François Cuvelier
email: cuvelier@math.univ-paris13.fr.

Octave package, User's Guide

Keywords: 1], fc-tools[0.0.29], fc-bench[0.1.1]

fc-amat Octave package, User's Guide * version 0.1.

Initially the

Octave package was created to be used with finite elements codes for computing volumes and gradiants of barycentric coordinates on each mesh elements. The volume of mesh element can be computed with the determinant of a matrix depending on the coordinates of the mesh element vertices. The gradients of the barycentric coordinates of a mesh element are solutions of linear systems. So we want to be able to do efficiently these operations on a very large number (few millions?) of very small matrices with same order (order less than 10?). In Octave, all theses matrices can be stored as a N-by-m-by-m 3D-array. Currently, with Octave from version 4.0.3 (and Matlab from release R2017a) only element-wise binary operators and functions can be used, as described in:

https://www.gnu.org/software/octave/doc/v5.1.0/Broadcasting.html For example, the sum of a m-by-n matrix with all the N matrices in a N -by-mby-n 3D-array can be performed as follows:

A = rand (m , n) ;

% g e n e r a t e a m´b y ´n m a t r i x (n > 1) B = randn (N ,m , n) ; % g e n e r a t e a N´b y ´m´b y ´n 3 D´a r r a y C = reshape (A ,[1 , m , n]) + B ; % g e n e r a t e " A+B " 3 D´a r r a y Unfortunately, simple operation as matrix product between a m-by-n matrix and all the N matrices in a N-by-n-by-p 3D-array or between all the N matrices of two 3D-arrays with sizes N-by-m-by-n and N-by-n-by-p are not implemented yet.

The purpose of this package is to give efficient operators and functions acting on amat object (array of matrices) to perform operations like sums, matrix product or more complex as determinants computation, factorization, solving, ... by only using Octave language. One can referred to [1] for more details, tests and benchmarks.

In the first section, the package is quickly presented. Thereafter, its installation process is described.

Presentation

The amat object provided in the package represents an array of matrices of the same order. All the following functions return an amat object with N matrices whose order is n ˆm or Let A be an amat object with N matrices whose order are m ˆn. In a more condensed way we say that A is a N ˆm ˆm amat object. One can easily manipulate and edit its content by using indexing. Here is a small part of the offered possibilities. These are detailed in section 5.

A(k,i,j) return element pi, jq of the k-th matrix A(k) return the k -th matrix (order m ˆn) A(i,j) return elements pi, jq of all the matrices as an N-by-1-by-1 amat A(k,i,j)=c assign c scalar value to element pi, jq of the k-th matrix A(i,j)=c assign c value to elements pi, jq of all the matrices A(k)=B assign the m ˆn matrix B to the k-th matrix ... It should be noted that resizing objects can happen when one of the indices is larger than the corresponding dimension. In Listing 1, some examples are provided.

A = fc_amat . random . randn (100 ,3 ,4) ;% A : 1 0 0 ´b y ´3´b y ´4 a m a t B = randn (3 ,4) ; A (10) = B ; % B a s s i g n t o t h e 10 ´t h m a t r i x A (20:25) = B ; % t h e m a t r i c e s 2 0 t o 2 5 a r e s e t t o B A (30:2:36) =0; % t h e m a t r i c e s 3 0 , 3 2 , 3 4 a n d 3 6 a r e s e t t o 0 A (120) =1; % n o w A i s a 1 2 0 ´b y ´3´b y ´4 a m a t . . . A (1 ,2) =0; % e l e m e n t s (1 , 2) o f a l l t h e m a t r i c e s a r e s e t t o 0 A (2:3 ,3) =1; % e l e m e n t s (2 , 3) a n d (3 , 3) o f a l l t h e m a t r i c e s a r e s e t t o 1 A (4 ,5) =1; % n o w A i s a 1 2 0 ´b y ´4´b y ´5 a m a t . . . A (5 ,1 ,2) = pi ; % e l e m e n t (1 , 2) o f t h e 5 ´t h m a t r i x i s s e t t o p i A (10:15 ,1 ,2) =1; % e l e m e n t (1 , 2) o f t h e m a t r i c e s 1 0 t o 1 5 a r e s e t t o 1 A (130 ,6 ,7) =1; % n o w A i s a 1 3 0 ´b y ´6´b y ´7 a m a t . . .

Listing 1: Assigments with amat object

The amat class is provided with the usual elementary operations:

• + , -, .* , ./ , .\ , , .^. (Arithmetic opertors)

• == , >= , > , <= , < , ~= . (Relational opertors)

• & , | , ~, xor , all , any . (Logical opertors) These are detailed in section 6. In Listing 2, some examples are provided. A = fc_amat . ones (100 ,3 ,4) ;% A : 1 0 0 ´b y ´3´b y ´4 a m a t B = fc_amat . random . randn (100 ,3 ,4) ;% B : 1 0 0 ´b y ´3´b y ´4 a m a t C = randn (3 ,4) ; D1 = -A +1; D2 = B .^2 -A /2; D3 = -2* A .* C ;

Listing 2: Element by elements operations with amat object Matricial products can also be done between amat objects or between an amat object and a matrix if their dimensions are compatible. For this operation the operator * can be used. In Listing 3, some examples are provided.

Listing 3: : matricial products with amat object A = fc_amat . ones (100 ,3 ,4) ;% 1 0 0 ´b y ´3´b y ´4 info (A) B = fc_amat . random . randn (100 ,4 ,2) ;% 1 0 0 ´b y ´4´b y ´2 info (B) C = randn (4 ,5) ; D1 = A * B ; % 1 0 0 ´b y ´3´b y ´2 info (D1) D2 = A * C ; % 1 0 0 ´b y ´3´b y ´5 info (D2)

Output

A is a 100x3x4 amat[double] object B is a 100x4x2 amat[double] object D1 is a 100x3x2 amat[double] object D2 is a 100x3x5 amat [double] object Some usual mathematical functions as cos , sin , exp , sqrt , abs , max , ... are available for amat objects. One can refered to section 7 for more details.

