different on average.
Nevertheless, the endurance rules impose a minimum age of
7 years for 120 km and 8 years for 160 km races. There were
therefore no horses aged 6 and 6–7 years old, respectively, in
these two distance groups. Heart rate and speed data during
the same part of the race were not different between the three
distance groups (Supplemental Table S1). The average speed
of the last step of the race before arrival was measured and
summarized for each race distance in Supplemental Table S2.
We observed that the horses competing in the 160 km race

Frontiers in Molecular Biosciences | www.frontiersin.org 3 June 2019 | Volume 6 | Article 45

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Le Moyec et al. Equine Metabolomics and Endurance Races

TABLE 1 | Description of the three groups of horses based on the race distance.

Race distance 90 km 120 km 160 km

Horses 16 15 9

Breed Anglo-Arabian 2 0 1

Arab 10 11 7

Half Arab 3 4 1

Other 1 0 0

Gender Female 5 9 3

Male 3 2 1

Gelding 8 4 5

Age Min 6 7 8

Mean (sd) 8.7 (2.5) 9.2 (1.9) 10.4 (1.9)

Max 15 14 13

Mean speed (km/h) Min 12.66 15.71 15.43

Mean (sd) 16.81 (2.02) 17.75 (1.34) 16.67 (1.25)

Max 19.56 19.77 19.05

HR at finish (bpm) Min 46 50 45

Mean (sd) 54.9 (6.4) 55.1 (3.8) 55.8 (5.5)

Max 64 61 63

finished at slower averaged speed (14.44 ± 2.22 km/h) that the
two other race distance 90 and 120 km (17.64± 2.99 and 17.93±
2.99 km/h, respectively).

NMR Spectra of Equine Plasma
Examples of CPMG spectra obtained with plasma samples taken
before and after the 160 km race are shown in Figure 1. Most of
the metabolites described below appear in these spectra.

Metabolomic Profiles in the Three
Distance Groups
The spectra of pre- or post-race samples collected from 40 horses
having finished one of the three race distances were classified
using an O-PLS model. The quality of the fit (as calculated with
two components) was high, with R2Y = 0.957 and Q2Y = 0.924
calculated with 2 components. The score plot and loading plot
of this analysis are presented in the Figure 2; the metabolites
involved in the discrimination (with an R-value over 0.5) are
colored from green to red, and are also listed in Table 2. Relative
to pre-race samples, the post-race samples contained higher
levels of branched-chain amino acids (BCAAs), lactate, acetate,
glutamine, glutamate, citrate, creatine, glycerol, and aromatic
amino acids (AAAs), and lower levels of glucose, alanine, and
compounds including N-acetyl moieties (such as glucosamine in
hyaluronic acid).

Differences in Plasma Metabolic Profiles
Between Racing Distance Groups
In order to assess the influence of the race distance (90, 120, or
160 km), the post-race data from finishers were extracted from
the within-X matrix. This new matrix was used to compute an
O-PLS model with distance as the supervising factor (Figure 3).
Nine horses (mean age: 10.4 ± 1.9) were included in the analysis
of the 160 km race, with 15 (mean age: 9.2 ± 1.9) for the 120 km

FIGURE 1 | 1D proton NMR CPMG spectra of horse plasma samples

collected before a 160 km race (bottom spectrum) and afterwards (top

spectrum). The main metabolites are labeled as follows (although metabolites

that appeared in both spectra are only indicated in one spectrum or the other);

1: methyl moieties from fatty acids, 2: BCAAs (valine, leucine, isoleucine), 3:

methylene moieties from fatty acids, 4: lactate, 5: alanine, 6: acetate, 7:

N-acetyl moieties 1, 2, and 3, 8: glutamate and glutamine, 9: citrate, 10:

creatine, 11: phosphocholine and choline, 12: glucose, 13: alkene moieties

from fatty acids, 14: urea, 15: AAAs (tyrosine and phenylalanine), 16: beta

hydroxybutyrate, 17: glycerol.

race, and 16 (mean age: 8.75± 2.5) for the 90 km race. The model
distinguished between the three distances with an acceptable
level of fit (R2Y = 0.920 and Q2Y = 0.595). The loading plot
showed that post-race samples (relative to pre-race samples)
contained higher levels of acetate, glutamate, glutamine, citrate,
creatine and urea, and lower levels of lactate, lipids, and N-acetyl
functional groups when race distance increases.

