François Cuvelier
email: cuvelier@math.univ-paris13.fr

Python package, User's Guide

Keywords: 1], fc-tools[0.0.24], fc-bench[0.2.0]

This object-oriented Python package allows in any dimension d to generate conforming meshes of d-orthotopes by p-order simplices or orthotopes with their m-faces. It was created to show the implementation of the algorithms of [1]. The package uses Python objects and is provided with meshes visualization tools for dimension less than or equal to 3.

Introduction

The package contains a simple class OrthMesh which permits, in any dimension d ě 1, to obtain conforming mesh of a d-orthotope tessellated with p-order simplices or p-order orthotopes. Corresponding m-faces, 0 ď m ă d of the mesh are also provided. The number of m-faces of a dorthotope is

E d m def " 2 d´m ˆd m ˙where ˆd m ˙" d! m!pd ´mq! (1)
Results and vectorized algorithms used in this package are given in [START_REF] Cuvelier | Vectorized algorithms for regular and conforming tessellations of d-orthotopes and their faces with high-order orthotopes or simplicial elements[END_REF].

For dimension 1 to 3 and order 1 to 4, orthotope elements and simplicial elements are respectively represented In Table 1 andTable 2. In older package(0.0.x versions) only order 1 was provided. Figure 4: Representation of all the 2-faces meshes with 1-order 2-orthotopes (left) and 1-order 2-simplices (right) obtained from the tesselation samples of the Figure 3 By taking back the meshes in dimension 2 represented in Figure 1 and Figure 2, but this time using 3-order mesh element give the new meshes represented in Figure 5 and Figure 6. where nodes of all mesh elements are represented by black (vertices) and grey points.

Figure 6: Representation of all the 1-faces meshes with 3-order 1-orthotopes (left) and 3-order 1-simplices (right) obtained from the tesselation samples of the Figure 5 In dimension 3, meshes represented in Figure 3 and Figure 4 are this time tessellated respectively with 3-order orthotopes and 3-order simplices and represented in Figure 7 and Figure 8. Installation :

• For an installation which isolated to the current user, one can do: $ pip install -U --user fc_hypermesh

• For an installation for all users, one can do:

$ sudo pip install -U fc_hypermesh

An other way is to download the required archive and to make the installation from the downloaded file.

• For an installation which isolated to the current user, one can do: $ pip install <PATH_TO_FOLDER>/fc_hypermesh-<VERSION>.tar.gz --user -U where <PATH_TO_FOLDER> will be replaced by the path to the saved archive and <VERSION> by the version of the archive.

• For an installation for all users, one can do: $ sudo pip install <PATH_TO_FOLDER>/fc_hypermesh-<VERSION>.tar.gz -U Uninstall : To uninstall this package, you only have to execute one of these commands depending on the type of installation performed $ pip uninstall fc_hypermesh or $ sudo pip uninstall fc_hypermesh

Classes of the package

First of all, the low level class EltMesh is presented. Thereafter the main class OrthMesh, which is an union of EltMesh objects, is described.

Class EltMesh

An elementary mesh class EltMesh is used to store only one mesh in space dimension d, the main mesh as well as any of the meshes of the m-faces. This elementary mesh is made either with p-order simplices or with p-order orthotopes. This class EltMesh also simplify (for me) the codes writing. Its attributes are the following:

' d : space dimension
' m : kind of mesh corresponding to a m-face, 0<=m<=d, m == d for the main mesh.

' type : 0 for simplicial mesh or 1 for orthotope mesh.

' order : order p of the elements, default 1.

' nq : number of vertices.

' q : vertices numpy array of dimension d-by-nq ' nme : number of mesh elements ' me : connectivity numpy array of dimension (d+1)-by-nme for simplices elements or 2 d -by-nme for orthotopes elements ' toGlobal : index array linking local array q to the one of the main mesh.

' label : name/number of this elementary mesh ' color : color of this elementary mesh (for plotting purpose)

Class OrthMesh

The aim of the class OrthMesh is to efficiently create an object which contains a main mesh of a dorthotope and all its m-face meshes deduced from the main mesh. All meshes are made either with p-order simplices or with p-order orthotopes. ' type: string 'simplex' or 'orthotope' mesh.

' order: order p of the elements.

' Mesh: main mesh as an EltMesh object.

' Faces: 2d-list of EltMesh objects such that Faces[0] is a list of all the meshes of the pd ´1q-faces, Faces [START_REF] Cuvelier | Vectorized algorithms for regular and conforming tessellations of d-orthotopes and their faces with high-order orthotopes or simplicial elements[END_REF] is a list of all the meshes of the pd ´2q-faces, and so on

' box: a d-by-2 numpy array such that box[i ´1][0] is a i value and box[i ´1][1] is b i value.
In all the Python examples given in the following section, we suppose the following code previously load:

Listing 1: Previously load code for Python examples import fc_hypermesh import m a t p l o t l i b . p y p l o t a s p l t from f c _ t o o l s . M a t p l o t l i b import set_axes_equal

Constructor

The OrthMesh constructor is : .

Syntaxe Oh = OrthMesh (d ,N) Oh = OrthMesh (d ,
• order = value : gives the order of the mesh elements (default is 1). • m_min = value : used to only build the m-Faces for m in vm_min, dv. Default value is 0.