Other operations such as determinants computation (det method), LU factorization with partial pivot (lu method), Cholesky factorization (chol method), solving linear systems (mldivide method or \ operator) are also implemented for amat objects and described in section 8. In Listing 4, some examples using these functions are given. Thereafter in Listing 5, the benchmark function fc_amat.benchs.mldivide is used to obtain cputimes of the X=mldivide(A,b) command where A and b are respectively N ˆ3 ˆ3 and N ˆ3 ˆ4 amat objects. The provided error is computed by taking the maximum of the infinity norms of all the matrices in the error amat object E=A*X-b obtained by max(norm(E)) . Finally, in Table 1 benchmark functions fc_amat.benchs.mtimes , fc_amat.benchs.lu , fc_amat.benchs.chol and fc_amat.benchs.mldivide are respectively used to get cputimes of the X=mtimes(A,B) , [L,U,P]=lu(A) , R=chol(A) and X=mldivide (A,b) where A and B are N ˆ4 ˆ4 amat objects, and b is a N ˆ4 ˆ1 amat object. fc_amat . benchs . mldivide (LN ,'d ' ,3 ,'n ' ,4 ,' nbruns ' ,5) Output #---# computer: rhum-ubuntu18-04 # system: Ubuntu 18.04.3 LTS (x86_64) # processor: Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz #

(2 procs/6 cores by proc/2 threads by core) # RAM: 62.9 Go # software: Octave # release: 5.1.0 #- --# 1st parameter is : # -> amat [double] with (N,m,n)=(N,3,3) # containing strictly diagonally dominant matrices # 2nd parameter is : # -> amat [double] with (N,nr,nc)= (200000,3,4), size= [200000 3 4] # Error function: @(X)max(norm(A*X-B)) #--

Installation

This toolbox was tested on various OS and Octave releases: For this method, one just has to get/download the install file ofc_amat_install.m or to get it on the dedicated web page. Thereafter, one runs it under Octave. This script downloads, extracts and configures the fc-amat and the required package fc-tools in the current directory.

For example, to install this package in ~/Octave/packages directory, one has to copy the file ofc_amat_install.m in the ~/Octave/packages directory by using previous link. For example, in a Linux terminal, we can do: cd ~/ Octave / packages HTTP = http :// www . math . univ -paris13 . fr /~cuvelier / software / codes / Octave wget $HTTP / fc -amat /0.1.1/ o f c _ a m a t _ i n s t a l l . m

Then in an Octave terminal run the following commands:

>> cd ~/ Octave / packages >> o f c _ a m a t _ i n s t a l l
The optional 'dir' option can be used to specify installation directory:

ofc_amat_install('dir',dirname)
where dirname is the installation directory (string). This is the output of the ofc_amat_install command on a Linux computer: The complete package (i.e. with all the other needed packages) is stored in the directory ~/Octave/packages/fc-amat-full and, for each Octave session, one have to set the package by: For uninstalling, one just has to delete the directory ~/Octave/packages/fc-amat-full

Manual installation

• Download one of the full archives (see web page) which contains all the needed toolboxes (fc-amat, fc-tools and fc-bench).

• Extract the archive in a folder.

• Set Octave path by adding path of needed packages.

For example under Linux, to install this package in ~/Octave/packages directory, one can download fc-amat-0.1.1-full.tar.gz and extract it in the ~/Octave/packages directory: We now introduce some notations. Let A A A " pA 1 , . . . A N q P pM m,n pKqq N be a set of m-by-n matrices.We identify A A A as a N -by-m-by-n amat object and we said that the amat object A is in pM m,n pKqq N . The k-th matrix of A is A(k) and the (i,j) entry of the k-th matrix of A is A(k,i,j) .

Thereafter, we said that an amat object A P pM m,n pKqq N has a property of matrix if all its matrices have this property. For example, A is a symmetrical amat object if all its matrices are symmetrical.

Constructor and generators

We give properties of the amat class : info (Y) A = randi (10 ,[2 ,4] , ' int32 ') ;% A : 2 ´b y ´4 i n t 3 2 m a t r i x Z = amat (30 , A , ' int64 ') ;

% Z : 30 ´b y ´2´b y ´4 i n t 6 4 a m a t disp (' Print ␣ Z ␣ amat ␣ object ␣ : ') disp (Z) Output X is a 100x3x4 amat[double] object W is a 100x3x4 amat[double] object Y is a 200x2x3 amat[double] object Print Z amat object : Z is a 30x2x4 amat[int64] object Z(1)= 8 1 2 2 9 1 1 8 Z(2)= 8 1 2 2 9 1 1 8 ... Z(29)= 8 1 2 2 9 1 1 8 Z(30)= 8 1 2 2 9 1 1 8

Particular generators

There is the list of functions which generate some particular amat objects:

• fc_amat.zeros , generates an zero amat object,

• fc_amat.ones , generates an amat object of one's,

• fc_amat.eye , generates an amat object of identity matrices. is a 200x3x3 amat[int32] object matrix(1)= 1 0 0 0 1 0 0 0 1 matrix(2)= 1 0 0 0 1 0 0 0 1 ... matrix(199)= 1 0 0 0 1 0 0 0 1 matrix(200)= 1 0 0 0 1 0 0 0 1

Random generators

There is the list of functions which generate some amat objects with random elements. They all belong to the namespace fc_amat.random :

• rand , randn , randi random elements,

• randsym , randnsym , randisym random symmetric matrices,

• randsym , randnsym , randisym random Hermitian matrices,

• randdiag , randndiag , randidiag random diagonal matrices,

• randtril , randntril , randitril random lower triangular matrices,

• randtriu , randntriu , randitriu random upper triangular matrices,

• randsdd , randnsdd , randisdd random stricly diagonally dominant matrices,

• randsympd , randnsympd , randisympd random symmetric positive definite matrices,

• randherpd , randnherpd , randiherpd random Hermitian positive definite matrices.

disp (' Print ␣ Y ␣ amat ␣ object ␣ : ') Y Output X is a 100x3x3 amat[complex double] object Print Y amat object : Y = is a 100x2x2 amat[complex single] object matrix(1)= -1 + 5i -2 + 5i -2 -5i -1 + 5i matrix(2)= -4 + 5i 2 + 2i 2 -2i 4 + 4i ... matrix(99)= 0 -0i -4 + 3i -4 -3i 5 + 5i matrix(100)= 5 -2i 2 + 2i 2 -2i -5 -3i
4.3.10 fc_amat.random.randdiag function

The fc_amat.random.randdiag function return an amat object whose matrices are diagonal with non zeros elements drawn from the uniform distribution on the interval sa, br"s0, 1r. X=fc_amat.random.randdiag(...,key,value) Some optional key/value pairs arguments are available with keys:

• 'complex' , if value is true the amat object is complex and the imaginary parts of the diagonal matrices elements are also drawn from the uniform distribution on the interval sa, br. (default false i.e real amat object)

• 'class' , to set amat object data type; value could be 'single'

or 'double' (default).

• 'nc' , number of columns of the matrices (default: d)

• 'k' , offset of k diagonals above or below the main diagonal; above for positive k and below for negative k .

