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Vectorized algorithms for regular and conforming tessellations of d-orthotopes and their faces with high-order orthotopes or simplicial elements

, vectorized algorithms are proposed to build regular and conforming tessellations of a d-orthotope made up by orthotopes or by simplices. We extend theses results to the tessellations of a d-orthotope with high-order elements.

In [START_REF] Cuvelier | Vectorized algorithms for regular tessellations of d-orthotopes and their faces[END_REF] or [START_REF] Cuvelier | Vectorized algorithms for regular tessellations of d-orthotopes and their faces[END_REF], we explain how to efficiently build regular tessellations of a d-orthotope made up by orthotopes or by simplices and how to recover all the meshes associated to the m-faces of the d-orthotope, 0 ď m ď d. In Figure 1 small meshes of the unit hypercube are given for both tessellations with orthotopes and simplices. From these two meshes, all the associated 2-faces meshes are represented in Figure 2. The aim of this paper is to extend these results/algorithms to tessalations with high order elements: p-order orthotopes or p-order simplices. Theses elements have additionnal nodes regularly distributed added to their vertices. For dimension 1 to 3 and order 1 to 4, orthotope elements and simplicial elements are respectively represented In Table 1 andTable 2. In [START_REF] Cuvelier | Vectorized algorithms for regular tessellations of d-orthotopes and their faces[END_REF] the only mesh elements used are order 1. By taking back the meshes represented in Figure 1 and Figure 2, but this time using 3-order mesh element we want to get new meshes given by Figure 3 and Figure 4 Figure 3: Tesselation samples of r0, 1s 3 with 3-order 3-orthotopes (left) and 3-order 3-simplices (right) where nodes of all mesh elements are represented by small black (vertices) and grey spheres.

Figure 4: Representation of all the 2-faces meshes with 3-order 2-orthotopes (left) and 3-order 2-simplices (right) obtained from the tesselation samples of the Figure 3 In the following of the paper we will use notations and definitions given in [START_REF] Cuvelier | Vectorized algorithms for regular tessellations of d-orthotopes and their faces[END_REF].

Definitions and notations

In this part, we characterize the basic geometric elements that will be used later on. Some of their properties are recalled. But before we specify notations commonly used in this paper to define set of integers: vi, jw def " ti, ¨¨¨, ju, vi, jv def " ti, ¨¨¨, j ´1u, wi, jw def " ti `1, ¨¨¨, ju, wi, jv def " ti `1, ¨¨¨, j ´1u.

d-orthotope and d-hypercube

We first recall the definitions of a d-orthotope and a d-hypercube given in [START_REF] Coxeter | Regular Polytopes. Dover books on advanced mathematics[END_REF].

Definition 1 In geometry, a d-orthotope (also called a hyperrectangle or a box) is the generalization of a rectangle for higher dimensions, formally defined as the Cartesian product of intervals.

Definition 2 A d-orthotope with all edges of the same length is a d-hypercube.

A d-orthotope with all edges of length one is a unit d-hypercube.

The hypercube r0, 1s d is called the unit reference d-hypercube.

The m-orthotopes on the boundary of a d-orthotope, 0 ď m ď d, are called the m-faces of the d-orthotope.

The number of m-faces of a d-orthotope is

E m,d " 2 d´m ˆd m ˙where ˆd m ˙" d! m!pd ´mq! (1) 
For example, the 2-faces of the unit 3-hypercube r0, 1s 3 are the sets t0u ˆr0, 1s ˆr0, 1s, t1u ˆr0, 1s ˆr0, 1s, r0, 1s ˆt0u ˆr0, 1s, r0, 1s ˆt1u ˆr0, 1s, r0, 1s ˆr0, 1s ˆt0u, r0, 1s ˆr0, 1s ˆt1u.

Its 1-faces are t0u ˆt0u ˆr0, 1s, t0u ˆt1u ˆr0, 1s, t1u ˆt0u ˆr0, 1s, t1u ˆt1u ˆr0, 1s, t0u ˆr0, 1s ˆt0u, t0u ˆr0, 1s ˆt1u, t1u ˆr0, 1s ˆt0u, t1u ˆr0, 1s ˆt1u, r0, 1s ˆt0u ˆt0u, r0, 1s ˆt0u ˆt1u, r0, 1s ˆt1u ˆt0u, r0, 1s ˆt1u ˆt1u, and its 0-faces are t0u ˆt0u ˆt0u, t1u ˆt0u ˆt0u, t0u ˆt1u ˆt0u, t0u ˆt0u ˆt1u, t1u ˆt1u ˆt0u, t1u ˆt0u ˆt1u, t0u ˆt1u ˆt1u, t1u ˆt1u ˆt1u.

We represent in Figure 5 all the m-faces of a 3D hypercube. In The identification/numbering of the m-faces is given in section2.3.
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d-simplex

Definition 3 In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. Specifically, a d-simplex is a d-dimensional polytope which is the convex hull of its d `1 vertices. More formally, suppose the d `1 points q q q 0 , . . . , q q q d P R d are affinely independent, which means q q q 1 ´q q q 0 , . . . , q q q d ´q q q 0 are linearly independent.

Then, the simplex determined by them is the set of points C " tθ 0 q q q 0 `¨¨¨`θ d q q q d |θ i ě 0, 0 ď i ď d,

d ÿ i"0 θ i " 1u.
For example, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and a 4simplex is a 5-cell. A single point may be considered as a 0-simplex and a line segment may be considered as a 1-simplex. A simplex may be defined as the smallest convex set which contain the given vertices.

Definition 4 Let q q q 0 , . . . , q q q d P R d be the d `1 vertices of a d-simplex K and D K be the pd `1q-by-pd `1q matrix defined by

D K " ¨q q q 0 . . . q q q d 1 . . . 1 ‹ ‹ ' The d-simplex K is ' degenerated if det D K " 0, ' positive oriented if det D K ą 0, ' negative oriented if det D K ă 0.
The m-simplices on the boundary of a d-simplex, 0 ď m ď d, are called the m-faces of the d-simplex. If a d-simplex is nondegenerate, its number of m-faces, denoted by S m,d , is given by

S m,d " ˆd `1 m `1˙( 2)
We give in The reference element of the p-order d-orthotope mesh element in R d is p H " r0, 1s d . Its pp `1q d nodes are

x x x i i i " i i i p , @i i i P v0, pw d (3) 
and they contains the 2 d vertices of p H

x x x i i i " i i i p , @i i i P t0, pu d . (4) 
Let p q q q be the d-by-pp `1q d array containing all the nodes of p H. To choose the storage order of the nodes in the p q q q array we define the L p function that maps all the d-tuples ı ı ı P v0, pw d into v1, pp `1q d w by

L p pı ı ıq " 1 `d ÿ l"1 pp `1q l´1 ı ı ı l . (5) 
Then the p q q q is given by p q q qp:, jq def " x x x Lp -1 pjq , @j P v1, pp `1q d w.

where p q q qp:, jq denotes the j-th column of the array p q q q. For example, with d " 3 and p " 2, the array p q q q is given by p q q q def " 1 2 » -0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 fi fl
This array can be obtained from the CartesianGridPoints function, described in [START_REF] Cuvelier | Vectorized algorithms for regular tessellations of d-orthotopes and their faces[END_REF], by using p q q q Ð p1{pq ˚CartesianGridPointspp ˚Onesp1, dqq

In Figure 6 and Figure 7, nodes numbering is represented respectively for the 2-orthotope and 3-orthotope reference elements of order 2 and 3. ppN l `1q and n me "

d ź l"1 N l . (7) 
The objective of this section is to describe the construction of the nodes array q q q and the connectivity array me me me associated with Q p,N N N . More precisely,

• q q qpν, jq is the ν-th coordinate of the j-th node, ν P v1, dw, j P v1, n q w. The j-th node will be also denoted by q q q j " q q qp:, jq.

• me me mepβ, lq is the storage index of the β-th node of the l-th element (unit hypercube), in the array q, for β P v1, pp `1q d w and l P v1, n me w. So q q qp: , me me mepβ, lqq represents the coordinates of the β-th node in the l-th cartesian grid element.