Listing 5: : OrthMesh constructor in dimension d=3 (simplicial mesh) Oh = fc_hypermesh . OrthMesh (3 ,10 , m_min =2) print (' Oh ␣ =\ n '+ str (Oh)) print ('q ␣ =\ n '+ str (Oh . Mesh . q)) • mapping=value : used to apply on the mesh a mapping function given by a function handle.

Output

Listing 6: : OrthMesh constructor in dimension d=3 (simplicial mesh)

import numpy as np mfun = lambda q : np . array ([q [0]+ np . sin (q [1]) ,q [1] , q [2]]) Oh = fc_hypermesh . OrthMesh (3 ,10 , m_min =2 , mapping = mfun) print (' Oh ␣ =\ n '+ str (Oh)) print ('q ␣ =\ n '+ str (Oh . Mesh . q))

Output

Oh = OrthMesh object d : 3 order : 1 box : [[0.0, 1.8414709848078965], [0.0, 1.0], [0.0, 1.0]] mapping : lambda q: np.array([q[0]+np.sin(q[1]),q[1],q[2]]) Mesh (order,type,nq,nme) : (It's a 3 dimensional mesh of the unit cube tesselated with 2-order simplices where their vertices are in pi{10, j{10, k{10q for all pi, j, kq P v0, 10w. The main mesh given as an EltMesh object is Oh.Mesh One can easily access to each field of an EltMesh object (see section 3.1). For example, to acces the nodes array and the connectivity array of the Th EltMesh object we do respectively Th.q and Th.me. We also have the following link between global nodes array Th.q and local nodes array Fh.q:

Th.q[:,Fh.toGlobal]==Fh.q or more generaly, for all m in v0, Oh.dw and for all k in v1,

E d m w Oh.Mesh.q[:,Oh.Faces[Oh.d-m-1][k-1].toGlobal]==Oh.Faces[Oh.d-m-1][k-1].q
where E d m is defined in (1).

plotmesh method

The plotmesh() member function uses Matplotlib Python package [START_REF] Hunter | Matplotlib: A 2d graphics environment[END_REF][START_REF]User's Guide[END_REF] to represent the mesh given by an OrthMesh object. Some optional key/value pairs arguments are available with key:

• legend : if value is True, a legend is displayed. Default is False.

• m : plots all the m-faces of the mesh. Default m = d i.e. the main mesh. (0 ďmďd)

• labels : plot all the m-faces of the mesh with number/label in value list

• color : use to specify the color to use.

• ...

Other key/value pairs arguments can be used depending of obj.d and obj.m values and they are those of the Matplotlib function used:

• with obj.d=3 and obj.m=3, Line3DCollection function is used;

• with obj.d=3 and obj.m=2, Poly3DCollection or Line3DCollection function are used;

• with obj.d=3 and obj.m=1, Line3DCollection function is used;

• with obj.d=3 and obj.m=0, scatter function is used;

• with obj.d=2 and obj.m=2, PolyCollection function is used;

• with obj.d=2 and obj.m=1, plot function is used;

• with obj.d=2 and obj.m=0, scatter function is used;

• with obj.d=1 and obj.m=1, plot function is used;

• with obj.d=1 and obj.m=0, scatter function is used;

Examples In Listing 7 and Listing 8, the code given in Listing 1 is supposed to be preloaded.

plotnodes method

The plotnodes() member function can be used to represent nodes of the mesh given by an OrthMesh object if the space dimension d is less than or equal to 3. • m : plots all the nodes of the m-faces of the mesh. Default m = d i.e. the main mesh. (0 ď m ď d)

Syntaxe

• labels : plot all the nodes of the m-faces of the mesh with number/label in value list

• vcolor : use to specify the point color for the mesh vertices. Default is obj.color.

• vsize : use to specify the point size for the mesh vertices. Default is 40.

• ncolor : use to specify the color of the nodes (not vertices) of the mesh elements. Default is 'k' (ie. black). • nsize : use to specify the size of the nodes (not vertices) of the mesh elements. Default is 30.

Other key/value pairs arguments can be used: they are those of the scatter function.

ploteltsNumber method

The ploteltsNumber() member function can be used to display elements index/number of the mesh given by an OrthMesh object if the space dimension d is less than or equal to 3. • m : plots all the nodes index/number of the m-faces of the mesh. Default m = d i.e. the main mesh. (0 ď m ď d)

• labels : plot all the elements index/number of the m-faces of the mesh with number/label in value list. • color : use to specify text color. Default is 'auto' to automaticaly set to the color of the main mesh (if m = d) or to the colors of the m-faces currently drawn.

• ec : use to specify the color of box outline. Default is 'w' (i.e. white). Value 'auto' can be used.

• fc : use to specify text background color. Default is 'w' (i.e. white). Value 'auto' can be used.

• vLineColor : Draw lines with value as color beetween vertices and barycenter of the mesh elements. Default is None (no lines).

• vLineStyle : Select lines type. Default is ':' (dotted lines).

• vLineWidth : Set lines witdh. Default is 0.5.