• 'a' , to set a (lower bound of the interval) value (0 by default).

• 'b' , to set b (upper bound of the interval) value (1 by default).

In Listing 19, some examples are provided. Some optional key/value pairs arguments are available with keys:

• 'complex' , if value is true the amat object is complex and the imaginary parts of the diagonal matrices elements are also drawn from the normal distribution having zero mean and unit standard deviation (default false i.e real amat object)

• 'class' , to set amat object data type; value could be 'single'

or 'double' (default).

• 'nc' , number of columns of the matrices (default: d)

• 'k' , offset of k diagonals above or below the main diagonal; above for positive k and below for negative k .

• 'mean' , to set mean of the normal distribution (0 by default).

• 'sigma' , to set standard deviation of the normal distribution (1 by default).

In Listing 20, some examples are provided. Total is 9 elements using 25 bytes X=fc_amat.random.randtril(...,key,value) Some optional key/value pairs arguments are available with keys:

Print Z amat object : Z is a 50x3x3 amat[single] object Z(1)= 0 -4 0 0 0 0 0 0 0 Z(2)= 0 0 0 0 0 5 0 0 0 ... Z (
• 'complex' , if value is true the amat object is complex and the imaginary parts of the lower triangular matrices elements are also drawn from the uniform distribution on the interval sa, br. (default false i.e real amat object)

• 'class' , to set amat object data type; value could be 'single'

or 'double' (default).

• 'nc' , number of columns of the matrices (default: d)

• 'k' , offset of k diagonals above or below the main diagonal; above for positive k and below for negative k .

• 'a' , to set a (lower bound of the interval) value (0 by default).

• 'b' , to set b (upper bound of the interval) value (1 by default).

In Listing 22, some examples are provided. Some optional key/value pairs arguments are available with keys:

• 'complex' , if value is true the amat object is complex and the imaginary parts of the lower triangular matrices elements are also drawn from the normal distribution having zero mean and unit standard deviation (default false i.e real amat object)

• 'class' , to set amat object data type; value could be 'single'

or 'double' (default).

• 'nc' , number of columns of the matrices (default: d)

• 'k' , offset of k diagonals above or below the main diagonal; above for positive k and below for negative k .

• 'mean' , to set mean of the normal distribution (0 by default).

• 'sigma' , to set standard deviation of the normal distribution (1 by default).

In Listing 23, some examples are provided. Some optional key/value pairs arguments are available with keys:

• 'complex' , if value is true the amat object is complex and the imaginary parts of the lower triangular matrices elements are also drawn from the normal distribution having zero mean and unit standard deviation (default false i.e real amat object)

• 'class' , to set amat object data type; value are those of the randi Matlab function. Default is 'double' .

• 'nc' , number of columns of the matrices (default: d)

• 'k' , offset of k diagonals above or below the main diagonal; above for positive k and below for negative k .

In Listing 24, some examples are provided. X=fc_amat.random.randtriu(...,key,value) Some optional key/value pairs arguments are available with keys:

• 'complex' , if value is true the amat object is complex and the imaginary parts of the upper triangular matrices elements are also drawn from the uniform distribution on the interval sa, br. (default false i.e real amat object)

• 'class' , to set amat object data type; value could be 'single'

or 'double' (default).

• 'nc' , number of columns of the matrices (default: d)

• 'k' , offset of k diagonals above or below the main diagonal; above for positive k and below for negative k .

• 'a' , to set a (lower bound of the interval) value (0 by default).

• 'b' , to set b (upper bound of the interval) value (1 by default).

In Listing 25, some examples are provided. Some optional key/value pairs arguments are available with keys:

• 'complex' , if value is true the amat object is complex and the imaginary parts of the upper triangular matrices elements are also drawn from the normal distribution having zero mean and unit standard deviation (default false i.e real amat object)

• 'class' , to set amat object data type; value could be 'single'

or 'double' (default).

• 'nc' , number of columns of the matrices (default: d)

• 'k' , offset of k diagonals above or below the main diagonal; above for positive k and below for negative k .

• 'mean' , to set mean of the normal distribution (0 by default).

• 'sigma' , to set standard deviation of the normal distribution (1 by default).

In Listing 26, some examples are provided. Total is 9 elements using 25 bytes X=fc_amat.random.randsdd(...,key,value) Some optional key/value pairs arguments are available with keys:

Print Z amat object : Z is a 50x3x3 amat[single] object Z(1)= 0 -4 -1 0 0 0 0 0 0 Z(2)= 0 -3 -1 0 0 -2 0 0 0 ... Z (
• 'complex' , if value is true the amat object is complex and the imaginary parts elements are also drawn from the uniform distribution on the interval sa, br"s0, 1r. (default false i.e real amat object)

• 'class' , to set amat object data type; value could be 'single'

or 'double' (default).

• 'a' , to set a (lower bound of the interval) value (0 by default).

• 'b' , to set b (upper bound of the interval) value (1 by default).

In Listing 28, some examples are provided. Some optional key/value pairs arguments are available with keys:

• 'complex' , if value is true the amat object is complex and the imaginary parts of the upper triangular matrices elements are also drawn from the normal distribution having zero mean and unit standard deviation (default false i.e real amat object)

• 'class' , to set amat object data type; value could be 'single'

or 'double' (default).

• 'mean' , to set mean of the normal distribution (0 by default).

• 'sigma' , to set standard deviation of the normal distribution (1 by default).

In Listing 29, some examples are provided. Some optional key/value pairs arguments are available with keys:

• 'complex' , if value is true the amat object is complex and the imaginary parts of the non-diagonal elements are also drawn from the discrete uniform distribution (default false i.e real amat object).

•

(1)= -14 -4i 1 -4i 0 + 5i 4 -3i 11 -11i -5 -3i -4 + 5i 3 + 5i 8 -19i Z(2)= 2 -12i 2 + 5i -2 -1i 0 -1i 9 + 7i -2 + 3i 2 -3i 5 + 5i -17 -5i ... Z(49)= -6 -13i 0 + 1i 2 + 5i 0 + 4i 13 -4i -1 + 4i -5 -1i -5 + 0i 10 + 12i Z(50)= -8 -13i -1 + 5i 0 + 1i -2 + 3i 2 -11i -2 + 1i 2 -2i -1 + 0i -4 -9i
Listing 31: : examples of fc_amat.random.randsympd function usage X = fc_amat . random . randsympd (100 ,3) ; % X : 1 0 0 ´b y ´3´b y ´3 a m a t Y = fc_amat . random . randsympd (200 ,3 , 'a ' , -2 , 'b ' ,2) ; % Y : 2 0 0 ´b y ´3´b y ´4 a m a t Z = fc_amat . random . randsympd (50 ,3 , 'a ' , -1 , ' class ' , ' single ') ; % Z : 50 ´b y ´3´b y ´3 s i n g l e a m a t disp (' List ␣ current ␣ variables ␣ : ') whos disp (' Print ␣ Z ␣ amat ␣ object ␣ : ') disp (Z , 'n ' ,2) Optional key/value pairs arguments are those of the fc_amat.random.randnsdd function except for 'complex' key which is forced to false . Keys can be:

Output
• 'class' , to set amat object data type; value can be 'single' or 'double' (default). • 'mean' , to set mean of the normal distribution (0 by default).