Nodes of the tessellation

Each node of the Q p,N N N tessellation may be identified by a d-tuple    " pj 1 , j 2 , ¨¨¨, j d q P v0, pN 1 w ˆ¨¨¨ˆv0, pN d w and the corresponding node denoted by q q q    is given by

q q q    " d ÿ l"1 j l p e e e rls " 1 p pj 1 , j 2 , ¨¨¨, j d q t "    p (8) 
where e e e r1s , . . . , e e e rds ( denotes the standard basis of R d . We want to store all the nodes of Q p,N N N N N N N N N in a 2D-array q q q of size d-by-n q . To define an order of storage in the array q q q, we will use the mapping function G p given by

G p p  q " 1 `d ÿ l"1 j l β l " 1 `x  , β β βy , @   P v0, pN 1 w ˆ¨¨¨ˆv0, pN d w (9) 
where β β β p " pβ p 1 , . . . , β p d q P N d with

β p l " l´1 ź j"1
ppN j `1q, @l P v1, dw.

To build the β β β p array one can use the CGbeta function defined in Algorithm 1:

β β β p Ð CGbetapp ˚N N Nq
Algorithm 1 Function CGbeta : Computes β l , @l P v1, dw, defined in [START_REF] Kuhn | Some combinatorial lemmas in topology[END_REF] Input : N N N : array of d integers, N N N piq " N i .

Output : β β β : array of d integers such that β β βplq " β l defined in (10)

Function β β β Ð CGbeta (N N N ) β β βp1q Ð 1 for l Ð 2 to d do β β βplq Ð β β βpl ´1q ˆpN N N pl ´1q `1q end for end Function
The G p function maps the tuple set v0, pN 1 w ˆ¨¨¨ˆv0, pN d w to the global nodes index set v1, n q w. From this function, we define the nodes array q q q as q q qp:, G p p  qq " q q q    "    p , @   P v0, kN 1 w ˆ¨¨¨ˆv0, kN d w (11) This array can be obtained from the CartesianGridPoints function, described in [START_REF] Cuvelier | Vectorized algorithms for regular tessellations of d-orthotopes and their faces[END_REF], by using q q q Ð p1{pq ˚CartesianGridPointspp ˚N N Nq From the array q q q defined in (11), we can now construct the tessellation of the cartesian grid Q p,N N N N N N N N N with unit d-hypercubes.

Connectivity array of the tessellation

The Q p,N N N tessellation contains n me unit p-order d-orthotopes. They can be uniquely identified by their node of minimal coordinates. Let ı ı ı P v0, N 1 vˆ¨¨¨v 0, N d v. We denote by H p ı ı ı the unit p-order hypercube defined by its 2 d vertices:

q q q ppı ı ı`p p pq , @p p p P v0, 1w d .

So all the nodes of H p ı ı ı are given by: q q q pı ı ı`s s s , @s s s P v0, pw d .

We want to build the connectivity array me me me of dimensions pp `1q d -by-n me such that me me mepl, rq is the index in array q q q of the l-th node of the r-th p-order hypercube : this node is q q qp:, me me mepl, rqq.

To define an order of storage of the hypercubes in the array me me me, we will use the function H defined by

Hpı ı ıq " 1 `d ÿ l"1 i l l´1 ź j"1 N i , ı ı ı P v0, N 1 vˆ¨¨¨ˆv0, N d v (12) 
This bijective function maps the multi-index set I N N N " v0, N 1 vˆ¨¨¨ˆv0, N d v to the set v1, n me w such that r " Hpı ı ıq.

The inverse function H -1 can easily be built. Indeed, if we define the d-byn me array I N N N by

I N N N Ð CartesianGridPointspN N N ´1q.
then by construction we have H -1 prq " I N N N p:, rq, @r P v1, n me w Let r P v1, n me w and ı ı ı " H -1 prq. The r-th p-order hypercube is H ı ı ı and q q q pı ı ı is its vertex of minimal coordinates. By construction of nodes array q q q we have q q q pı ı ı " q q qp:, G p ppı ı ıqq From the 1-by-d array β β β p defined in [START_REF] Kuhn | Some combinatorial lemmas in topology[END_REF], we have G p ppı ı ıq " 1 `xpı ı ı, β β β p y . Using matricial operations we can define the 1-by-n me array iBase iBase iBase by iBase iBase iBase Ð β β β p ˚Hinv Hinv Hinv `1

such that G p ppı ı ıq " G k ˝H-1 prq " iBase iBase iBaseprq. (13) 
Let ı ı ı P v0, N 1 vˆ¨¨¨ˆv0, N d v and p " Hpı ı ıq. We choose vertices local numbering in the r-th hypercube to be identical with that described in section 2.1. That is why we take q q qp:, me me mepl, rqq " q q q pı ı ı `p q q qp:, lq " q q q ppı ı ı`p q q qp:,lq t q where p q q q is defined by ( 6). So we obtain me me mepl, rq " G p pppı ı ı `p q q qp:, lq t qq (

From definition of G p we have me me mepl, rq " 1 `@ppı ı ı `p q q qp:, lq t q, β β β p D " 1 `xpı ı ı, β β β p y `@pp q q qp:, lq, pβ β β p q t D " G p ppı ı ıq `pβ β β p q t ˚pp q q qp:, lq.

Thereafter, using [START_REF]Tessellation of r´1, 1s 5 with n me 2-order orthotopes and n q nodes[END_REF] gives @l P v1, pp `1q d w me me mepl, rq " iBase iBase iBaseprq `β β β p ˚ppp q q qp:, lqq, @r P v1, n me w or in a partially vectorized form me me mepl, :q Ð iBase iBase iBase `pβ β β p q t ˚ppp q q qp:, lqq.

We can now give a full vectorized form: me me me Ð RepTilepiBase iBase iBase, pp `1q d , 1q `RepTilepTransposepβ β β p ˚ppp q q qqq, 1, n me q So we can easily write the function CGTessHyp in Algorithm 2 which computes the q q q and me me me arrays.

Algorithm 2 Function CGTessHyp : computes the nodes array q q q and the connectivity array me me me obtained from a tesselation of the p-order cartesian grid Q p,N N N with unit p-order hypercube. Input : N N N : array of d integers, N N N piq " N i . p : positive integer. Output : q q q : nodes array of d-by-n q integers. me me me : connectivity array of pp `1q d -by-n me integers. me me mepl, rq is the index in the nodes array q q q of the l-th node of the r-th hypercube : this node is q q qp:, me me mepl, rqq.

Function rq q q, me me mes So if l P v1, dw is the index of a reduced dimension then vertices x x x ı ı ı p" ı ı ı " pi 1 , . . . , i d qq is such that i l " 0 (minimum value) or i l " 1 (maximum value).

Ð CGTessHyp (N N N , p) q q q Ð CartesianGridPointspp ˚N N N q{p Hinv Hinv Hinv Ð CartesianGridPointspN N N ´1q Ź d-by-n me array pp q q q Ð CartesianGridPointspp ˚Onesp1, dqq Ź d-by-pp `1q d array β β β Ð CGbetapp ˚N N N q Ź 1-by-d array iBase iBase iBase Ð β β β ˚Hinv Hinv Hinv `1 me me me Ð RepTilepiBase iBase iBase, pp `1q d , 1q `RepTilepTransposepβ β β ˚pp q q qq, 1, n me q end Function
Let L rd,ms be the n c -by-pd ´mq array given by L rd,ms Ð Combspv1, dw, d ´mq.

Then each row of L rd,ms contains the index of the d ´m reduced dimensions of an m-face sorted by lexicographical order (see Combs function description in Appendix A) Let S rd´ms be the pd ´mq-by-2 d´m array given by

S rd´ms Ð CartesianGridPointspOnesp1, d ´mqq.
This array contains all the possible choices of the constants for the d´m reduced dimensions (2 choices per dimension) : values are 0 for constant minimal value or 1 for maximal value.