Other key/value pairs arguments can be used: they are those of the Matplotlib text function in 3D or those of the Matplotlib annotate function in 2D.

ploteltsNumber method

The ploteltsNumber() member function can be used to display elements index/number of the mesh given by an OrthMesh object if the space dimension d is less than or equal to 3. • m : plots all the elements index/number of the m-faces of the mesh. Default m = d i.e. the main mesh. (0 ď m ď d)

Syntaxe

• labels : plot all the elements index/number of the m-faces of the mesh with number/label in value list. • color : use to specify text color. Default is 'auto' to automaticaly set to the color of the main mesh (if m = d) or to the colors of the m-faces currently drawn.

• ec : use to specify the color of box outline. Default is 'w' (i.e. white). Value 'auto' can be used.

• fc : use to specify text background color. Default is 'w' (i.e. white). Value 'auto' can be used.

• vLineColor : Draw lines with value as color beetween vertices and barycenter of the mesh elements. Default is None (no lines).

• vLineStyle : Select lines type. Default is ':' (dotted lines).

• vLineWidth : Set lines witdh. Default is 0.5.

Other key/value pairs arguments can be used: they are those of the Matplotlib text function in 3D or those of the Matplotlib annotate function in 2D.

Using the package

Before using this class it will be necessary to be aware of the memory used by this one. For example, when meshing a 6-dimensional orthotope with 1-order simplices by taking N " 10 intervals in each space direction, gives an OrthMesh object using 48.096 GB in memory. With 3-order simplices, the OrthMesh object uses 617.764 GB in memory! The memory usage for a d-dimensional OrthMesh object by taking N " 10 intervals in each space direction is given in Table 3 for 1-order elements and in Table 4

2d-orthotope meshing by simplices

In Listing 12, an OrthMesh object is built under Python for the orthotope r´1, 1s ˆr0, 1s with simplicial elements and N N N " p12, 5q. The main mesh and all the m-face meshes of the resulting object are plotted.

3d-orthotope meshing by simplices

In Listing 13, an OrthMesh object is built under Python for the orthotope r´1, 1s ˆr0, 1s ˆr0, 2s with simplicial elements and N N N " p10, 5, 10q. The main mesh and all the m-face meshes of the resulting object are plotted.

2d-orthotope meshing by orthotopes

In Listing 14, an OrthMesh object is built under Python for the orthotope r´1, 1s ˆr0, 1s with orthotope elements and N N N " p10, 5, 10q. The main mesh and all the m-face meshes of the resulting object are plotted.

3d-orthotope meshing by orthotopes

In Listing 15, an OrthMesh object is built under Python for the orthotope r´1, 1s ˆr0, 1s ˆr0, 2s with orthotope elements and N N N " p10, 5, 10q. The main mesh and all the m-face meshes of the resulting object are plotted.

Memory consuming

Take care when using theses codes with memory consuming : the number of points n q and the number of elements increases exponentially according to the space dimension d. If pN `1q points are taken in each space direction, we have n q " ppN `1q d , for both tessellation and triangulation and n me " N d , for tessellation by orthotopes n me " d!N d , for tessellation by simplices.

If the array q is stored as double (8 octets) then mem. size of q " d ˆnq ˆ8 octets and if the array me as int (8 octets) then mem. size of me " " 2 d ˆnme ˆ8 octets (tessellation by orthotopes) pd `1q ˆnme ˆ8 octets (tessellation by simplices)

For N " 10 and d P v1, 8w, the values of n q and n me are given in Table 5. The memory usage for the corresponding array q and array me is available in Table 6. 6: Memory usage of the array q and the array me for the tessellation of an orthotope by orthotopes and by simplices according to the space dimension d and with N " 10.

d n q " pN `1q d n me " N d (orthotopes) n me " d!N d (

Benchmarks

For all the following tables, the computational costs of the OrthMesh constructor are given for the orthotope r´1, 1s d under Python 3.8.1. The computations were done on a laptop with Intel(R) Core(TM) i9-7940X CPU @ 3.10GHz processor and 63Go of RAM under Ubuntu 18.04.3 LTS (x86_64).

In the following pages, computational costs of the OrthMesh constructor will be done by using bench01 function. As sample, we give an example with output. Thereafter, all the output will be presented in tabular form.

from fc_hypermesh import bench bench (3 , range (20 ,170 ,20)

, type = ' simplex ' , box =[[-1 ,1] ,[-1 ,1] ,[-1 ,1]] , order =1)
Listing 18: bench sample Output #- --- --- ---

- # fc_hypermesh.OrthMesh constructor with # d =3 # type =simplex # order =1 # box =[[-1, 1], [-1, 1], [-1, 1]] # mapping=None #-

3

 Table 2: p-order d-simplicial mesh element in R d . Nodes are the points.

Figure 1 :

 1 Figure 1: Tesselation samples of r0, 1s 2 with 1-order 2-orthotopes (left) and 1-order 2-simplices (right) where nodes (vertices) of all mesh elements are represented by black points.

Figure 2 :

 2 Figure2: Representation of all the 1-faces meshes with 1-order 1-orthotopes (left) and 1-order 1-simplices (right) obtained from the tesselation samples of the Figure1

Figure 3 :

 3 Figure 3: Tesselation samples of r0, 1s 3 with 1-order 3-orthotopes (left) and 1-order 3-simplices (right) where nodes (vertices) of all mesh elements are represented by black spheres.