• 'sigma' , to set standard deviation of the normal distribution (1 by default).

In Listing 32, some examples are provided. The fc_amat.random.randisympd function return an amat object whose matrices are symmetric positive definite with random integers. This object is generated by using randisympd function from fc_amat.random namespace. Optional key/value pairs arguments are those of the fc_amat.random.randnsdd function except for 'complex' key which is forced to true . keys can be:

• 'class' , to set amat object data type; value can be 'single' or 'double' (default).

• 'a' , to set a (lower bound of the interval) value (0 by default).

• 'b' , to set b (upper bound of the interval) value (1 by default).

In Listing 34, some examples are provided. 587.53 + 0.00i -228.65 -116.89i -227.52 -54.24i -228.65 + 116.89i 613.41 + 0.00i -251.63 + 183.40i -227.52 + 54.24i -251.63 -183.40i 643.36 + 0.00i Z(50)= 613.569 + 0.000i 209. 766 -65.099i 73.116 -39.240i 209.766 + 65.099i 513.685 + 0.000i -58.454 + 111.764i 73.116 + 39.240i -58.454 -111.764i Optional key/value pairs arguments are those of the randisdd function except for 'complex' key which is forced to true and 'class' key which can only be 'single' or 'double' . Keys can be:

• 'class' , to set amat object data type; value can be 'single' or 'double' (default).

In Listing 36, some examples are provided.

Subscripted reference

Let A be a N-by-m-by-n amat object.

A(K,I,J)

• With K , I , J three 1D-arrays of indices, a length(K)-by-length(I)by-length(J) amat object is returned where @i P 1:length(I), @j P 1:length(J), @ k P 1:length(K) the element pi, jq of its k-th matrix is the element pI(i), J(j)qq of K(k)-th matrix of A, i.e. with B denoting the output amat object:

B(k,i,j) Ð A(k, I(i), J(j)).
If length(K)==1 , then the returned object is a length(I)-by-length(J) matrix such that B(i,j) Ð A(k, I(i), J(j)).

• (experimental) With K , I , J three M-by-p-by-q amat object a M-by-pby-q amat object is returned where @i P 1:p, @j P 1:q, @ k P 1:M the element pi, jq of its k-th matrix is the element pI(k,i,j), J(k,i,jqq of K(k,i,j)-th matrix of A, i.e. with B denoting the output amat object:

B(k,i,j) Ð A(K(k,i,j), I(k,i,j), J(k,i,j)).

The commands A(K,I,:) and A(K,I,1:end) are equivalent to A(K,I,1:n) .

The commands A(K,:,J) and A(K,:,J) are equivalent to A(K,:,1:n) .

The commands A(:,I,J) and A(1:end,I,J) are equivalent to A(1:N,I,J) .

The commands A(K,:,:) and A(K,1:end,1:end) are equivalent to A(K,1:m,1:m)

A(K)

Identically to A(K,:,:) .

A(I,J)

Identically to A(:,I,J) . In Listing 37, some examples are provided.

Listing 37: : examples of subsref method usage ,p , q) .*[1: N] '; I = fc_amat . random . randi (m ,[N ,p , q]) ; J = fc_amat . random . randi (n ,[N ,p , q]) ; sK =1:2: N ; G = X (K (sK) ,I (sK) ,J (sK Total is 57 elements using 80 bytes

N =100; m =2; n =3; X = fc_amat . random . randi (9 ,[N ,m , n]) ; A = X (1 ,2 ,2) ; % A i s a s c a l a r B = X ([2 , end -1] ,1:2 ,[1 ,3]) ; info (B) C = X (1) ; % C i s a m´b y ´n m a t r i x D = X (1:10) ; info (D) E = X (1 ,2) ; info (E) F = X (1 ,[1 ,3]) ; info (F) p =2; q =2; K = fc_amat . ones (N
)) ; info (G) H = X (I , J) ; info (H) disp (' List ␣ of ␣ some ␣ variables ␣ : ') whos A C sK Output B is a 2x2x2 amat[double] object D is a 10x2x3 amat[double] object E is a 100x1x1 amat[double] object F is a 100x1x2 amat[double] object G is a 50x2x2 amat[double]

Subscripted assignment

Let A be a N-by-m-by-n amat object.

A(K,I,J)=B

• I , J and K are scalars indices, B must be a scalar and it is assigned to element pI, Jq of the K-th matrix of A .

• I , J and K are 1D-arrays of indices. Then three cases are possible -B is a scalar, then A(k,i,j)=B, @i P I, @j P J, @k P K.

-B is a length(I) ˆlength(J) matrix, then @k P 1:length(K) the K(k)-th matrix of A is set to B , i.e. @i P 1:length(I), @j P 1:length(J), A(K(k),I(i),J(j))=B(i,j).

1. Let B B B P pM m,n pKqq N , we have

A A A â B B B def " C C C P pM m,n pKqq N (1)
where @k P v1, N w C k pi, jq " A k pi, jq â B k pi, jq, @i P v1, mw, @j P v1, nw.

Let B P M m,n pKq, we have

A A A â B def " C C C P pM m,n pKqq N (2)
where @k P v1, N w C k pi, jq " A k pi, jq â Bpi, jq, @i P v1, mw, @j P v1, nw.

3. Let B B B P K N , (i.e. a N -by-1 array) we have

A A A â B B B def " C C C P pM m,n pKqq N (3)
where @k P v1, N w C k pi, jq " A k pi, jq â B B Bpkq, @i P v1, mw, @j P v1, nw.

Let B P K, we have

A A A â B def " C C C P pM m,n pKqq N (4)
where @k P v1, N w C k pi, jq " A k pi, jq â B, @i P v1, mw, @j P v1, nw.

When A A A is the right operand element by element binary operations can be easily deduced.

In Listing 39, some examples are provided.