Definition 5 Let l P v1, n c w, r P v1, 2 d´m w and k " 2 d´m pl ´1q `r. The k-th m-faces of the unit reference d-hypercube is defined by ! x x x P r0, 1s d such that x x xpL rd,ms pl, sqq " S rd´ms ps, rq, @s P v1, d ´mw

)
or in a vectorized form ! x x x P r0, 1s d such that x x xpL rd,ms pl, :qq " S rd´ms p:, rq

) ( 15 
)
For example, to obtain the ordered 2-faces of the unit 3-hypercube we compute

L r3,2s " ¨1 2 3
' and S r1s " `0 1 ȃnd then we have

2-face number Set 1 x x x P r0, 1s 3 such that x 1 " 0 ( 2 x x x P r0, 1s 3 such that x 1 " 1 ( 3 x x x P r0, 1s 3 such that x 2 " 0 ( 4
x x x P r0, 1s 3 such that x 2 " 1 ( 5

x x x P r0, 1s 3 such that x 3 " 0 ( 6

x x x P r0, 1s 3 such that x 3 " 1 (

To obtain the ordered 1-faces of the unit 3-hypercube we compute

L r3,1s " ¨1 2 1 3 2 3
' and S r2s " ˆ0 1 0 1 0 0 1 1 and then we have 1-face number Set 1

x x x P r0, 1s 3 such that x 1 " 0, x " 0 ( 2 x x x P r0, 1s 3 such that x 1 " 1, x " 0 ( 3 x x x P r0, 1s 3 such that x 1 " 0, x " 1 ( 4

x x x P r0, 1s 3 such that x 1 " 1, x " 1 ( 5

x x x P r0, 1s 3 such that x 1 " 0, x " 0 ( 6

x x x P r0, 1s 3 such that x 1 " 1, x " 0 ( 7

x x x P r0, 1s 3 such that x 1 " 0, x " 1 ( 8

x x x P r0, 1s 3 such that x 1 " 1, x " 1 ( 9

x x x P r0, 1s 3 such that x 2 " 0, x " 0 ( 10 x x x P r0, 1s 3 such that x 2 " 1, x " 0 ( 11 x x x P r0, 1s 3 such that x 2 " 0, x " 1 ( 12

x x x P r0, 1s 3 such that x 2 " 1, x " 1 (

To obtain the ordered 0-faces of the unit 3-hypercube we compute

L r3,0s " `1 2 3 ˘and S r3s " ¨0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1
' and then we have

1-face number Set 1
x x x P r0, 1s 3 such that x 1 " 0, x 2 " 0, x 3 " 0 ( 2 x x x P r0, 1s 3 such that x 1 " 1, x 2 " 0, x 3 " 0 ( 3 x x x P r0, 1s 3 such that x 1 " 0, x 2 " 1, x 3 " 0 ( 4

x x x P r0, 1s 3 such that x 1 " 1, x 2 " 1, x 3 " 0 ( 5

x x x P r0, 1s 3 such that x 1 " 0, x 2 " 0, x 3 " 1 ( 6

x x x P r0, 1s 3 such that x 1 " 1, x 2 " 0, x 3 " 1 ( 7

x x x P r0, 1s 3 such that x 1 " 0, x 2 " 1, x 3 " 1 ( 8

x x x P r0, 1s 3 such that x 1 " 1, x 2 " 1, x 3 " 1 (

m-faces tessellations with high order ortotopes

In section 2.2.2, and especially in Algorithm 2, we have seen how to build the nodes array q q q and the connectivity array me me me of Q p,N N N , the tessellation of cartesian grid with unit p-order d-orthotopes. So as not to confuse notations, we denote by Q p,N N N .q q q and Q p,N N N .me me me respectively these nodes and connectivity arrays of Q p,N N N . Let m P v0, dv and k P v1, E m,d w. We want to determine Q m p,N N N pkq the tessellation obtained from the restriction of tessellation Q p,N N N to its k-th m-face where the numbering of the m-faces is specified in section 2.3. So the Q m p,N N N pkq tessellation is made with unit p-order m-orthotopes in R d . We denote by ' Q m p,N N N pkq.q q q, the (local) vertex array ' Q m p,N N N pkq.me me me, the (local) connectivity array

' Q m p,N N N pkq.toGlobal, the global indices such that Q m p,N N N pkq.q q q " Q N N N .q q qp:, Q m p,N N N pkq.toGlobalq.
By construction, Q m p,N N N pkq is the tessellation of an m-hypercube in R d with unit m-hypercubes.

Let l P v1, n c w, r P v1, 2 d´m w and k " 2 d´m pl´1q`r. The cartesian grid point x x x " px 1 , . . . , x d q is on the k-th m-face Q m p,N N N pkq if and only if for all s P v1, d ´mw and with j " L rd,ms pl, sq we have x j " " 0 if S rd´ms ps, rq "" 0, (minimum value) N j otherwise pS rd´ms ps, rq "" 1q, (maximum value) So we obtain

x j " N j ˆSrd´ms ps, rq or, in a vectorized form using element-wise multiplication operator .. . ˚:

x x xpL rd,ms pl, :qq " N N N pL rd,ms pl, :qq .. . ˚Srd´ms p:, rq.

Definition 6 Let l P v1, n c w, r P v1, 2 d´m w and k " 2 d´m pl ´1q `r. Then, the k-th m-faces of Q p,N N N is defined as the set ! x x x P Q p,N N N such that x x xpL rd,ms pl, :qq " N N N pL rd,ms pl, :qq .. . ˚Srd´ms p:, rq

) (17) 2.4.1 Case m " 0.
If m " 0, the m-faces are the 2 d corner points of the cartesian grid. Then we have L rd,0s " v1, dw and S rds is an d-by-2 d array.

From [START_REF]Tessellation of r´1, 1s 5 with n me 3-order orthotopes and n q nodes[END_REF], we obtain that @k P v1, p2 d w the k-th 0-face of Q p,N N N is reduced to the point x x x " N N N .. . ˚Srds p:, kq 

S rds

So we obtain

Q 0 p,N N N pkq.q q q " Qp:, kq Q 0 p,N N N pkq.me me me " 1 Q 0 p,N N N pkq.toGlobal " β β β ˚pp ˚Qp:, kqq `1
where β β β is given by (10).

Case m ą 0

Let l P v1, n c w, r P v1, 2 d´m w and k " 2 d´m pl ´1q `r. To construct Q m p,N N N pkq we first set a tessellation without the m constant dimensions given in idc idc idc " Lpl, :q (i.e. only with nonconstant dimensions in idnc idnc idnc " v1, dwzidc idc idc): rq q q w , me me me w s Ð CGTessHyp `N N N pidnc idnc idncq, p

The dimension of the array q q q w is m-by-n l q where n l q " ź iPidnc idnc idnc ppN i `1q. Then the nonconstant rows are Q m p,N N N pkq.q q qpidnc idnc idncpiq, :q Ð q q q w pi, :q, @i P v1, mw and the constants rows Q m p,N N N pkq.q q qpidc idc idcpiq, :q Ð p ˚N N N pidc idc idcpiqq ˚Srd´ms pi, rq ˚Onesp1, n l q q, @i P v1, d ´mw

In a vectorized way, we have Q m p,N N N pkq.q q qpidnc idnc idnc, :q Ð q q q w Q m p,N N N pkq.q q qpidc idc idc, :q Ð ´N N N pidc idc idcq t .. . ˚Srd´ms p:, rq ¯˚Onesp1, n l q q

We immediately have the connectivity array Q m p,N N N pkq.me me me " me me me w .

There still remains to compute Q m p,N N N pkq.toGlobal. For that we use the mapping function G p defined in section 2.2.1 and more particularly [START_REF]Pypi, the python package index[END_REF]. Indeed, for all j P v1, n l q w, we can identify the point Q m p,N N N pkq.q q qp:, jq by the d-tuple ı ı ı and use it with the mapping function G p to obtain the index in array Q p,N N N .q q q of the point Q m p,N N N pkq.q q qp:, jq. So we have ı ı ı p " Q m p,N N N pkq.q q qp:, jq " Q p,N N N .q q q `:, G p pı ı ıq ȃnd then Q m p,N N N pkq.toGlobalpjq " G p `pQ m p,N N N pkq.q q qp:, jq ˘.

In a vectorized way, we set

Q m p,N N N pkq.toGlobal Ð 1 `pβ β β ˚Qm p,N N N pkq.q q q
with the vector β β β defined in [START_REF] Kuhn | Some combinatorial lemmas in topology[END_REF]. One can also compute the connectivity array of Q m p,N N N pkq associated with global vertices array Q p,N N N .q q q which is given by Q m p,N N N pkq.toGlobalpme me me w q. We give in Algorithm 3 the function CGTessHypFaces which computes Q m p,N N N pkq, @k P v1, 2 d´m n c w. 