Figure 5 :

 5 Figure 5: Tesselation samples of r0, 1s 2 with 3-order 2-orthotopes (left) and 3-order 2-simplices (right) where nodes of all mesh elements are represented by black (vertices) and grey points.

Figure 7 :

 7 Figure 7: Tesselation samples of r0, 1s 3 with 3-order 3-orthotopes (left) and 3-order 3-simplices (right) where nodes of all mesh elements are represented by black (vertices) and grey spheres.

Figure 8 :

 8 Figure 8: Representation of all the 2-faces meshes with 3-order 2-orthotopes (left) and 3-order 2-simplices (right) obtained from the tesselation samples of the Figure 7

 Let the d-orthotope defined by ra 1 , b 1 s ˆ¨¨¨ˆra d , b d s. The class OrthMesh corresponding to this d-orthotope contains the main mesh and all the meshes of its m-faces, 0 ď m ă d. Its attributes are the following ' d: space dimension.

 [0.0, 1.0], [0.0, 1.0], [0.0, 1.0]] mapping : None Mesh (order,type,nq,nme) :(1,simplex,1331,6000) Number of 2-faces : 6 [0] (order,type,nq,nme) : (1,simplex,121,200) [1] (order,type,nq,nme) : (1,simplex,121,200) [2] (order,type,nq,nme) : (1,simplex,121,200) [3] (order,type,nq,nme) : (1,simplex,121,200) [4] (order,type,nq,nme) : (1,simplex,121,200) [5] (order,type,nq,nme) : (1,simplex,121,200)

 Th = Oh . Mesh print (' Th ␣ = ␣ '+ str (Th)) Output Th = EltMesh object type : 0 (simplex) order : 2 label : 1 d : 3 m : 3 q : (3,9261) me : (10,6000)The k th m-faces of Oh stored as an EltMesh object is given by Oh.Faces[Oh.d-m-1][k-1]. Fh = Oh . Faces [0][2]print (' Fh ␣ = ␣ '+ str (Fh))

 Syntaxe obj . plotmesh () obj . plotmesh (key = value , ...) Description obj.plotmesh() plot the main mesh.obj.plotmesh(key=value, ...)

 Oh1 = fc_hypermesh . OrthMesh (3 ,6 , box =[[-1 ,1] ,[-2 ,2] ,[0 ,3]]) plt . figure (1) Oh1 . plotmesh () set_axes_equal () Oh2 = fc_hypermesh . OrthMesh (3 ,6 , type = ' orthotope ') plt . figure (2) Oh2 . plotmesh (color = ' Salmon ' , linewidth =2) set_axes_equal () Listing 7: plotmesh method of 3D OrthMesh objects tessellated with simplices in figure(1) (left) and with orthotopes in figure(2) (right) Oh = fc_hypermesh . OrthMesh (3 ,6 , box =[[-1 ,1] ,[-2 ,2] ,[0 ,3]]) ; plt . figure (1) Oh . plotmesh (m =2 , legend = True) set_axes_equal () plt . figure (2) Oh . plotmesh (m =2 , legend = True , labels =[1 ,2 ,4]) set_axes_equal () plt . figure (3) Oh . plotmesh (m =1 , legend = True , linewidth =2) set_axes_equal () ; plt . axis (' off ') plt . figure (4) Oh . plotmesh (m =2 , facecolor = None , edgeColor = ' LightGrey ' , alpha =0.2) Oh . plotmesh (m =1 , color = ' DarkGrey ' , alpha =0.2) Oh . plotmesh (m =0 , legend = True , s =50) set_axes_equal () ; plt . axis (' off ') Listing 8: plotmesh method of a 3D OrthMesh object, figure(1) (upper left), figure(2) (upper right),figure(3) (bottom left), figure(4) (bottom right)

 Oh = fc_hypermesh . OrthMesh (2 ,6 , order =3) plt . figure (1) Oh . plotmesh (color = ' LightGray ') Oh . plotnodes () set_axes_equal () ; plt . axis (' off ') plt . figure (2) Oh . plotmesh (color = 'k ') Oh . plotnodes (vcolor = ' Salmon ' , ncolor = ' Violet ') set_axes_equal () ; plt . axis (' off ') plt . figure (3) Oh . plotmesh (color = 'k ') Oh . plotnodes (m =1 , labels =[1 ,2]) set_axes_equal () ; plt . axis (' off ') plt . figure (4) Oh . plotmesh (color = 'k ') Oh . plotnodes (m =1 , labels =[1 ,2 ,4] , vsize =80 , nsize =60) set_axes_equal () ; plt . axis (' off ') Listing 9: plotnodes method of a 2D OrthMesh object, figure(1) (upper left), figure(2) (upper right), figure(3) (bottom left), figure(4) (bottom right)

 Syntaxe obj . plotnodesNumber () obj . plotnodesNumber (key = value , ...) Description obj.plotnodesNumber() Uses fc_hypermesh.ploteElementsNumber function to represent node numbers. obj.ploteltsNumber(key, value, ...) Some optional key/value pairs arguments are available with key:

 Oh = fc_hypermesh . OrthMesh (2 ,4 , order =3) plt . figure (1) Oh . plotmesh (color = ' LightGray ') Oh . ploteltsNumber () set_axes_equal () ; plt . axis (' off ') plt . figure (2) Oh . plotmesh () Oh . ploteltsNumber (color = 'r ' , ec = 'r ' , fontsize =7 , vLineColor = ' auto ' , fc = 'w ') set_axes_equal () ; plt . axis (' off ') Listing 10: ploteltsNumber method of a 2D EltMesh objects , figure(1) (left) and figure(2) (right)

 Oh = fc_hypermesh . OrthMesh (2 ,4 , order =3) plt . figure (1) Oh . plotmesh (color = ' LightGray ') Oh . ploteltsNumber () set_axes_equal () ; plt . axis (' off ') plt . figure (2) Oh . plotmesh () Oh . ploteltsNumber (color = 'r ' , ec = 'r ' , fontsize =7 , vLineColor = ' auto ' , fc = 'w ') set_axes_equal () ; plt . axis (' off ') Listing 11: ploteltsNumber method of a 2D EltMesh objects , figure(1) (left) and figure(2) (right)

 oTh = OrthMesh (2 ,[12 ,5] , type = ' simplex ' , box =[[-1 ,1] ,[0 ,1]]) plt . figure (1) oTh . plotmesh (legend = True) set_axes_equal () plt . figure (2) oTh . plotmesh (m =1 , legend = True , linewidth =3) plt . axis (' off ') set_axes_equal () plt . figure (3) oTh . plotmesh (m =1 , color = ' black ') oTh . plotmesh (m =0 , legend = True , s =105) plt . axis (' off ') set_axes_equal () Listing 12: 2D simplicial OrthMesh object with Python 3.8.1, main mesh (figure 1, upper left), 1-face meshes (figure 2, upper right), and 0-face meshes (figure 3, bottom)

 oTh = OrthMesh (3 ,[10 ,5 ,10] , box =[[-1 ,1] ,[0 ,1] ,[0 ,2]]) plt . figure (1) oTh . plotmesh (legend = True , linewidth =0.5) set_axes_equal () plt . figure (2) oTh . plotmesh (m =2 , legend = True , edgecolor =[0 ,0 ,0]) plt . axis (' off ') set_axes_equal () plt . figure (3) oTh . plotmesh (m =2 , edgecolor =[0 ,0 ,0] , color = ' none ') oTh . plotmesh (m =1 , legend = True , linewidth =2 , alpha =0.3) plt . axis (' off ') set_axes_equal () plt . figure (4) oTh . plotmesh (m =1 , color = ' black ' , alpha =0.3) oTh . plotmesh (m =0 , legend = True , s =55) set_axes_equal () plt . axis (' off ') Listing 13: 3D simplicial OrthMesh object with Python 3.8.1, main mesh (figure 1, upper left), 2-face meshes (figure 2, upper right), 1-face meshes (figure 3, bottom left) and 0-face meshes (figure 4, bottom right)

 oTh = OrthMesh (2 ,[12 ,5] , type = ' orthotope ' , box =[[-1 ,1] ,[0 ,1]]) plt . figure (1) oTh . plotmesh (legend = True) set_axes_equal () plt . figure (2) oTh . plotmesh (m =1 , legend = True , linewidth =3) plt . axis (' off ') set_axes_equal () plt . figure (3) oTh . plotmesh (m =1 , color = ' black ') oTh . plotmesh (m =0 , legend = True , s =105) plt . axis (' off ') set_axes_equal () Listing 14: 2D orthotope OrthMesh object with Python 3.8.1, main mesh (upper left), 1-face meshes (upper right), and 0-face meshes (bottom)