Relational operators

The implemented element by element relational operators/methods for amat objects are:

• == / eq , equality

• >= / ge , greater than or equal

• > / gt , greater than

• <= / le , less than or equal

• < / lt , less than

• ~= / ne , inequality [1:m], A(k,i,j) is nonzero. Otherwise, B(k,1,j) is zero (logical false).
• dim=2 , along columns of matrices of X. Returns a N-by-m-by-1 logical amat object such that B(k,i,1) is one (logical true) if

@j P [1:n], A(k,i,j) is nonzero. Otherwise, B(k,i,1) is zero (logical false).
• dim=3 , (default value) , along rows and columns of matrices of X.

Returns a N-by-1-by-1 logical amat object such that

B(k,1,1) is one (logical true) if @i P [1:m], @j P [1:n], A(k,i,j) is nonzero.
Otherwise, B(k,1,1) is zero (logical false).

• dim=0 , along matrices index of X. Returns return a m-by-n logical matrix such that B(i,j) is one (logical true) if @k P [1:N],

A(k,i,j) is nonzero. Otherwise, B(i,j) is zero (logical false).

In Listing 42, some examples are provided.

Listing 42: : examples of all function usage

X = fc_amat . random . rand (100 ,2 ,3) ; info (X) A = all (X >0) ; info (A) B = all (X >0 ,1) ; info (B) C = all (X >0 ,2) ; info (C) D = all (X >0 ,0) ; fprintf ('␣ D ␣ is ␣ \ n ␣ ') ; disp (D) E = all (all (X >0) ,0) ; fprintf ('␣ E ␣ is ␣ \ n ␣ ') ; disp (E) Output X is a 100x2x3 amat[double] object A is a 100x1x1 amat[logical] object B is a 100x1x3 amat[logical] object C is a 100x2x1 amat[logical] object D is 1 1 1 1 1 1 E is 1 6.3.2 any method
Let X be a N-by-m-by-n amat object. The any method of X return a N-by-1-by-1 logical amat object such that its k-th element (1-by-1 matrix) is true (logical 1) if any of the elements of the k-th matrix of X is nonzero.

Syntaxe

B = any (X) B = any (X , dim) Description B=any(X) return a N-by-1-by-1 logical amat object such that B(k,1,1) is one (log- ical true) if Di P [1:m], Dj P [1:n], A(k,i,j) is nonzero.
B=any(X,dim)

• dim=1 , along rows of matrices of X. Returns a N-by-1-by-n logical amat object such that B(k,1,j) is one (logical true) if Di P

[1:m], A(k,i,j) is nonzero. Otherwise, B(k,1,j) is zero (logical false).
• dim=2 , along columns of matrices of X. Returns a N-by-m-by-1 logical amat object such that B(k,i,1) is one (logical true) if

Dj P [1:n], A(k,i,j) is nonzero. Otherwise, B(k,i,1) is zero (logical false).
• dim=3 , (default value) , along rows and columns of matrices of X.

Returns a N-by-1-by-1 logical amat object such that

B(k,1,1) is one (logical true) if Di P [1:m], Dj P [1:n], A(k,i,j) is nonzero.
Otherwise, B(k,1,1) is zero (logical false).

• dim=0 , along matrices index of X. Returns return a m-by-n logical matrix such that B(i,j) is one (logical true) if Dk P [1:N],

A(k,i,j) is nonzero. Otherwise, B(i,j) is zero (logical false).

In Listing 43, some examples are provided.

Listing 43: : examples of fc_amat.random.randher function usage X = fc_amat . random . rand (100 ,2 ,3) ; info (X) A = any (X >0) ; info (A) B = any (X >0 ,1) ; info (B) C = any (X >0 ,2) ; info (C) D = any (X >0 ,0) ; fprintf ('

␣ D ␣ is ␣ \ n ␣ ') ; disp (D) E = any (any (X >0) ,0) ; fprintf ('␣ E ␣ is ␣ \ n ␣ ') ; disp (E) Output X is a 100x2x3 amat[double] object A is a 100x1x1 amat[logical] object B is a 100x1x3 amat[logical] object C is a 100x2x1 amat[logical] object D is 1 1 1 1 1 1 E is 1 63 7 Elementary mathematical functions
A lot of elementary mathematical functions can be used with amat objects. In Listing 44, some examples are provided and complete lists are given thereafter.

Listing 44: : examples of elementary mathematical functions A = fc_amat . random . randiher (10 ,100 ,3) ; info (A) ;

X = cos (A) ; info (X) ; Y = sin (A) ; info (Y) ; Z = X .^2+ Y .^2; disp (' Print ␣ Z ␣ amat ␣ object ␣ : ') Z Output A is a 100x3x3 amat[complex double] object X is a 100x3x3 amat[complex double] object Y is a 100x3x3 amat[complex double] object Print Z amat object : Z =
is a 100x3x3 amat[complex double] object matrix(1)= 1.00000 + 0.00000i 1.00000 -0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 -0.00000i 1.00000 -0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i matrix(2)= 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 -0.00000i 1.00000 -0.00000i 1.00000 + 0.00000i ... matrix(99)= 1.00000 -0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 -0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 -0.00000i matrix(100)= 1.0000 -0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i

trigonometric functions

• sin , asin , sind , asind , sinh , asinh for sine functions

• cos , acos , cosd , acosd , cosh , acosh for cosine functions

• tan , atan , tand , atand , tanh , atanh , atan2 , atan2d for tangent functions

• csc , acsc , cscd , acscd , csch , acsch for cosecant functions

• sec , asec , secd , asecd , sech , asech for secant functions

• cot , acot , cotd , acotd , coth , acoth for cotangent functions

• hypot , square root of the sum of the squares

• deg2rad , rad2deg for convert functions where Z be also a N-by-m-by-n amat object, and we have @k P 1:N, @i P 1:m, @j P 1:n,

Z(k,i,j)= alpha*X(k,i,j) + $ ' ' & ' ' % beta*Y(k,i,j) if Y is a N-by-m-by-n amat object beta*Y(i,j) if Y is a m-by-n matrix beta*Y(i,j) if Y is a scalar beta*Y(k) if Y is a N-by-1 array
In Listing 47, some examples are provided.

Listing 47: : examples of linear combinations

N =100; m =2; n =3; X = fc_amat . random . randi (9 ,[N ,m , n]) ; info (X) Y = fc_amat . random . randi (9 ,[N ,m , n]) ; info (Y) A =3* X -2* Y ; info (A) Y2 = randi (9 ,[m , n]) ; B =2* Y2 -4* X ; info (B) C =3* X -1; info (C) Y3 = randi (9 ,[N ,1]) ; D =3* Y3 -X ; info (D) Output X is a 100x2x3 amat[double] object Y is a 100x2x3 amat[double] object A is a 100x2x3 amat[double] object B is a 100x2x3 amat[double] object C is a 100x2x3 amat[double] object D is a 100x2x3 amat[double] object

Matrix product

We define (and extend) matricial products for amat objects by using operator * (i.e. mtimes method) Z= X*Y

where X and/or Y are amat objects. Explanations on programming techniques can be found in [1]. We choose to only described this operator when the left operand X is a N-by-m-by-n amat object. We can easily deduced results when X is not an amat object and Y is an amat object.