Its length is E m,d " 2 d´m ˆd m ˙. Function Q m p,N N N Ð CGTessHypFaces (N N N , m, p) β β β Ð CGbetapp ˚N N N q if m "" 0 then Q Ð DiagpN N N q ˚CartesianGridPointspOnesp1, dqq for k Ð 1 to 2 d do Q m p,N N N pkq.q q q Ð Qp:, kq Q m p,N N N pkq.me me me Ð 1 Q m p,N N N pkq.toGlobal Ð 1 `β β β ˚Qp:, kq end for else n c Ð ˆd m L Ð Combspv1, dw, d ´mq S Ð CartesianGridPointspOnesp1, d ´mqq k Ð 1 for l Ð 1 to n c do
idc idc idc Ð Lpl, :q idnc idnc idnc Ð v1, dwzidc idc idc rq q q w , me me me w s Ð CGTessHyppN N N pidnc idnc idncq, pq n l q Ð ś m s"1 pN N N pidnc idnc idncpsqq `1q Ź or length of q q q w for r Ð 1 to 2 d´m do Q m p,N N N pkq.q q qpidnc idnc idnc, :q Ð q q q w Q m p,N N N pkq.q q qpidc idc idc, :q Ð `N N N pidc idc idcq t .. . ˚Sp:, rq ˘˚Onesp1, n l q q Q m p,N N N pkq.me me me Ð me me me w Q m p,N N N pkq.toGlobal Ð 1 `pβ β β ˚Qm p,N N N pkq.q q q k Ð k `1 end for end for end if end Function The tessellation with p-order orthotope of the cartesian grid Q p,N N N is obtained by rq q q, me me mes Ð CGTessHyppN N N , pq

To obtain the tessellation of the orthotope O d we only have to apply the affine transformation: q q qpi, :q Ð a a apiq ``pb b bpiq ´a a apiqq{N N N piq ˘˚q q qpi, :q, @i P v1, dw. : array of d integers, N N N piq " N i . q q q : d-by-n q array of integer obtained from rq q q, me me mes Ð CGTessHyppN N N , pq a a a, b b b : arrays of d reals, a a apiq " a i , b b bpiq " b i with a i ă b i Output :

q q q : vertices array of d-by-n q reals.

Function q q q Ð boxMapping (q q q, a a a, b b b, N N N ) for i Ð 1 to d do q q qpi, :q Ð a a apiq ``pb b bpiq ´a a apiqq{N N N piq ˘˚q q qpi, :q end for end Function

The function OrthTessOrth , which returns the arrays q q q and me me me corresponding to the regular tessellation of O d with p-order d-orthotopes, is presented in Algorithm 5. : order, positive integer. Output : q q q : array of d-by-n q reals, n q " ś d i"1 ppN i `1q. me me me : array of 2 d -by-n me integers, n me " ś d i"1 N i .. Function rq q q, me me mes Ð OrthTessOrth (a a a, b b b, N N N , p) rq q q, me me mes Ð CGTessHyppN N N , pq q q q Ð boxMappingpq q q, a a a, b b bq end Function

m-faces tessellations of a d-orthotope

As seen in section 2.5, we only have to apply the function boxMapping to each array Q m p,N N N pkq.q q q of the tessellations of the m-faces of the cartesian grid Q p,N N N . This is the object of the function OrthTessFaces given in Algorithm 6. Function sO h h h Ð OrthTessFaces (a a a, b b b, N N N , m, p) sO h h h Ð CGTessHypFacespN N N , m, pq for k Ð 1 to lenpsO h h h q do sO h h h pkq.q q q Ð boxMappingpsO h h h pkq.q q q, a a a, b b b, N N N q end for end Function

Tessellation with high-order d-simplicial elements

The goal of this section is to obtain a conforming triangulation or tessellation of a d-orthotope named O d with d-simplices.

The basic principle selected here is to start from a tesselation of a cartesian grid with unit hypercubes as obtained in section ??. Then by using the Kuhn's decomposition of an hypercube in simplices, we build in section ?? a tesselation of a cartesian grid with simplices and we explain how to obtain all its m-faces in section 3.5. Finally, ...

High-order d-simplicial mesh elements in R d

The reference element of the p-order d-simplicial mesh element in R d is the simplex p K with vertices denoted by tp q q q p q q q p q q q 0 , . . . , p q q q p q q q p q q q d u and such that p q q q p q q q p q q q 0 " p0, . . . , 0q t , and p q q q p q q q p q q q j " e e e rjs , @j P v1, dw

where e e e r1s , . . . , e e e rds ( denotes the standard basis of R d . Let A p be the subset of multi-index in N d defined by

A p " α α α P N d : |α α α| ď p ( (18) 
From Lemma 11 of Appendix C, The cardinality of A p denoted by N p is

N p " C p d`p " pd `pq! d!p! .
The N p regular nodes of the reference element p K are

x x x α α α " α α α p , @α α α P A p [START_REF]Tessellation of r´1, 1s 3 with n me simplices and n q nodes[END_REF] and they contains the d `1 vertices of p K

x x x α α α " α α α p , @α α α P t0, pu d such that

d ÿ j"1 α α α j ď p. (20) 
In Figure 6 and Figure 7, nodes numbering is represented respectively for the 2-simplicial and 3-simplicial reference elements of order 2 and 3. Input : d : space dimension, positive integer p : order, positive integer Output : q q q : vertices array of d-by-n q reals with n q " pd`pq! d!p! . Function q q q Ð NodesSimRef (d, p) q q q Ð CartesianGridPointspp ˚Onesp1, dqq I I I Ð FindpSumpq q q, 1q ď pq q q q Ð q q qp:, I I Iq{p end Function

Kuhn's decomposition of a d-hypercube

Kuhn's subdivision (see [START_REF] Bey | Simplicial grid refinement: on freudenthal's algorithm and the optimal number of congruence classes[END_REF][START_REF] Kuhn | Some combinatorial lemmas in topology[END_REF]11]) is a good way to divide a d-hypercube into d-simplices (d ě 2). We recall that a d-simplex is made of pd `1q vertices.

Definition 7 Let p

H " r0, 1s d be the unit d-hypercube in R d . Let e e e r1s , . . . , e e e rds be the standard unit basis vectors of R d and denote by S d the permutation group of v1, dw. For all π P S d , the simplex K π has for vertices tx x x r0s π , . . . , x x x rds π u defined by x x x r0s π " p0, . . . , 0q t , x x x rjs π " x x x rj´1s π `e e e rπpjqs , @j P v1, dw.

The set Kp p Hq defined by

Kp p Hq " tK π | π P S d u ( 22 
)
is called the Kuhn's subdivision of p H and its cardinality is d!.

For example, we give in Figure 10 the Kuhn'subdivision of an d-hypercube with d " 2 and d " 3. We choose the positive orientation for all the d simplices. The corresponding vertex array q q q and the connectivity array me me me are given by (préciser comment me me me est ordonné):

' for d " 2, q q q " ˆ0 1 0 1 0 0 1 1 ˙, me me me " ¨4 1 3 2 1 4
' ' for d " 3, q q q " ¨0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 Let K ref be the base simplex or reference simplex with vertices denoted by tx x x r0s , . . . , x x x rds u and such that x x x r0s " p0, . . . , 0q t , x x x rjs " x x x rj´1s `e e e rjs , @j P v1, dw.

', me me me " ¨1 8 
(

) 23 
Let π P S n and πpx x xq indicate the application of permutation π to the coordinates of vertex x x x. The vertices of the simplex K π defined in ( 21) can be derived from the reference simplex K ref by

x x x rjs π " πpx x x rjs q, @j P v0, dw.

Let πpK ref q denote the application of permutation to each vertex of K ref .

Then we have To explicitly obtain a Kuhn's triangulation Kp p Hq of the unit d-hypercube p H we must build the connectivity array, denoted by me me me, associated with the vertex array q q q. The dimension of the array me me me is pd `1q-by-d!.