 oTh = OrthMesh (3 ,[10 ,5 ,10] , type = ' orthotope ' , box =[[-1 ,1] ,[0 ,1] ,[0 ,2]]) plt . figure (1) oTh . plotmesh (legend = True , linewidth =0.5) set_axes_equal () plt . figure (2) oTh . plotmesh (m =2 , legend = True , edgecolor =[0 ,0 ,0]) plt . axis (' off ') set_axes_equal () plt . figure (3) oTh . plotmesh (m =2 , edgecolor =[0 ,0 ,0] , color = ' none ') oTh . plotmesh (m =1 , legend = True , linewidth =2 , alpha =0.3) plt . axis (' off ') set_axes_equal () plt . figure (4) oTh . plotmesh (m =1 , color = ' black ' , alpha =0.3) oTh . plotmesh (m =0 , legend = True , s =55) set_axes_equal () plt . axis (' off ') Listing 15: 3D orthotope OrthMesh object with Python 3.8.1, main mesh (upper left), 2-face meshes (upper right), 1-face meshes (bottom left) and 0-face meshes (bottom right)4.5 Mapping of a 2d-orthotope meshing by simplicesFor example, the following 2D geometrical transformation allows to deform the reference unit hypercube.r0, 1s ˆr0, 1s ÝÑ R 2 ˆx y ˙ÝÑ F px, yq " ˆ20 x 2 p2 y ´1 `cosp2πxqqimport numpy as np trans = lambda q : np . array ([20* q [0] ,2*(2* q [1] -1+ np . cos (2* np . pi * q [0]))]) oTh = OrthMesh (2 ,[100 ,20] , type = ' simplex ' , mapping = trans) plt . figure (1) oTh . plotmesh (legend = True) plt . axis (' equal ') plt . figure (2) oTh . plotmesh (color = ' lightgray ') oTh . plotmesh (m =1 , legend = True , linewidth =3) plt . axis (' equal ') plt . axis (' off ') plt . figure (3) oTh . plotmesh (color = ' lightgray ') oTh . plotmesh (m =1 , color = ' black ') oTh . plotmesh (m =0 , legend = True , s =105) plt . axis (' equal ') plt . axis (' off ') Listing 16: Mapping of a 2D simplicial OrthMesh object with Python 3.8.1, main mesh (upper left), 1-face meshes (upper right), and 0-face meshes (bottom)4.6 Mapping of a 3d-orthotope meshing by orthotopesFor example, the following 3D geometrical transformation allows to deform the reference unit hypercube. r0, 1s ˆr0, 1s ˆr0, 1s ÝÑ R 2 ¨x y z ' ÝÑ F px, y, yq " ¨x `sinp4πyq 10y z `cosp4πyq ' import numpy as np trans = lambda q : np . array ([q [0]+ np . sin (4* np . pi * q [1]) , 10* q [1] -1 , q [2]+ np . cos (4* np . pi * q [1])]) oTh = OrthMesh (3 ,[3 ,25 ,3] , type = ' simplex ' , mapping = trans) plt . figure (1) oTh . plotmesh (legend = True) set_axes_equal () plt . figure (2) oTh . plotmesh (m =2 , legend = True , edgecolor =[0 ,0 ,0]) set_axes_equal () plt . figure (3) oTh . plotmesh (m =2 , edgecolor = ' lightgray ' , facecolor = None , alpha =0.3) oTh . plotmesh (m =1 , legend = True , linewidth =2) set_axes_equal () plt . figure (4) oTh . plotmesh (m =1 , color = ' black ') oTh . plotmesh (m =0 , legend = True , s =55) set_axes_equal () Listing 17: Mapping of a 3D orthotope OrthMesh object with Python 3.8.1, main mesh (upper left), 2-face meshes (upper right), 1-face meshes (bottom left) and 0-face meshes (bottom right)

Table 1 :

 1

p-order d-orthotope mesh element in R d . Nodes are the points.

 This toolbox was tested on various OS with Python releases (from python.org):

			Python	
	Linux	2.7.16 3.5.9 3.6.10 3.7.6 3.8.1
	CentOS 7.7.1908			
	Debian 9.11			
	Fedora 29			
	OpenSUSE Leap 15.0			
	Ubuntu 18.04.3 LTS			
	Apple Mac OS X	2.7.16 3.5.4	3.6.8	3.7.6 3.8.1
	MacOS High Sierra 10.13.6			
	MacOS Mojave 10.14.4			
	MacOS Catalina 10.15.2			
	Microsoft Windows	2.7.16 3.5.4	3.6.8	3.7.6 3.8.1
	Windows 10 (1909)			

 N, key=value , . . .)

	Description
	Oh = OrthMesh(d,N)
	Builds an OrthMesh object where N is either a 1-by-d array/list such that N[i´1] is the number of
	discretization for ra i , b i s " r0, 1s or either an integer if the the number of discretization is the same
	in all space directions. By default, the output OrthMesh object is made with 1-order simplices.
	Oh = OrthMesh(d,N,key=value, ...)
	Some optional key/value pairs arguments are available with key:
	• box : where value is a d-by-2 list or numpy array such that value[i ´1][0] is a i value and
	value[i ´1][1] is b i value. Default is r0, 1s d .
	• type : The default value for optional key parameter type is 'simplex' and ortherwise 'orthotope'
	can be used
	Listing 2: : OrthMesh constructor in dimension d=3 (orthotope mesh)
	Oh = fc_hypermesh . OrthMesh (3 ,10 , type = ' orthotope ')
	print (Oh)
	Output
	OrthMesh object
	d : 3
	order : 1
	box : [[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]
	mapping : None
	Mesh (order,type,nq,nme) : (1,orthotope,1331,1000)
	Number of 2-faces : 6
	[0] (order,type,nq,nme) : (1,orthotope,121,100)
	[1] (order,type,nq,nme) : (1,orthotope,121,100)
	[2] (order,type,nq,nme) : (1,orthotope,121,100)
	[3] (order,type,nq,nme) : (1,orthotope,121,100)
	[4] (order,type,nq,nme) : (1,orthotope,121,100)
	[5] (order,type,nq,nme) : (1,orthotope,121,100)
	Number of 1-faces : 12
	[0] (order,type,nq,nme) : (1,orthotope,11,10)
	[1] (order,type,nq,nme) : (1,orthotope,11,10)
	[2] (order,type,nq,nme) : (1,orthotope,11,10)
	[3] (order,type,nq,nme) : (1,orthotope,11,10)
	[4] (order,type,nq,nme) : (1,orthotope,11,10)
	[5] (order,type,nq,nme) : (1,orthotope,11,10)
	[6] (order,type,nq,nme) : (1,orthotope,11,10)
	[7] (order,type,nq,nme) : (1,orthotope,11,10)
	[8] (order,type,nq,nme) : (1,orthotope,11,10)
	[9] (order,type,nq,nme) : (1,orthotope,11,10)
	[10] (order,type,nq,nme) : (1,orthotope,11,10)
	[11] (order,type,nq,nme) : (1,orthotope,11,10)
	Number of 0-faces : 8
	[0] (order,type,nq,nme) : (1,orthotope,1,1)
	[1] (order,type,nq,nme) : (1,orthotope,1,1)
	[2] (order,type,nq,nme) : (1,orthotope,1,1)
	[3] (order,type,nq,nme) : (1,orthotope,1,1)
	[4] (order,type,nq,nme) : (1,orthotope,1,1)
	[5] (order,type,nq,nme) : (1,orthotope,1,1)
	[6] (order,type,nq,nme) : (1,orthotope,1,1)
	[7] (order,type,nq,nme) : (1,orthotope,1,1)