To confirm the metabolic variations as a function of the
distance covered, we computed three models comparing pre-
vs. post-race NMR data. Again, inter-individual variability was
removed by considering only the within-X data. All three models
had a good statistical performance, as shown by the loading
plots (Figure 4). The discriminant metabolites are reported in
Table 2. Glucose, glycerol, BCAAs, and AAAs were discriminant
metabolites in all three models, which confirmed the results
described above (Figure 3) for the O-PLS model as a function
of distance. Relative to pre-race samples, post-race samples had
lower levels of lipids and acetate in 120 and 160 km races but not
in the 90 km race. Several correlation coefficients (including those
for beta-hydroxybutyrate, lactate, creatine, and urea) differed as a
function of the race distance (Table 2), which explains why these
metabolites were discriminant when modeling the distance with
the NMR data from post-race samples.

Common Analysis of Biochemical Data and
NMR Spectra
A non-supervised CCSWA was used to identify the
NMR and biochemical assay variables involved in
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FIGURE 2 | (A) The score plot for the O-PLS model computed with paired pre- and post-race plasma samples from all finisher horses. Tpred and Torth correspond to

the predictive and orthogonal axes, respectively. Each dot corresponds to a spectrum (in blue for pre-race samples and in red for post-race samples). (B) The loading

plot for the score plot’s predictive axis. The metabolite correlations are represented on a color scale. Positive signals correspond to metabolites present at increased

levels in post-race samples. Conversely, negative signals correspond to metabolites present at increased levels at AE. The bins are labeled according to the metabolite

assignments in Figure 1.

common principal components. Samples from one of
the horses in the 120 km event were removed from
the analysis because of an out-of-range CK activity
(>100,000 UI, i.e., more than a hundred times the upper
normal limit).

In an initial model comprising the 40 finishers, the principal
component clearly distinguished between pre- and post-race
samples. The NMR data and biochemistry data, respectively,
accounted for 19 and 58% of the component’s variability.
Next, CCSWA models were calculated separately for pre-
vs. post-race samples from horses in each of the three
race distances. The models’ principal component distinguished
between the three distances (Figure 5). The loading plots
showed that the discriminant metabolites in the CCSWAmodels
were the same as those in the O-PLS models (Figure 3).
The weights of the biochemistry parameter differed as a
function of the distance covered (Table 3). Non-esterified
fatty acids had a high weight in all three models, bilirubin
and creatinine had a high weight in the 90 and 120 km
models, and CK and ASAT activities had a high weight
in the 160 km model. Gamma glutamyl transferase made
the lowest contribution to the principal component in all
three models.

DISCUSSION

Our findings on the effect of equine endurance racing on the
plasma metabolome are in line with previous studies (Le Moyec
et al., 2014; Luck et al., 2015). However, our experimental design
enabled us to highlight the effects of distance. All the horses
had traveled to arrive at the competition site between 4 and
36 h before sampling. At the time of the race (in October), the
weather was cool and favorable for good conditions of transport.
However, the individual conditions and the duration of transport
are not known nor standardized. It is well known that transport
generates stress that can have consequences on the health of
horses all the more marked as the duration increases and even
modify the microbiota (Perry et al., 2018). It is likely that pre-
race measurements differ from what would have been obtained
in non-transported horses. This did not seem to be too limiting
as all the horses were transported and we evaluated the effects
of the race distance by comparing the measurements before and
after the race.

In contrast to earlier studies, pre- and post-race samples were
collected from all the study participants—making it possible to
perform the metabolomic analysis on paired samples and thus
to eliminate inter-individual variability. Of the 52 horses initially
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TABLE 2 | Metabolites and their coefficients for the correlation between signal intensity and the race effect for the five calculated O-PLS models.