πpK ref q " K π ( 25 
)
Let q q q ref be the d-by-pd`1q array of vertex coordinates of reference d-simplex K ref : q q q ref " ¨x x x r0s x x x r1s . . . . . . x x x rds '" Let P P P be the d-by-d! array of all permutations of the set v1, dw and π " P P Pp:, kq the k-th permutation. The array P P P is obtained by using the function Perms defined in Appendix A.2. We use ( 24) and ( 25) to build the vertices of K π . So the j-th vertex of K π is given by x x x rj´1s π Ð q q q ref pP P Pp:, kq, jq To find which column in array q q q corresponds to x x x rj´1s π we use the mapping function L defined in (??) and we set me me mepj, kq Ð Lpq q q ref pP p:, kq, jqq " C ¨20 . . .

d´1

‹ ', q q q ref pP P Pp:, kq, jqq G `1

If the k-th d-simplex has a negative orientation, one can permute the index of the first and the last points to obtain a positive orientation: me me mep1, kq Ø me me mepd `1, kq.

In Algorithm 8, we give the function KuhnTriangulation which returns the points array q q q and the connectivity array me me me where all the d-simplices have a positive orientation. Output : q q q : vertices array of d-by-2 d integers. me me me : connectivity array of pd `1q-by-d! integers 1: Function rq q q, me me mes Ð KuhnTri (d)

2:
q q q Ð CartesianGridPointspOnesp1, dqq 3: a a a Ð r2 0 , 2 1 , . . . , 2 d´2 , 2 d´1 s 7:

q q q ref Ð ¨0 1 . . . .
for k Ð 1 to d! do 8:

for j Ð 1 to d `1 do 9:

me me mepj, kq Ð Dotpa a a, q q q ref pP P Pp:, kq, jqq `1 end for 15: end Function

Kuhn's decomposition of a d-hypercube by p-order simplices

We just sawn in section 3.2 the Kuhn's decomposition of the unit d-hypercube by 1-order simplices. To obtain the same decomposition with p-order simplices, p ą 1, we must build a node array q q q and a connectivity array me me me with respectively dimensions d-by-pp `1q d and C p d`p -by-d!. In Figures 11 and12, the Kuhn's decomposition of the unit d-hypercube with 2-order simplices and 3-order simplices is represented respectively in dimension 2 and 3. For example, with d " 3 and p " 2 (i.e. Figure 12, left graphic), the nodes array is

q q q def " 1 2 » - 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 fi fl
and the connectivity array is The nodes array is the one from the p-order d-orthotope mesh element given by ( 6) in section 2.1 and can be obtained from the CartesianGridPoints function, by using q q q Ð p1{pq ˚CartesianGridPointspp ˚Onesp1, dqq For building the connectivity array me me me one needs to define the mapping function from the unit reference d-simplex to a d-simplex. Let p K be the unit reference d-simplex with vertices denoted by tp q q q p q q q p q q q 0 , . . . , p q q q p q q q p q q q d u defined in section 3.1.

me me me def " » - - - - - - - - - - - - - - - 27 
Let K Ă R d be a non-degenerate d-simplex and and tq q q q q q q q q ris u d i"0 its vertices. The affine map/transformation F K from the unit reference d-simplex p K Ă R d to K Ă R d is given by q q q " A K q q q `q q q q q q q q q r0s " F K pq q qq.

where A K P M d,d pRq is defined by A K " ¨q q q q q q q q q r1s ´q q q q q q q q q r0s ¨¨¨q q q q q q q q q rds ´q q q q q q q q q r0s ' (

To build this function we only have to know the vertices of the K simplex.

From the KuhnTri function, we build the vertices array q q q kt and the associated connectivity array me me me kt : rq q q kt , me me me kt s Ð KuhnTripdq.

Thereafter, for each l-th simplex of the Kuhn's decomposition, l P v1, d!w, we can build its vertices array Q Q Q Ð q q q kt p:, me me me kt p:, lqq and then the matrix of the mapping function from p K to the l-th simplex is given by:

A Ð Q Q Qp:, 2 : d `1q ´RepTilepQ Q Qp:, 1q, 1, dq.
From the NodesSimRef function given in Algorithm 7 we obtain nodes of the reference p-order d-simplex in R d : q q q ref Ð NodesSimRefpd, pq. So, by using mapping function [START_REF]Tessellation of r´1, 1s 2 with n me 3-order simplices and n q nodes[END_REF], we obtain p-order nodes of the l-th simplex:

q q q nod Ð A ˚q q q ref `Q Q Qp:, 1q
Now to build the (p-order) connectivity array me me me, we must obtain their indices in the (p-order) nodes array q q q. From (3), we deduce that the multi-indices associated with nodes array are inod inod inod Ð p ˚q q q nod . Then, from (5), the index me me mepj, lq of the j-th nodes of the l-th simplex in q q q array is me me mepj, lq Ð L p pinod inod inodp:,

jqq def " 1 `d ÿ s"1
pp `1q s´1 inod inod inodps, jq.

Let β β β P N d such that β β β s " pp `1q s´1 for all s in v1, dw. By using the CGbeta function given in Algorithm 1 we obtain the 1-by-d array

β β β Ð CGbetapp ˚Onesp1, dqq
Then we have me me mepj, lq Ð 1 `Dot `β β β, inod inod inodp:, jq ˘.

Finally, using matricial product gives me me mep:, lq Ð 1 `β β β ˚inod inod inod A complete function is given in Algorithm 9.

Algorithm 9 Kuhn's triangulation of the unit d-hypercube r0, 1s d with d! porder simplices (positive orientation) Input : d : space dimension, positive integer p : order, positive integer Output : q q q : vertices array of d-by-pp `1q d integers. me me me : connectivity array of C p d`p -by-d! integers 1: Function rq q q, me me mes Ð KuhnTriOrder (d, p)

2:
rq q q kt , me me me kt s Ð KuhnTripdq if p "" 1 then 4: q q q Ð q q q kt , me me me Ð me me me kt , return q q q Ð CartesianGridPointspp ˚Onesp1, dqq{p 7:

q q q ref Ð NodesSimRefpd, pq 8: Q Q Q Ð q q q kt p:, me me me kt p:, lqq q q q nod Ð A ˚q q q ref `Q Q Qp:, 1q 13: me me mep:, lq Ð 1 `β β β ˚pp ˚q q q nod q 14: end for 15: end Function From this tesselation of the unit reference d-hypercube, we will see how to get a regular tessellation of a cartesian grid with p-order simplices.

β β β Ð CGbetapp ˚Onesp1,

Cartesian grid tesselation with p-order simplices

Let Q p,N N N be the d-dimensional cartesian grid tessellated with p-order unit dorthotopes and defined in section 2.2. As before, so as not to confuse notations, we denote by Q p,N N N .q q q and Q p,N N N .me me me respectively the nodes and connectivity arrays of the cartesian grid Q p,N N N . There are N h " ś d i"1 N i unit hypercubes in this tessellation.

Let I " v0, N 1 vˆ. . .ˆv0, N d v. By using the CartesianGridPoints function, one can build the d-by-N h array:

I Ð CartesianGridPointspqN N N ´1q. We have Q p,N N N " ď ı ı ıPI H ı ı ı
where H ı ı ı is the unit hypercube with x x x ı ı ı " ı ı ı vertex of minimal coordinates. From Lemma 8, the triangulation

T p,N N N " ď ı ı ıPI KpH ı ı ı q
is a conforming triangulation of Q p,N N N with n me " d! ˆNh d-simplices and by construction the nodes of T p,N N N are the nodes of Q p,N N N :

T p,N N N .q q q " Q p,N N N .q q q.

It thus remains to calculate the connectivity array me me me of T p,N N N also denoted by T p,N N N .me me me. This is a C p d`p -by-n me array. For a given hypercube H ı ı ı we store consecutively in the array me me me, the d! simplices given by KpH ı ı ı q The Kuhn's triangulation with p-order simplices for the reference hypercube r0, 1s d can be obtained from the function KuhnTriangulation : rq q q K , me me me K s Ð KuhnTriOrderpd, pq Let ı ı ı P I and r " Hpı ı ıq where H is defined by [START_REF]Tessellation of r´1, 1s 4 with 2-order orthotopes[END_REF]. Let l P v1, d!w and k " d!pr ´1q `l. We choose to store the l-th simplex of KpH ı ı ı q in me me mep:, kq.