 • box = value : used to specify the d-orthotope ra 1 , b 1 s ˆ. . . ˆra d , b d s by setting value as an d-by-2 array such that a i " value(i,1) and b i " value(i,2).

	Listing 3: : OrthMesh constructor in dimension d=3 (simplicial mesh)
	Oh = fc_hypermesh . OrthMesh (2 ,[10 ,20] , order =4)
	print (Oh)
	Output
	OrthMesh object
	d : 2
	order : 4
	box : [[0.0, 1.0], [0.0, 1.0]]
	mapping : None
	Mesh (order,type,nq,nme) : (4,simplex,3321,400)
	Number of 1-faces : 4
	[0] (order,type,nq,nme) : (4,simplex,81,20)
	[1] (order,type,nq,nme) : (4,simplex,81,20)
	[2] (order,type,nq,nme) : (4,simplex,41,10)
	[3] (order,type,nq,nme) : (4,simplex,41,10)
	Number of 0-faces : 4
	[0] (order,type,nq,nme) : (1,simplex,1,1)
	[1] (order,type,nq,nme) : (1,simplex,1,1)
	[2] (order,type,nq,nme) : (1,simplex,1,1)
	[3] (order,type,nq,nme) : (1,simplex,1,1)
	Listing 4: : OrthMesh constructor in dimension d=3 (simplicial mesh)
	Oh = fc_hypermesh . OrthMesh (2 ,10 , box =[[-1 ,1] ,[-2 ,2]])
	print (' Oh ␣ =\ n '+ str (Oh))
	Output
	Oh =
	OrthMesh object
	d : 2
	order : 1

box : [[-1.0, 1.0], [-2.0, 2.0]] mapping : None Mesh (order,type,nq,nme) : (1,simplex,121,200) Number of 1-faces : 4 [0] (order,type,nq,nme) : (1,simplex,11,10) [1] (order,type,nq,nme) : (1,simplex,11,10) [2] (order,type,nq,nme) : (1,simplex,11,10) [3] (order,type,nq,nme) : (1,simplex,11,10) Number of 0-faces : 4 [0] (order,type,

nq,nme) : (1,simplex,1,1) [1] (order,type,nq,nme) : (1,simplex,1,1) [2]

(order,type,nq,nme) : (1,simplex,1,1)

[3] (order,type,nq,nme) : (1,simplex,1,1)

 Some optional key/value pairs arguments are available with key:

	obj . ploteltsNumber ()
	obj . ploteltsNumber (key = value , ...)
	Description
	obj.ploteltsNumber()
	Uses fc_hypermesh.ploteElementsNumber function to represent node numbers.
	obj.ploteltsNumber(key, value, ...)

Table 3 :

 3 for 3-order elements. One can refer to Section 5 for more details. Memory usage of OrthMesh object for the tessellation of an orthotope by 1-order orthotopes and by 1-order simplices according to the space dimension d and with N " 10.

	d OrthMesh (orthotopes) OrthMesh (simplices)
	1	296 B	296 B
	2	6 KB	8 KB
	3	144 KB	282 KB
	4	2 MB	12 MB
	5	57 MB	696 MB
	6	1.163 GB	48.096 GB
	7	23.815 GB	3.845 TB
	8	496.025 GB	346.756 TB
	d OrthMesh (orthotopes) OrthMesh (simplices)
	1	616 B	616 B
	2	32 KB	35 KB
	3	1 MB	1 MB
	4	64 MB	115 MB
	5	2.695 GB	7.737 GB
	6	109.134 GB	617.764 GB
	7	4.352 TB	58.136 TB
	8	171.900 TB	6247.498 TB

Table 4 :

 4 Memory usage of OrthMesh object for the tessellation of an orthotope by 3-order orthotopes and by 3-order simplices according to the space dimension d and with N " 10.