Chemical shift Signal assignments All finishers p = 10−7 Distance p = 10−5 90km p = 10−4 120km p = 10−6 160km p = 10−3

0.84 CH3 lipids −0.443 −0.78 −0.613

0.91 Isoleucine 0.696

0.96 Leucine 0.7 0.792 0.76 0.748

0.98; 1.03 Valine 0.6425 0.7045 0.798 0.6865

1.06 3-Hydroxy isobutyrate 0.883 0.876 0.961 0.966

1.13 Alpha-oxo-isovalerate 0.52 0.67 0.625 0.664

1.19; 4.15 Beta hydroxybutyrate 0.678 0.514 0.701 0.823 0.96

1.23 CH2 lipids −0.429 0.597 0.358 −0.582

1.32;4.10 Lactate 0.8815 −0.42 0.8955 0.9305 0.82

1.47 Alanine −0.732 −0.629 −0.789 −0.887

1.91 Acetate 0.664 0.552 0.769 0.926

1.96 N-Acetyl 1 −0.694 −0.575 −0.868 −0.776

2.07 N-Acetyl 3 −0.728 −0.527 −0.607 −0.885 −0.768

2.14 Glutamate + glutamine 0.772 0.773 0.783 0.929

2.22 Acetone 0.621

2.27 Acetoacetate 0.748 0.582 0.587 0.943 0.826

2.33 Glutamate 0.81 0.541 0.711 0.508 0.923

2.41 Glutamine 0.765 0.639 0.74 0.941 0.966

2.51; 2.54 2.64;2.68 Citrate 0.651 0.7625 0.809

2.97 Lysine

3.03 3.93 Creatine 0.888 0.583 0.911 0.963 0.915

3.18 Choline 0.697 0.69 0.666 0.891

3.20 Phosphocholine −0.587 −0.515 −0.901 −0.499

3.24, 3.41–3.91 Glucose −0.726 −0.8265 −0.877 −0.766

3.57; 3.64; 3.66 Glycerol 0.743 0.68 0.797 0.768

5.23 Glucose −0.774 −0.821 −0.799 −0.846

5.28 CH=CH lipids −0.535 0.765 −0.522

5.77 Urea 0.577 0.511 0.507 0.493 0.831

6.89; 7.18 Tyrosine 0.8725 0.904 0.911 0.94

7.04 Histidine

7.291 Tryptophan 0.666 0.725 0.711 0.851

7.37 Phenylalanine 0.578 0.825 0.693 0.634

Only metabolites presenting a correlation coefficient over I0.5I are given. The p-value for R = l0.5l is given for each model. All finishers: a comparison of pre- and post-races samples
for all 40 horses in the study, regardless of the race distance; distance: a model of post-race samples as a function of the race distance; 90, 120, and 160 km: comparisons of pre- and
post-race samples for each race distance separately.

sampled, 40 finished the 90, 120, or 160 km race under the
same environmental conditions; this enabled us to investigate the
influence of race distance on metabolic adaptations. Of course,
it would have been better to sample the horses at each vet-
gate and compare the groups of horses at the same distance.
However, while most riders agreed their horses being sampled
before and after the race, the horses must rest, drink and eat
at each halt between the loops. Performing blood sampling at
this time disturbs them; the risk of creating a hematoma at the
sampling site is high. In addition, the rules of the competition
don’t allow collecting blood samples during the race. In the
present study, we asked before the completion, the authorization
of the judges for blood sampling before the start and after finish
of the race. Conversely, usual race strategy is that riders retain
their horses on the first loops of the race and run the last loop
to the maximum of the possibilities of their horse. Sampling

horses running 160 km at 90 km is not the same as sampling
horses that have just finished a 90 km race. Another limitation
is differences in training status of horses. The horses in the three
races did not differ greatly with regard to age or breed. Heart rate
and speed data during the same part of the race were also the
same between the three distance groups. All horses in the study
had several years of experience in endurance racing. However,
we cannot say that the groups were equal, since very few 90 km
race horses had already run 120 km and even less 160 km.
Conversely, all the 160 km-horses had experience over 120 and
90 km races. Experience and level of training can therefore be
confounders in our study. The metabolites found discriminant
in our multivariate statistical models as collected in the Table 2
do not represent an exhaustive list of metabolites that could
be detected in the plasma NMR spectra but only those found
correlated to the race status (pre- or post- race). Obviously, other
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FIGURE 3 | (A) The score plot for the best O-PLS model computed with the after exercise samples of all finisher horses with the race distance as supervising factor.