Let j P v1, C p d`p w. The j-th nodes of the l-th p-order simplex of KpH ı ı ı q is stored in q q qp:, me me mepj, kqq and its coordinates are given by x x x ı ı ı `q q q K p:, me me me K pj, lqq " ı ı ı `q q q K p:, me me me K pj, lqq So we want to determine the index me me mepj, kq. From (9), we obtain me me mepj, kq " G p `ppı ı ı `q q q K p:, me me me K pj, lqqq "

1 `xβ β β, ppı ı ı `q q q K p:, me me me K pj, lqqqy " 1 `p xβ β β, ı ı ıy `p xβ β β, q q q K p:, me me me K pj, lqqy where β β β is defined in [START_REF] Kuhn | Some combinatorial lemmas in topology[END_REF] and can be computed as a 1-by-d array by

β β β Ð CGbetapp ˚N N Nq.
' T m p,N N N pkq.q q q, the (local) nodes array ' T m p,N N N pkq.me me me, the (local) connectivity array ' T m p,N N N pkq.toGlobal, the global indices such that T m p,N N N pkq.q q q " T N N N .q q qp:, T m p,N N N pkq.toGlobalq.

By construction, T m p,N N N pkq is the triangulation by m-simplices of an m-hypercube in R d .

The only difference with the construction of Q m p,N N N pkq given in section 2.4 is on the me me me w array. For Q m p,N N N pkq, we had rq q q w , me me me w s Ð CGTessHyppN N N pidnc idnc idncq, pq whereas for T m p,N N N pkq we must have instead rq q q w , me me me w s Ð CGTessSimpN N N pidnc idnc idncq, pq So only one line changes in the Algorithm 3 to obtain the new one given in Algorithm ?? where the function CGTessSimFaces computes T m p,N N N pkq, @k P 2 d´m n c .

The line rq q q w , me me me w s Ð CGTessHyppN N N pidnc idnc idncq, pq is replaced by rq q q w , me me me w s Ð CGTessSimpN N N pidnc idnc idncq, pq The length of

T m p,N N N is E m,d " 2 d´m ˆd m ˙(number of m-faces). Function T m p,N N N Ð CGTessSimFaces (N N N , m, p) β β β Ð CGbetapp ˚N N N q if m "" 0 then Q Ð DiagpN N N q ˚CartesianGridPointspOnesp1, dqq for k Ð 1 to 2 d do T m p,N N N pkq.q q q Ð Qp:, kq T m p,N N N pkq.me me me Ð 1 T m p,N N N pkq.toGlobal Ð 1 `xβ β β, Qp:, kqy end for else n c Ð ˆd m L Ð Combspv1, dw, d ´mq S Ð CartesianGridPointspOnesp1, d ´mqq k Ð 1 for l Ð 1 to n c do
idc idc idc Ð Lpl, :q idnc idnc idnc Ð v1, dwzidc idc idc rq q q w , me me me w s Ð CGTriangulationpN N N pidnc idnc idncq, pq n l q Ð ś m s"1 pN N N pidnc idnc idncpsqq `1q Ź or length of q q q w for r Ð 1 to 2 d´m do T m p,N N N pkq.q q qpidnc idnc idnc, :q Ð q q q w T m p,N N N pkq.q q qpidc idc idc, :q Ð `N N N pidc idc idcq t .. . ˚Sp:, rq ˘˚Onesp1, n l q q T m p,N N N pkq.me me me Ð me me me w T m p,N N N pkq.toGlobal Ð 1 `pβ β β t ˚T m p,N N N pkq.q q q k Ð k `1 end for end for end if end Function The mechanism is similar to that seen in section 2.5 while taking as a starting point the cartesian grid triangulation. q q q : vertices array with d-by-n q reals. me me me : connectivity array with pd `1q-by-n me integers.

Function rq q q, me me mes Ð OrthTriangulation (N N N , a a a, b b b) rq q q, me me mes Ð CGTriangulationpN N N q q q q Ð boxMappingpq q q, a a a, b b b, N N N q end Function 3.7 m-faces tessellations of a d-orthotope with d-simplices

As seen in section 2.5, we only have to apply the function boxMapping to each vertices array T m p,N N N pkq.q q q corresponding to the k-th m-faces tessellations of the cartesian grid Q p,N N N . This is the object of the function OrthTriFaces given in Algorithm 13. Its length is E m,d " 2 d´m ˆd m ˙.

Function T m N N N Ð OrthTriFaces (N N N , a a a, b b b, m) T m N N N Ð CGTessSimFacespN N N , mq for k Ð 1 to lenpT m
N N N q do T m N N N pkq.q q q Ð boxMappingpT m N N N pkq.q q q, a a a, b b b, N N N q end for end Function

The codes in Matlab, Octave and Python, referenced as fc_hypermesh, can be obtained on http://www.math.univ-paris13.fr/~cuvelier/software/ The Python package fc_hypermesh is also available on PyPI [START_REF]Pypi, the python package index[END_REF].

A Vectorized algorithmic language

A.1 Common operators and functions

We also provide below some common functions and operators of the vectorized algorithmic language used in this article which generalize the operations on scalars to higher dimensional arrays, matrices and vectors: 

A Ð B Assignment A ˚B matrix

A.2 Combinatorial functions

PermspV V V q where V V V is an array of length n. Returns a n!-by-n array containing all permutations of V V V elements. The lexicographical order is chosen. CombspV V V , kq where V V V is an array of length n and k P v1, nw.

Returns a

n! k!pn´kq! -by-k array containing all combinations of n elements taken k at a time. The lexicographical order is chosen. 

N

Figure 1 :

 1 Figure 1: Tesselation samples of r0, 1s 3 with 3-orthotopes (left) and 3-simplices (right) where vertices of all mesh elements are represented by a small black sphere.

Figure 2 :

 2 Figure 2: Representation of all the 2-faces meshes with 2-orthotopes (left) and 2-simplices (right) obtained from the tesselation samples of the Figure 1

3Table 2 :

 2 Table 1: p-order d-orthotope mesh element in R d . Nodes are the points. p order d-simplicial mesh element in R d . Nodes are the points.

Figure 5 :

 5 Figure 5: m-faces of a 3D hypercube : 0-faces (upper left), 1-faces (upper right) and 2-faces (bottom)

Figure 6 :Figure 7 :

 67 Figure 6: Nodes numbering of the unit 2-orthotope element in R 2 : order 2 (left) and order 3 (right)

2. 3

 3 Numbering of the m-faces of the unit d-hypercube Let m P v0, dw. As introduced in section 1, the m-faces of the unit d-hypercube r0, 1s d are unit m-hypercubes in R d defined by the product of d intervals where d´m intervals are reduced to the singleton t0u or t1u (called reduced dimension) We have n c " ˆd m ˙possible choices to select the index of the d ´m reduced dimensions (combination of d elements taken d ´m at a time) and for each selected dimension 2 choices : t0u or t1u.

t

  and it is also the k-th column of the array Q of dimensions d-by-2 d given by Q Ð ¨N1 0 . . . . . .

Algorithm 3 Function

 3 CGTessHypFaces : computes all m-faces tessellations of the cartesian grid Q p,N N N with unit p-order m-hypercubes. Input : N N N : 1-by-d array of integers, N N N piq " N i , m : integer, 0 ď m ă d, p : positive integer. Output : Q m p,N N N : array of tessellations of all m-faces of the cartesian grid Q p,N N N .

2. 5

 5 Tessellation of a d-orthotope with d-orthotopes Let O d be the d-orthotope ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s. To obtain a regular tesselation of this orthotope with p-order orthotopes one can use an affine transformation of the p-order cartesian grid Q p,N N N " v0, N 1 w ˆ¨¨¨ˆv0, N d w to O d . Let a a a " pa 1 , . . . , a d q and b b b " pb 1 , . . . , b d q be two vectors of R d . Let N N N Ð rN 1 , . . . , N d s.

Algorithm 4

 4 This operation is done by the function boxMapping given in Algorithm 4. Function boxMapping : mapping points of the cartesian gridQ p,N N N to the d-orthotope ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s Input : N N N

Algorithm 5 Function

 5 OrthTessOrth : d-orthotope regular tessellation with p-order orthotopes Input : a a a, b b b : arrays of d reals, a a apiq " a i , b b bpiq " b i with a i ă b i , N N N : array of d integers, N N N piq " N i , p

Algorithm 6 Function

 6 OrthTessFaces : computes the conforming tessellations with p-order orthotopes of all the m-faces of the d-orthotope ra 1 , b 1 s ra d , b d s Input : a a a, b b b : arrays of d reals, a a apiq " a i , b b bpiq " b i , N N N : array of d integers, N N N piq " N i , m : integer, 0 ď m ă d, p : order, positive integer. Output : sO h h h : array of the tessellations of each m-faces of the orthotope. Its length is E m,d " 2 d´m ˆd m ˙.