• With Y a N-by-n-by-p amat object (compatible dimensions), instruction (6) defines Z as a N-by-m-by-p amat object and is equivalent to the N matricial products

Z(k)= X(k)*Y(k) , @k P 1:N i.e. @i P 1:m, @j P 1:p, Z(k,i,j)= n ÿ r"1 X(k,i,r)*Y(k,r,j), @k P 1:N.
• With Y a n-by-p matrix (compatible dimensions), instruction (6) defines Z as a N-by-m-by-p amat object and is equivalent to the N matricial products Z(k)= X(k)*Y , @k P 1:N i.e. @i P 1:m, @j P 1:p,

Z(k,i,j)= n ÿ r"1 X(k,i,r)*Y(r,j), @k P 1:N.
• With Y a N-by-1 1D-array, instruction (6) defines Z as a N-by-m-by-n amat object and we have

Z(k)= X(k)*Y(k) , @k P 1:N i.e. @i P 1:m, @j P 1:n, Z(k,i,j)= X(k,i,j)*Y(k), @k P 1:N.
• With Y a scalar, instruction (6) defines Z as a N-by-m-by-n amat object and we have Z(k)= X(k)*Y , @k P 1:N i.e. @i P 1:m, @j P 1:n, Z(k,i,j)= X(k,i,j)*Y , @k P 1:N.

In Listing 47, some examples are provided.

Listing 48: : examples of matricial products

N =100; m =2; n =4; p =3; X = fc_amat . random . randi (9 ,[N ,m , n]) ; info (X) Y = fc_amat . random . randi (9 ,[N ,n , p]) ; info (Y) A = X * Y ; % <´m a t r i c i a l p r o d u c t s info (A) X2 = randi (9 ,[m , n]) ; B = X2 * Y ;% <´m a t r i c i a l p r o d u c t s info (B) Y2 = randi (9 ,[n , p]) ; C = X * Y2 ;% <´m a t r i c i a l p r o d u c t s info (C) T = C (1) -X (1) * Y2 ; fprintf ('T ␣ is \ n ') disp (T) Output X is a 100x2x4 amat[double] object Y is a 100x4x3 amat[double] object A is a 100x2x3 amat[double] object B is a 100x2x3 amat[double] object C is a 100x2x3 amat[double] object T is 0 0 0 0 0 0 71 8.2.

Efficiency

For benchmarking purpose the function fc_amat.benchs.mtimes can be used and is described in Section 8.2.2. This function uses the fc-bench Octave package described in [2] and performs all computational times of this section. Let X and Y be N-by-d-by-d amat objects, in Table 2 computational times in seconds of mtimes(X,Y) (X*Y matricial products) are given. In Figure 1, computational times in seconds for a given N are represented in function of very small values of d .

N

mtimes 200 000 0.550(s) 400 000

2.550(s) 600 000

3.673(s) 800 000

5.033(s) 1 000 000 6.224(s) 5 000 000 33.229(s) 10 000 000 67.099(s)

Benchmark function

The function fc_amat.benchs.mtimes measures performance of matricial products of amat objects done by mtimes(X,Y) or X*Y command. At least one of Listing 49: : Benchmarking mtimes(X,Y) with X a 3-by-4 matrix and Y a N-by-4-by-5 amat object LN =10^5*[2:2:10]; fc_amat . benchs . mtimes (LN ,' ltype ' ,' mat ' ,' ld ' ,[3 ,4] , ' rd ' ,[4 ,5]) ; --# computer: rhum-ubuntu18-04 # system: Ubuntu 18.04.3 LTS (x86_64) # processor: Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz #

Output #-
(2 procs/6 cores by proc/2 threads by core) # RAM: 62.9 Go # software: Octave # release: 5.1.0 #- --- --- ---

LU Factorization

Let

Here, operator * is the amat matricial product, i.e.

@k P 1:N, P pkq ˚Apkq " Lpkq ˚U pkq.

Explanations on programming techniques can be found in [1]. 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 5.5511e-17i 0.0000e+00 + 0.0000e+00i -2.7756e-17 -3.2960e-17i -5.5511e-17 + 0.0000e+00i

Column 3: 0.0000e+00 + 0.0000e+00i 0.0000e+00 -5.5511e-17i 0.0000e+00 + 0.0000e+00i E(2)= Columns 1 and 2: 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i -1.1102e-16 -1.1102e-16i 0.0000e+00 + 0.0000e+00i 2.7756e-17 + 0.0000e+00i

Column 3: 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i 0.0000e+00 -2.7756e-17i ... E(99)= Columns 1 and 2: 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i -2.2204e-16 + 0.0000e+00i 0.0000e+00 + 2.7756e-17i

Column 3: 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i E(100)= Columns 1 and 2: 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i 2.2204e-16 + 0.0000e+00i -5.5511e-17 + 0.0000e+00i -2.1164e-16 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i

Column 3: 0.0000e+00 + 0.0000e+00i 0.0000e+00 -5.5511e-17i 0.0000e+00 -1.1102e-16i

Efficiency

For benchmarking purpose the function fc_amat.benchs.lu can be used and is described in Section 8.3.2. This function uses the fc-bench Octave package described in [2] and performs all computational times of this section.

Let A be a N-by-d-by-d amat object, in Table 3 computational times in seconds of [L,U,P]=lu(A) are given.In Figure 2 • 'class' , to set classname of the input amat object. Value can be 'double' (default) or 'single' .

• 'complex' , if true the input amat object is complex (default value is false).

In Listings 52 and 53 two examples with outputs are provided. --# input parameter is : # -> amat[double] with (N,nr,nc)= (200000,4,4), size=[200000 4 4] #- --- Listing 53: : Benchmarking [L,U,P]=lu(A) where A is N-by-3-by-3 amat object with complex single values.

LN =10^5*[2:2:10]; fc_amat . benchs . lu (LN ,'d ' ,3 ,' complex ' ,true ,' class ' ,' single ' ,... ' info ' ,false) ; ---

Output #--- # input

Cholesky Factorization

The Here, operator * is the amat matricial product, i.e.