Tpred and Torth correspond to the predictive and orthogonal axes, respectively. Each dot corresponds to a spectrum (in blue for 90 km race, green for 120 km race,

and red for 160 km race). (B) The loading plot for the score plot’s predictive axis. The metabolite correlations are represented on a color scale. Positive signals

correspond to an increase in the metabolite as the distance increases. Conversely, negative signals correspond to a decrease in the metabolite as the distance

increases. The bins are labeled according to the metabolite assignments in Figure 1.

chemical compounds may be identified in horses’ plasma using
NMR or mass spectrometry (Escalona et al., 2015). Nevertheless,
the output of the O-PLS model calculated with paired data
showed that the three main metabolic pathways (carbohydrate,
protein, and lipid pathways) were all altered by the race. The
biochemistry investigation performed in parallel showed that the
parameters were also affected after the race. Depending on the
race distance common variability could be found between both
types of data, biochemistry and NMR.

Endurance races place high demands on energy metabolism
(Barrey, 1993) which takes place mainly within the striated
muscles and liver. The high-energy demand provoked by
endurance exercise causes disruption in plasma biochemistry
homeostasis. Our OPLS model showed that the horses’ glycaemia
was lower in post-race plasma samples than in pre-race samples.
Glucose seems to contribute to a lesser extend for the 160 km
race; since the fall in glycaemia was smaller for the longest
distance. Several explanations can be put forward to explain
a lesser glucose level decrease in 160 km horses. These horses
may better compensate for glucose losses through a better
use of muscle and liver glycogenolysis or a lack of necessary
gluconeogenesis. They are probably better trained in this long

race category and thus, could increase their muscular and liver
glycogene reserves. However, other metabolic changes observed
in parallel lead us to believe that horses of 160 km preferentially
use the metabolism of fatty acids for muscular functioning and
thus save their glucose and avoid fatigue. In all horses, the plasma
lactate level was significantly increased after the race. One can
therefore hypothesize that glucose was anaerobically metabolized
at least during the last minutes of exercise when the riders asked
their horses to increase their speed to the finish line. Lactate
was a discriminant metabolite in the model comparing the three
distances. The increase in lactate level was smaller for the 160 km
race—showing that oxidative metabolic pathways were more
active over the longest distance. Changes in lactate and glucose
content during exercise have been extensively investigated; the
lactate content was found not to depend on the horses’ age (Kang
and Park, 2017) or the racing distance (Cywińska et al., 2012).
However, Cywińska et al. studied much shorter distances (34
and 60 km) than those assessed here (90, 120, and 160 km). In
addition, the blood lactate increase is probably more related to
the faster gallop asked by the riders the last minutes on the finish
line than to the slow regular canter maintained during most of
the race distance. As shown by the average speeds during the
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FIGURE 4 | Loading plots for the score plots’ predictive axis (not shown) in O-PLS models calculated for pre-race and post-race samples and the three race

distances: (A) 90 km and 16 horses, three components; R2Y = 0.993, Q2Y = 0.874; (B) 120 km and 15 horses, three components, R2Y = 0.986, Q2Y = 0.947,

(C) 160 km and 9 horses, three components, R2Y = 0.995, Q2Y = 0.839. The metabolite correlations are represented on a color scale. Positive signals correspond to

metabolites present at increased levels in post-race samples. Conversely, negative signals correspond to metabolites present at increased levels in post-race

samples. The bins are labeled according to the metabolite assignments in Figure 1.

last loop, in the 90 km race, the capacity to increase the speed
at finish was higher than in the 160 km race, thus higher blood
lactate is expected at the arrival of 90 km race. Taken as a whole,
the data on glucose and lactate levels vs. race distance suggest
that compensatory metabolic pathways only replace anaerobic
glycolysis after a certain time interval. This time interval depends
on the race distance, the rider’s race strategy as well as on the
training status of the horse.

Metabolism of the amino acid alanine is linked to the
glycolysis pathway; hence, the observed decrease in alanine
levels during all three races can be explained by transformation
of this amino acid into pyruvate, in order to maintain a
sufficient level of substrate for the tricarboxylic acid (TCA)

cycle despite a decrease in the glucose level. However, the
decrease in the alanine level did not vary as a function of
the distance covered. Variations in the citrate level are also of
interest in this respect. Citrate is one of the tricarboxylic acids
in the TCA cycle, and citrate synthase is frequently used as
a marker of mitochondrial activity (Rasmussen et al., 2001).
When considering horses having finished the 90 km race or
the 120 km race, post-race samples contained higher citrate
levels than pre-race samples. This modulation is evidenced
in the plasma compartment and may be difficult to rely to
mitochondrial citrate content (Votion et al., 2010), which is
also dependent on the aconitase activity. However, citrate was
not a discriminant metabolite for the 160 km race—suggesting
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FIGURE 5 | CCSWA models obtained for NMR spectra and biochemical assay data derived from pre-race samples (blue dots) and post-race samples (red dots) for