	In all the next examples, the following code is previously load:
	import matplotlib . pyplot as plt
	from fc_tools . colors import str2rgb
	from fc_hypermesh import OrthMesh
	from fc_tools . Matplotlib import DisplayFigures , set_axes_equal

Table 5 :

 5 Number of vertices n q and number of elements n me for the tessellation of an orthotope by orthotopes and by simplices according to the space dimension d and with N " 10.

	simplices)

Table 7 :

 7 Tessellation of r´1, 1s 2 by orthotopes

	-

Table 8 :

 8 Tessellation of r´1, 1s 3 by orthotopes

	from fc_hypermesh import bench		
	bench (4 ,[10 ,20 ,30 ,40 ,50 ,62] , type = ' orthotope ' , order =1 ,
	box =[[-1 ,1] ,[-1 ,1] ,[-1 ,1] ,[-1 ,1]])		
	Listing 21: Tessellation of r´1, 1s 4 by orthotopes
	N	n q	n me Python
	10	14 641	10 000	0.206
	20	194 481	160 000	0.294
	30	923 521	810 000	0.399
	40	2 825 761	2 560 000	0.717
	50	6 765 201	6 250 000	1.488
	62 15 752 961 14 776 336	3.053

Table 9 :

 9 Tessellation of r´1, 1s 4 by orthotopes

	Listing 22: Tessellation of r´1, 1s 5 by orthotopes
	N	n q	n me Python
	5	7 776	3 125	0.383
	10	161 051	100 000	0.467
	15	1 048 576	759 375	0.751
	20	4 084 101	3 200 000	1.562
	25 11 881 376	9 765 625	3.955
	27 17 210 368 14 348 907	5.535

from fc_hypermesh import bench bench (5 ,

[5 ,10 ,15 ,20 ,25 ,27]

, type = ' orthotope ' , order =1 , box =[[-1 ,1] ,[-1 ,1] ,[-1 ,1] ,[-1 ,1] ,[-1 ,1]])

Table 10 :

 10 Tessellation of r´1, 1s 5 by orthotopes

	6.2	Tessellation by simplices	
	from fc_hypermesh import bench	
	bench (2 , range (1000 ,6000 ,1000) , type = ' simplex ' , box =[[-1 ,1] ,[-1 ,1]] , order =1)
		Listing 23: Tessellation of r´1, 1s 2 by simplices
		N	n q	n me Python
		1000	1 002 001	2 000 000	0.199
		2000	4 004 001	8 000 000	0.473
		3000	9 006 001 18 000 000	0.916
		4000 16 008 001 32 000 000	1.528
		5000 25 010 001 50 000 000	2.348

Table 11 :

 11 Tessellation of r´1, 1s 2 by simplices from fc_hypermesh import bench bench(3 , range (40 ,190 ,20) , type = ' simplex ' , box =[[-1 ,1] ,[-1 ,1] ,[-1 ,1]] , order =1)Listing 24: Tessellation of r´1, 1s 3 by simplices

	N	n q	n me Python
	40	68 921	384 000	0.188
	60	226 981	1 296 000	0.26
	80	531 441	3 072 000	0.348
	100 1 030 301	6 000 000	0.473
	120 1 771 561 10 368 000	0.684
	140 2 803 221 16 464 000	0.957
	160 4 173 281 24 576 000	1.324
	180 5 929 741 34 992 000	1.918

Table 12 :

 12 Tessellation of r´1, 1s 3 by simplices from fc_hypermesh import bench bench (4 ,[10 ,20 ,25 ,30 ,35 ,40] , type = ' simplex ' , order =1 , box =[[-1 ,1] ,[-1 ,1] ,[-1 ,1] ,[-1 ,1]])

	Listing 25: Tessellation of r´1, 1s 4 by simplices
	N	n q	n me Python
	10	14 641	240 000	0.276
	20	194 481	3 840 000	0.555
	25	456 976	9 375 000	0.98
	30	923 521 19 440 000	1.768
	35 1 679 616 36 015 000	3.039

Table 13 :

 13 Tessellation of r´1, 1s 4 by simplices

	from fc_hypermesh import bench		
	bench (5 , range (2 ,14 ,2) , type = ' simplex ' , order =1 ,	
	box =[[-1 ,1] ,[-1 ,1] ,[-1 ,1] ,[-1 ,1] ,[-1 ,1]])	
	Listing 26: Tessellation of r´1, 1s 5 by simplices
	N	n q	n me Python
	2	243	3 840	0.42
	4	3 125	122 880	0.41
	6	16 807	933 120	0.556
	8	59 049	3 932 160	0.794
	10 161 051 12 000 000	1.449
	12 371 293 29 859 840	3.079

Table 14 :

 14 Tessellation of r´1, 1s 5 by simplices 6 References Informations for developpers/maintainers of the Python package git informations on the packages used to build this manual git informations on the L A T E X package used to build this manual

	name: fc-hypermesh
	tag: 0.1.1
	commit: 97eb31268a3ddef0095d487bcb11190a309529f0
	date: 2019-12-29
	time: 14-51-49
	status: 0
	name: fc-bench
	tag: 0.2.0
	commit: 56ba4901391836cc91e2ce64c6f15699b966fdd5
	date: 2019-12-23
	time: 07-53-49
	status: 0
	name: fc-tools
	tag: 0.0.24
	commit: 2ae83c0d581962971179c005d0f88ab33286725c
	date: 2019-12-21
	time: 11-34-49
	status: 0
	name: fctools
	tag:
	commit: c73b7a2fbc6bfb1a5daf17097463a3a6f3541282
	date: 2019-03-22
	time: 12-57-26
	status: True
	git informations on the fc_config package used to build this distribution
	name: fc-config
	tag:
	commit: 5333e20f025b614ae3d91a31521d38edfee6629c
	date: 2019-12-30
	time: 07-31-28
	status: True