@k P 1:N, A(k)=B(k)'*B(k) .
B=chol(A,type)

• If type is 'upper' , then the command is equivalent to B=chol(A) .

• If type is 'lower' , then B is a N-by-d-by-d lower triangular amat object with strictly positive diagonal entries such that

A=B*B' (10)
Here, operator * is the amat matricial product, i.e.

@k P 1:N, A(k)=B(k)*B(k)' .

In Listing 54, some examples are provided. E(1)= 0 + 0i 0 + 0i 0 + 0i 0 + 0i 0 + 0i 0 + 0i 0 + 0i 0 + 0i 0 + 0i E(2)= 0.00000 + 0.00000i 0.00000 + 0.00000i 0.00000 + 0.00000i 0.00000 + 0.00000i 0.00000 + 0.00000i 0.00000 + 0.00000i 0.00000 + 0.00000i 0.00000 + 0.00000i 0.00000 + 0.00000i ... E(99)= Columns 1 and 2:

-1.7764e-15 + 0.0000e+00i 0.0000e+00 -2.2204e-16i 0.0000e+00 + 2.2204e-16i 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i 4.4409e-16 + 0.0000e+00i

Column 3: 0.0000e+00 + 0.0000e+00i 4.4409e-16 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i E(100)= Columns 1 and 2:

1.7764e-15 + 0.0000e+00i -8.8818e-16 + 0.0000e+00i -8.8818e-16 + 0.0000e+00i -3.5527e-15 + 0.0000e+00i 0.0000e+00 + 0.0000e+00i 0.0000e+00 + 8.8818e-16i

Column 3: 0.0000e+00 + 0.0000e+00i 0.0000e+00 -8.8818e-16i 0.0000e+00 + 0.0000e+00i

Efficiency

For benchmarking purpose the function fc_amat.benchs.chol can be used and is described in Section 8.4.2. This function uses the fc-bench Octave package described in [2] and performs all computational times of this section.

Let A be a N-by-d-by-d symmetric (or hermitian) positive definite amat object, in Table 4 computational times in seconds of B=chol(A) are given.In Figure 3 • 'class' , to set classname of the input amat object. Value can be 'double' (default) or 'single' .

• 'complex' , if true the input amat object is Hermitian positive definite (default value is false).

In Listings 55 and 56 two examples with outputs are provided.

Listing 55: : Benchmarking B=chol(A) with A a N-by-4-by-4 matrix amat object LN =10^5*[2:2:10]; fc_amat . benchs . chol (LN ,'d ' ,4 ,' kind ' ,' lower ') ; --- --# Benchmarking command: @(A) chol(A,'lower'); #- --- Output #---# Hermitian Positive Definite matrices # -> amat[complex single] with (N,m,n)=(N,3,3) # Error function: @(X)max(norm(X'*X-A))+all(!istriu(X),0) #---# Benchmarking command: @(A) chol(A,'upper');

Output #---
- # Symmetric Positive Definite matrices # -> amat[double] with (N,m,n)=(N,4,4) # Error function: @(X)max(norm(X*X'-A))+all(!istril(X),0) #-
#--

Determinants

The det(A) command returns determinants of the matrices of the square amat object. Explanations on programming techniques can be found in D=det(A,'select',value)

when value is

• 'lu' , uses LU factorizations.

• 'laplace' , uses vectorized Laplace expansion.

• 'auto' (default), uses vectorized Laplace expansion for d<=5 and LU factorization otherwise.

In Listing 57, some examples are provided.

Efficiency

For benchmarking purpose the function fc_amat.benchs.det can be used and is described in Section 8.5.2. This function uses the fc-bench Octave package described in [2] and performs all computational times of this section.

Let A be a N-by-d-by-d amat object, in • 'select' , to set the 'select' option of the 'det' function:

value can be 'lu' (default), 'laplace' or 'auto' .

• 'class' , to set classname of the input amat object. Value can be 'double' (default) or 'single' .

• 'complex' , if true the input amat object is complex (default value is false).

In Listings 58 and 59 two examples with outputs are provided. --# input parameter for N=200000 is : # -> amat[double] with (N,nr,nc)= (200000,4,4), size=[200000 4 4] #- --# Benchmarking command: @(A) det(A,'select','lu'); #- --- Listing 59: : Benchmarking B=det(A) where A is N-by-3-by-3 amat object with complex single vadetes.

LN =10^5*[2:2:10]; fc_amat . benchs . det (LN ,'d ' ,3 ,' complex ' ,true ,' class ' ,' single ' ,... ' info ' ,false) ; --# Benchmarking command: @(A) det(A,'select','lu'); #- ---

Output #--- # input parameter for N=200000 is : # -> amat[complex single] with (N,nr,nc)=(200000,3,3), size=[200000 3 3] #-

Solving particular linear systems

There are three functions to solve linear systems A*X=B where A is a particular (regular) amat object.

• X=solvetriu(A,B) , if A is an upper triangular amat object.

• X=solvetril(A,B) , if A is a lower triangular amat object.

• X=solvediag(A,B) , if A is a diagonal amat object.

Explanations on programming techniques can be found in Optional key/value pairs arguments are available and can modify inputs of the solvetriu function. key can be one of the following strings

• 'd' , to set d (default value is 2)

• 'n' , to set n (default value is 1)

• 'rhstype' , to set the kind of B : 'amat' (default) for amat object and 'mat' for matrix

• 'class' , to set classname of the two inputs. Value can be 'double' (default) or 'single' .

• 'complex' , if true the inputs are complex (default value is false).

• 'a' , to set the lower bound of the interval of the uniform distribution used to generate input data (default value is 0.5).

• 'b' , to set b the upper bound of the interval of the uniform distribution used to generate input data (default value is 2).

In Listings 61 and 62 two examples with outputs are provided.

Listing 61: : Benchmarking X=solvetriu(A,B)) with A a N-by-4-by-4 matrix amat object and B a N-by-4-by-5 matrix amat object.