Figure 8 :Figure 9 :Algorithm 7

 897 Figure 8: Nodes numbering of the unit 2-simplicial element in R 2 : order 1 (top left), order 2 (top right), order 3 (bottom left) and order 4 (bottom right)

6 Figure 10 :

 610 Figure 10: Kuhn's subdivision

¨0 1 .

 1 

Algorithm 8

 8 Kuhn's triangulation of the unit d-hypercube r0, 1s d with d! simplices (positive orientation) Input : d : space dimension

Figure 11 :

 11 Figure 11: Kuhn's decomposition of the unit square by 2-order simplices (left) and 3-order simplices (right). The first element in the decomposition is colored.

Figure 12 :

 12 Figure 12: Kuhn's decomposition of the unit cube by 2-order simplices (left) and 3-order simplices (right). The first element in the decomposition is colored.

  dqq

9 :

 9 for l Ð 1 to d! do 10:

11 :A

 11 Ð Q Q Qp:, 2 : d `1q ´RepTilepQ Q Qp:, 1q, 1, dq 12:

Algorithm 11 Function

 11 CGTessSimFaces : computes all m-faces tessellations of the cartesian grid Q N N N with p-order m-simplices Input : N N N : array of d integers, N N N piq " N i . m : integer, 0 ď m ă d, p : positive integer. Output : T m p,N N N : array of triangulations of all m-faces comming from the cartesian grid triangulation T N N N .

3. 6

 6 d-orthotope tessellation with d-simplices Let O d be the d-orthotope ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s.

Algorithm 12 Function

 12 OrthTriangulation : regular tessellation with simplices of a d-orthotope Input : N N N : array of d integers, N N N piq " N i . a a a, b b b : arrays of d reals, a a apiq " a i , b b bpiq " b i Output :

Algorithm 13 Function

 13 OrthTriFaces : computes the conforming tessellations with simplices of all m-faces of the d-orthotope ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s Input : N N N : array of d integers, N N N piq " N i . a a a, b b b : arrays of d reals, a a apiq " a i , b b bpiq " b i m : integer, 0 ď m ă d Output : T m N N N : array of the tessellations with simplices of all m-faces of the orthotope.

Table 3

 3 

		m	0	1	2	3	4	5	6
	d	Names	0-face 1-face 2-face 3-face 4-face 5-face 6-face
	0	Point	1					
	1	Segment	2	1				
	2	Square	4	4	1			
	3	Cube	8	12	6	1		
	4 Tesseract	16	32	24	8	1	
	5 Penteract	32	80	80	40	10	1
	6 Hexeract	64	192	240	160	60	12	1

is given the number of m-faces for m P v0, dw and d P v0, 6w.

Table 3 :

 3 Number of m-faces of a d-hypercube

Table 4

 4 

		m	0	1	2	3	4	5	6
	d	Names	0-face 1-face 2-face 3-face 4-face 5-face 6-face
	0	Point	1						
	1	Segment	2	1					
	2	triangle	3	3	1				
	3 tetrahedron	4	6	4	1			
	4	4-simplex	5	10	10	5	1		
	5	5-simplex	6	15	20	15	6	1	
	6	6-simplex	7	21	35	35	21	7	1

this number for d P v0, 6w and 0 ď m ď d.

Table 4 :

 4 Number of m-faces of a nondegenerate d-simplex 2 Tessellation with high-order d-orthotope elements

2.1 High-order d-orthotope mesh elements in R d

  Onespm, nq m-by-n array/matrix of ones, Zerospm, nq m-by-n array/matrix of zeros, RepTilepA, m, nq tiles the p-by-q array/matrix A to produce the pm ˆpqby-pn ˆqq array composed of copies of A, ReshapepA, m, nq returns the m-by-n array/matrix whose elements are taken columnwise from A.

		multiplication,
	A .. . ˚B	element-wise multiplication,
	A .{ .{ .{B	element-wise division,
	Ap:q	all the elements of A, regarded as a single column.
	r, s	Horizontal concatenation,
	r; s	Vertical concatenation,
	Ap:, Jq	J-th column of A,
	ApI, :q	I-th row of A,
	SumpA, dimq	sums along dimension dim,
	ProdpA, dimq	product along dimension dim,
	I n	n-by-n identity matrix,
	1 mˆn (or 1	

TransposepAq transpose of A, n ) m-by-n (or n-by-n) matrix or sparse matrix of ones, O mˆn (or O n ) m-by-n (or n-by-n) matrix or sparse matrix of zeros, Findpx x xq returns a vector of indices of nonzero elements of a vector x x x.

Table 11 :

 11 1 000 000 1.041 (s) 0.643 (s) 1.755 (s) 120 13 997 521 1 728 000 1.655 (s) 1.012 (s) 2.618 (s) 140 22 188 041 2 744 000 2.549 (s) 1.517 (s) 3.829 (s) 160 33 076 161 4 096 000 3.719 (s) 2.238 (s) 5.399 (s) 180 47 045 881 5 832 000 5.176 (s) 3.073 (s) 7.456 (s) Tessellation of r´1, 1s 3 with n me 2-order orthotopes and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0. .319 (s) 0.875 (s) 2.999 (s) 30 13 845 841 810 000 2.332 (s) 1.579 (s) 4.541 (s) 35 25 411 681 1 500 625 3.956 (s) 2.743 (s) 7.088 (s)

		n q	n me	Python	Matlab	Octave
	40	531 441	64 000 0.272 (s) 0.538 (s) 0.614 (s)
	60	1 771 561	216 000 0.389 (s) 0.228 (s) 0.807 (s)
	80	4 173 281	512 000 0.610 (s) 0.372 (s) 1.111 (s)
	100 8 120 601 N n q	n me	Python	Matlab	Octave
	10	194 481	10 000 0.360 (s) 0.607 (s) 1.234 (s)
	20	2 825 761	160 000 0.688 (s) 0.480 (s) 1.781 (s)
	25	6 765 201	390 625 1		

Table 12 :

 12 Tessellation of r´1, 1s 4 with 2-order orthotopes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0. .862 (s) 0.646 (s) 4.165 (s) 10 4 084 101 100 000 1.384 (s) 1.143 (s) 5.055 (s) 12 9 765 625 248 832 2.534 (s) 2.072 (s) 7.092 (s)

	N	n q	n me	Python	Matlab	Octave
	2	3 125	32 0.514 (s) 0.780 (s) 2.898 (s)
	4	59 049	1 024 0.569 (s) 0.396 (s) 3.054 (s)
	6	371 293	7 776 0.682 (s) 0.487 (s) 3.658 (s)
	8 1 419 857	32 768 0			

Table 13 :

 13 Tessellation of r´1, 1s5 with n me 2-order orthotopes and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.B.1.3 order p " 3Under Matlab, Octave and Python, the computational costs of the OrthMesh constructor to tesselate the r´1, 1s d orthotope with 3-order orthotopes are given in tables 14 to 17, respectively for d " 2 to d " 5. 120 47 045 881 10 368 000 6.285 (s) 6.672 (s) 12.161 (s) 140 74 618 461 16 464 000 9.982 (s) 9.543 (s) 18.968 (s)

	N	n q	n me	Python	Matlab	Octave
	40	1 771 561	384 000 0.441 (s) 0.759 (s)	0.976 (s)
	60	5 929 741	1 296 000 0.977 (s) 0.920 (s)	2.021 (s)
	80 13 997 521	3 072 000 2.011 (s) 1.927 (s)	4.069 (s)
	100 27 270 901	6 000 000 3.703 (s) 3.699 (s)	7.350 (s)

Table 27 :

 27 Tessellation of r´1, 1s 3 with n me 3-order simplices and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0. 11.597 (s) 12.917 (s) 23.813 (s) 30 68 574 961 19 440 000 23.132 (s) 25.455 (s) 44.084 (s)

	N	n q	n me	Python	Matlab	Octave
	5	65 536	15 000	0.419 (s)	0.681 (s)	1.312 (s)
	10	923 521	240 000	0.598 (s)	0.450 (s)	1.694 (s)
	20 13 845 841	3 840 000	4.833 (s)	5.139 (s) 10.122 (s)
	25 33 362 176	9 375 000			