the three race distances. The first column corresponds to the score plots, the second corresponds to the biochemical variables’ loadings for the model’s first principal

component of the model and the third corresponds to the NMR variables’ loadings for the first principal component of the model. (A) A model for the 90 km race;

fraction of the variance in the first principal component: 0.41 for biochemistry and 0.16 for NMR. (B) A model for the 120 km race; fraction of the variance in the first

principal component: 0.53 for biochemistry and 0.20 for NMR. (C) A model for the 160 km; fraction of the variance in the first principal component: 0.58 for

biochemistry and 0.19 (NMR). CK, creatine kinase; ASAT, aspartate-aminotransferase, TP, total protein; Tot Bili, total bilirubin; GGT, gamma glutamyl transferase;

Creat, creatinine; SAA, serum amyloid A; NEFA, non-esterified fatty acid; BHB, β-hydroxy butyrate.

TABLE 3 | Ranking of the contribution of biochemical variables to principal

component in the CCSWA, for each race distance.

Rank 90 km 120 km 160 km

1 NEFAs Total bili NEFA

2 Total bili NEFA BHB

3 Creatinine Creatinine CK

4 BHB SAA ASAT

5 CK BHB Total bili

6 TP ASAT Creatinine

7 ASAT CK SAA

8 SAA TP TP

9 GGT GGT GGT

CK, creatine kinase; ASAT, aspartate-aminotransferase; TP, total protein; Tot Bili, total
bilirubin; GGT, gamma glutamyl transferase; SAA, serum amyloid A; NEFAs, non-esterified
fatty acids; BHB, beta-hydroxybutyrate.

the involvement of a different mechanism in horses covering
this distance.

Physiological and metabolic adaptations may also involve
lipid oxidation. Lipid metabolism is known to take place
during endurance exercise, as a mean of maintaining the
energy supply as the glucose level falls (Barrey, 1993). Energy
supply by fatty acid breakdown is an oxidative mechanism
that produces two carbon residues for entry into the TCA

cycle as acetyl-CoA. The oxidation of fatty acid chains
results in the release of ketone bodies such as acetate,
acetoacetate, and hydroxybutyrate. The oxidized fatty acids
come from the hydrolysis of triglycerides by lipases. Similarly,
the hydrolysis of phospholipids produces two fatty acids
and a glycerophosphocholine or glycerophosphoserine residue.
Choline-containing phospholipids are the most abundant
lipids within the cell membrane. Glycerophosphocholine is
further hydrolyzed into glycerol, and phosphocholine is further
hydrolyzed into choline and a phosphate residue.

According to the O-PLS model computed with the whole set
of samples, lipid consumption is taking place as several ketone

bodies are detected, with glycerol and choline increases after the
race. However, the lipid signals (including methyl and methylene
signals at 0.8 and 1.20 ppm and double bounds at 5.3 ppm) are
not participating to themodel including all horses. As the levels of
circulating lipids included in lipoprotein particles do not change,
it might be that the lipids entering this energy supply pathway
are taken from another pool of lipids. Several sources of lipids
can provide triglycerides including adipocytes and most likely
the muscle tissue itself. On the other hand, lipid signals (mainly
fatty acids from lipoproteins) were discriminant in the O-PLS
model computed with the samples from all three distances. This
finding was confirmed by the models computed for the 160 km
distance, in which lipids discriminated between the pre- and
post-race samples. However, this was not the case for the 90
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and 120 km races. The elevated level of lipid consumption was
confirmed by the greater release of ketone bodies detectable in
NMR spectra and confirmed in the CCSWA model by the BHB
weight. The acetate level was not discriminant in the 90 kmmodel
but was elevated in the 120 and 160 km races. Acetate was also a
discriminant metabolite in the model calculated for the post-race
samples at all three distances. The initiation of lipid oxidation
might require greater adaptation—such as that obtained through
training, for example. Longer race duration might also trigger
this initiation as a means of compensating for greater glucose
consumption. We also found that the level of NEFAs was higher
in post-race samples. In the CCSWA model calculated with both
biochemistry and NMR data, NEFAs had the greatest weight at
each of the three distances.