Table 28 :

 28 Tessellation of r´1, 1s 4 with n me 3-order simplices and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0. 11.049 (s) 16.948 (s) 25.328 (s) 10 28 629 151 12 000 000 18.305 (s) 28.634 (s) 43.364 (s)

	N	n q	n me	Python	Matlab	Octave
	3	100 000	29 160	0.790 (s)	0.928 (s)	3.555 (s)
	5	1 048 576	375 000	1.374 (s)	1.117 (s)	5.003 (s)
	7	5 153 632	2 016 840	3.652 (s)	4.072 (s)	9.261 (s)
	9 17 210 368	7 085 880			

Table 29 :

 29 Tessellation of r´1, 1s 5 with n me 3-order simplices and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.C Some combinatorial remindersLet k P N and n P N, with n ě k. The binomial coefficient is written by C k

	n or

27 Tessellation of r´1, 1s 3 with n me 3-order simplices and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . 42 28 Tessellation of r´1, 1s 4 with n me 3-order simplices and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . 42 29 Tessellation of r´1, 1s 5 with n me 3-order simplices and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Let iBase iBase iBase be the 1-by-N h array given by iBase iBase iBase Ð 1 `p xβ β β, CartesianGridPointspN N N ´1qy .

Then the array me me me is given @l P v1, d!w, @j P v1, d `1w, @r P v1, N h w, by me me mepj, d!pr ´1q `lq Ð iBase iBase iBaseprq `p xβ β β, q q q K p:, me me me K pj, lqqy .

This formula can be vectorized in r: with Idx Idx Idx Ð d!r0 : N h ´1s `l then me me mepj, Idx Idx Idxq Ð iBase iBase iBase `p xβ β β, q q q K p:, me me me K pj, lqqy .

We give in Algorithm ?? the function CGTriangulation which computes the triangulation of the cartesian grid Q p,N N N .

Algorithm 10 Function CGTessSim : computes the tessellation of the cartesian grid Q p,N N N with p-order simplices Input : N N N : array of d positive integers, N N N piq " N i . p : order, positive integer. Output : q q q : nodes array of the triangulation of Q p,N N N . d-by-n q array of reals (integer in fact) where n q " ś d i"1 ppN i `1q. me me me : connectivity array of the triangulation of Q p,N N N .

C p d`p -by-n me array of integers where n me " d! ś d i"1 N i . . Function rq q q, me me mes Ð CGTessSim (N N N , p) q q q Ð CartesianGridPointspp ˚N N N q{p β β β Ð CGbetapp ˚N N N q iBase iBase iBase Ð 1 `p xβ β β, CartesianGridPointspN N N ´1qy rq q q K , me me me K s Ð KuhnTriOrderpd, pq Idx Idx Idx Ð d! ˚r0 : pN h ´1qs for l Ð 1 to d! do Idx Idx Idx Ð Idx Idx Idx `1 for j Ð 1 to C p d`p do me me mepj,Idx Idx Idx Idx Idx Idx Idx Idx Idxq Ð iBase iBase iBase `p ˚β β β ˚q q q K p:, me me me K pj, lqq end for end for end Function

m-faces tessellations of a cartesian grid with p-order simplices

Let Q p,N N N be the d-dimensional cartesian grid defined in section ??. As before, we denote by T p,N N N .q q q and T p,N N N .me me me respectively the nodes and connectivity arrays of the tessellation of the cartesian grid Q p,N N N with p-order d-simplices obtained from CGTriOrder function and described in Algorithm 10. Let m P v0, dv and k P v1, E m,d w where E m,d is the number of m-faces defined in [START_REF] Beekman | An Introduction to Number Theoretic Combinatorics[END_REF]. We want to determine T m p,N N N pkq, the tessellation obtained from the restriction of T N N N to its k-th m-face where the numbering of the m-faces is specified in section 2.3. We denote by

B Computational costs

All the algorithms of this paper were implemented under Matlab [START_REF] Cuvelier | fc_hypermesh: a object-oriented Matlab toolbox to mesh any d-orthotopes (hyperrectangle in dimension d) and their m-faces with high order simplices or orthotopes[END_REF], Octave [START_REF] Cuvelier | fc_hypermesh: a object-oriented Octave package to mesh any d-orthotopes (hyperrectangle in dimension d) and their m-faces with high order simplices or orthotopes[END_REF] and Python [START_REF] Cuvelier | fc_hypermesh: a object-oriented Python package to mesh any d-orthotopes (hyperrectangle in dimension d) and their m-faces with high order simplices or orthotopes[END_REF]. In each language, the OrthMesh class is available which contains a regular and conforming tessellations of a d-orthotope and all its m-faces with high-order orthotopes or simplicial elements (0 ď m ă d).

In this section, computational costs of the OrthMesh constructor are presented for tessellations of the orthotope r´1; 1s d with p-order orthotopes and simplices where d P v2, 5w and p P v1, 3w. In each direction, the orthotope is subdivized in N intervals and so there is n q " ppN `1q d nodes in the associated tessellation. If the orthotope is tessellated with orthotopes, then it contains n me " N d orthotope elements. Otherwise the orthotope is tessallated with simplices and it contains n me " d!N d elements.

The computations were done on a computer with Intel(R) Core(TM) i9-7940X CPU @ 3.10GHz processor and 63Go of RAM under Ubuntu 18.04.3 LTS (x86_64).

B.1 Tessellation with p-order d-orthotopes

In this section, the computational costs of the OrthMesh constructor with porder d-orthotopes are given with d P v2, 5w and p P v1, 3w.

B.1.1 order p " 1

Under Matlab, Octave and Python, the computational costs of the OrthMesh constructor to tesselate the r´1, 1s d orthotope with 1-order orthotopes are given in tables 6 to 9, respectively for d " 2 to d " 5. 

N

B.2 Tessellation with p-order d-simplices

In this section, the computational costs of the OrthMesh constructor with porder d-simplices are given with d P v2, 5w and p P v1, 3w.

B.2.1 order p " 1

Under Matlab, Octave and Python, the computational costs of the OrthMesh constructor to tesselate the r´1, 1s d orthotope with 1-order simplices are given in tables 18 to 21, respectively for d " 2 to d " 5. 25: Tessellation of r´1, 1s 5 with n me 2-order simplices and n q nodes. Computational times in seconds for Python 3.8.1, Matlab 2019a and Octave 5.1.0.

N

B.2.3 order p " 3

Under Matlab, Octave and Python, the computational costs of the OrthMesh constructor to tesselate the r´1, 1s d orthotope with 3-order simplices are given in tables 26 to 29, respectively for d " 2 to d " 5. There are some usefull identities:

N

Let d P N ˚and m P N. An element α α α " pα α α 1 , . . . , α α α d q of N d is called a multi-index.

Lemma 9 Let d P N ˚and m P N. We consider in N d the set

where |α α α| " ř d j"1 α α α j . Then the cardinality of B m denoted by cardpB m q is given by cardpB m q " C m d`m´1 .

Indeed this corresponds to placing m identical balls into d distinct boxes where more than one ball in a box is possible.

Theorem 10 (Theorem 1.8, page 6, [START_REF] Beekman | An Introduction to Number Theoretic Combinatorics[END_REF]) The number of ways to distribute m identical objects into d distinct boxes, with empty boxes allowed, and multiple occupancy allowed is given by C m m`d´1 . Lemma 11 Let d P N ˚and m P N. Let A m be the subset of N d defined by

Then the cardinality of A m is

Proof: The family of sets B 0 , . . . , B m is a partition of A m and so we have

From (28), we have C j d`j´1 " C d´1 d`j´1 and so

From the hockey-stick formula (30) with k " d ´1 and n " d `m ´2 we deduce

From (28), we have C d d`m´1 " C m´1 d`m´1 . Then we get cardpA m q " C m d`m´1

`Cm´1

d`m´1 . Finally, using Pascal's formula (29) gives (34).

List of algorithms 1

Function CGbeta : Computes β l , @l P v1, dw, defined in (10) . . 2 Function CGTessHyp : computes the nodes array q q q and the connectivity array me me me obtained from a tesselation of the p-order cartesian grid Q p,N N N with unit p-order hypercube. . . . . . . . . .