In view of the need for energy production, protein metabolism
was also affected by the endurance racing. This is demonstrated
by the loading plot for the O-PLS model calculated with
NMR data from all three distances. We observed pre-/post-
race differences in the levels of several amino acids. With the
exception of alanine (discussed above), the levels of all other
detected amino acids were higher in post-race samples than in
pre-race samples. They included BCAAs (namely leucine and
valine), glutamate, glutamine, and AAAs (namely tyrosine and
phenylalanine). This increase in amino acid plasma content
might be due to proteolysis within muscle cells (Xu et al., 2017).
This proteolysis contributes to energy supply, since amino acids
can enter the TCA cycle after deamination. The presence of the
BCAA metabolite oxo-isovalerate in post-race samples confirms
the occurrence of proteolysis at the end of the event.

When the effects of distance on post-race samples were
compared, the glutamine and glutamate contributed to themodel
but the BCAAs leucine and valine and the AAAs tyrosine and
phenylalanine did not. Given that glutamate enters the TCA
cycle after a single enzymatic reaction, we hypothesize that levels
of glutamate deamination are lower in the 90 km race than in
the 120 and 160 km races. In contrast, the release of BCAAs
and AAAs into the plasma was similar after the three distances.
Moreover, the fact that the level of the valine metabolite oxo-
isovalerate was higher in post-race samples than in pre-race
samples suggested that valine had been released by proteolysis
and catabolized.

Elevated creatine level and CK activity are also associated
with greater race distances, suggesting that long and/or intense
exercise induce a higher membrane permeability associated to
leakage of muscle proteins in blood (Valberg et al., 1993; Barrey
et al., 2010; Serteyn et al., 2010). The increase of CK activity in the
blood is associated with a severe inflammation signal according to
the blood transcriptome during the race and may reach muscular
damage and rhabdomyolysis (Barrey et al., 2010; Capomaccio
et al., 2010; Mach et al., 2016). Tryptophan and histidine are not
modified for the three distances while tyrosine and phenylalanine
are present in higher amount in plasma collected after races
than those collected before races. The tryptophan:tyrosine ratio
after exercise has been extensively investigated because these
metabolites are involved in inflammatory processes and in
the metabolism of the neurotransmitter serotonin (Strasser
et al., 2016). It is difficult to conclude as to the presence of

inflammation on the basis of the NMR data alone; moreover,
tryptophan levels did not appear to vary as a function of the
race distance. Phenylalanine and tyrosine levels changed in the
same way as the BCAAs; levels were higher after the race but
(in contrast to glutamine and glutamate) did not vary as a
function of the race distance. Overall, one can conclude that (i)
proteolysis occurs during endurance races and (ii) glutamine and
glutamate contribute to the increase in energy supply as the race
distance rises.

Unlike the proton NMR spectra of human plasma, spectra
of horse plasma contain three resonances at around 2.1 ppm;
we and others have attributed them non-specifically to the N-
acetyl moieties of glycoproteins (Hodavance et al., 2007; Luck
et al., 2015). We hypothesize that the resonances correspond to
hyaluronic acid metabolism and turnover during an endurance
effort. Furthermore, the resonances were not assigned in
Escalona et al.’s recent assignment of most of the metabolites in
equine biofluids detected by NMR spectroscopy (Escalona et al.,
2015). Nevertheless, the signals’ chemical shifts suggest that they
are produced by N-acetyl moieties of polymeric molecules, such
as glucosamine. The observed decrease in the intensity of two
of these signals after the endurance races suggests that N-acetyl
moieties are consumed or catabolized during intense exercise.

CONCLUSION

Using NMR metabolomics, we confirmed that 90, 120, and
160 km races had a marked impact on the metabolic pathways
involved in energy supply in endurance horses. The experimental
design enabled to evidence a metabolic adaptation of the horses
associated to the total race distance without identifying the
origin. The factors may be diverse and interacting: exercise
distance and duration, rider’s management of the race, training
status of the horse, and inherited endurance capacity of the horse.
However, we evidenced an adaptive metabolic switch toward
lipid metabolism to progress from the shortest race distance
(90 km) to the highest race distance (160 km). It might be possible
to promote the use of lipid metabolism through appropriate
training, dietary measures, and race tactics. More research is
needed to understand metabolic shifts that take place in horses
throughout different types of exercise.
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