LN =10^5*[2:2:10]; fc_amat . benchs . solvetriu (LN ,'d ' ,4 ,'n ' ,5 ,' rhstype ' ,' mat ') ;

Output #---# computer: rhum-ubuntu18-04 # system: Ubuntu 18.04.3 LTS (x86_64) # processor: Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz #

(2 procs/6 cores by proc/2 threads by core) # RAM: 62.9 Go # software: Octave # release: 5.1.0 #---# 1st parameter is : # -> amat[double] with (N,m,n)=(N,4,4) # containing upper triangular matrices # 2nd parameter is : # -> matrix[double] with (m,n)=(4,5), size=[4 5] # Error function: @(X)max(norm(A*X-B)) #---# Benchmarking command: @(A,B) solvetriu(A,B); #---#date:2020/01/02 , 'd ' ,3 , ' complex ' , true , ' class ' , ' single ' , ... ' info ' , false) ;

Output #---# 1st parameter is : # -> amat[complex single] with (N,m,n)=(N,3,3) # containing upper triangular matrices # 2nd parameter is : # -> amat[complex single] with (N,nr,nc)=(200000,3,1), size= [200000 3 1] # Error function: @(X)max(norm(A*X-B)) #---# Benchmarking command: @(A,B) solvetriu(A,B); #--- Optional key/value pairs arguments are available and can modify inputs of the mldivide function. key can be one of the following strings

• 'd' , to set d (default value is 2)

• 'n' , to set n (default value is 1)

• 'rhstype' , to set the kind of B : 'amat' (default) for amat object and 'mat' for matrix

• 'class' , to set classname of the two inputs. Value can be 'double' (default) or 'single' .

• 'complex' , if true the inputs are complex (default value is false).

• 'a' , to set the lower bound of the interval of the uniform distribution used to generate input datas (default value is 0.5).

• 'b' , to set b the upper bound of the interval of the uniform distribution used to generate input datas (default value is 2).

In Listings 64 and 65 two examples with outputs are provided.

Listing 64: : Benchmarking X=mldivide(A,B) with A a N-by-4-by-4 matrix amat object and B a N-by-4-by-5 matrix amat object.

LN =10^5*[2:2:10]; fc_amat . benchs . mldivide (LN ,'d ' ,4 ,'n ' ,5 ,' rhstype ' ,' mat ') ;

Output #---# computer: rhum-ubuntu18-04 # system: Ubuntu 18.04.3 LTS (x86_64) # processor: Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz #

(2 procs/6 cores by proc/2 threads by core) # RAM: 62.9 Go # software: Octave # release: 5.1.0 #---# 1st parameter is : # -> amat[double] with (N,m,n)=(N,4,4) # containing strictly diagonally dominant matrices # 2nd parameter is : # -> matrix[double] with (m,n)=(4,5), size=[4 5] # Error function: @(X)max(norm(A*X-B)) #---#date:2020/01/02

94

Listing 65: : Benchmarking X=mldivide(A,B) where A is N-by-3-by-3 amat object and B is N-by-3-by-1 amat object with both complex single values.

LN =10^5*[2:2:10]; fc_amat . benchs . mldivide (LN ,'d ' ,3 ,' complex ' ,true ,' class ' ,' single ' ,... ' info ' ,false) ;

Output #---# 1st parameter is : # -> amat[complex single] with (N,m,n)=(N,3,3) # containing strictly diagonally dominant matrices # 2nd parameter is : # -> amat[complex single] with (N,nr,nc)=(200000,3,1), size= [200000 3 1] # Error function: @(X)max(norm(A*X-B)) #---#date:2020/01/02 8 References

[1] François Cuvelier. Efficient algorithms to perform linear algebra operations on 3d arrays in vector languages. Technical report, LAGA -Institut Galilée -Paris 13 University, 2018.

[2] Francois Cuvelier. fc-bench: Octave package for benckmarking. http://www.math.univ-paris13.fr/~cuvelier/software/Octave/ fc-bench.html, 2018.

 d ˆd: amat(N,m,n) constructor with all matrices to zeros fc_amat.zeros(N,m,n) same as amat(N,m,n) fc_amat.ones(N,m,n) matrices of 1 fc_amat.eye(N,d) identity matrices fc_amat.random.randn(N,m,n) normally distributed random elements fc_amat.random.randnsym(N,d) randomized symmetric matrices fc_amat.random.randnher(N,d) randomized hermitian matrices fc_amat.random.randntril(N,d) randomized lower triangular matrices fc_amat.random.randntriu(N,d) randomized upper triangular matrices ... The complete list of constructor and generating functions is given in section 4.

 Listing 4: : Linear algebra with amat object % G e n e r a t e 1 0 0 ´b y ´4´b y ´4 a m a t o b j e c t s y m m e t r i c p o s i t i v e d e f i n i t e ... m a t r i c e s : A = fc_amat . random . randnsympd (100 ,4) ; % d e t e r m i n a n t s c o m p u t a t i o n : D = det (A) ; % D : 1 0 0 ´b y ´1´b y ´1 a m a t o b j e c t , d e t (A (k)) =D (k) , f o r a l l k % LU f a c t o r i z a t i o n s : [L ,U , P]= lu (A) ; E1 = abs (L *U -P * A) ; fprintf (' max ␣ of ␣ E1 ␣ elements : ␣ %.6 e \ n ' , max (E1 (:))) % C h o l e s k y f a c t o r i z a t i o n s : R = chol (A) ; E2 = abs (R '* R -A) ; fprintf (' max ␣ of ␣ E2 ␣ elements : ␣ %.6 e \ n ' , max (E2 (:))) % S o l v i n g l i n e a r s y s t e m s : b = ones (4 ,1) ; % RHS X = A \ b ; % X : 1 0 0 ´b y ´4´b y ´1 , X (k) =A (k) \ b , f o r a l l k E3 = abs (A *X -b) ; fprintf (' max ␣ of ␣ E3 ␣ elements : ␣ %.6 e \ n ' , max (E3 (:))) B = fc_amat . random . randn (100 ,4 ,1) ; % RHS Y = A \ B ; % Y : 1 0 0 ´b y ´4´b y ´1 , Y (k) =A (k) \ B (k) , f o r a l l k E4 = abs (A *Y -B) ; fprintf (' max ␣ of ␣ E4 ␣ elements : ␣ %.6 e \ n ' , max (E4 (:))) whos Output max of E1 elements: 3.552714e-15 max of E2 elements: 7.105427e-15 max of E3 elements: 7.105427e-15 max of E4 elements: 1.199041e-14 Variables in the current scope: times of the X=mldivide(A,b) command where A and b are respectively N ˆ3 ˆ3 and N ˆ3 ˆ4 amat objects by using the benchmark function fc_amat.benchs.mldivide LN =10^5*[2:2:10];

 Parts of the <fc -amat > Octave package . Copyright (C) 2018 -2019 F . Cuvelier 1 -Downloading and extracting the packages 2 -Setting the <fc -amat > package Write in ~/ Octave / packages / fc -amat -full / fc_amat -0.1.1/ configure_loc . m ..instructions To use the <fc -amat > package : addpath ('~/ Octave / packages / fc -amat -full / fc_amat -0.1.1 ') fc_amat . init () See ~/ Octave / packages / ofc_amat_set . m

 >> addpath (' ~/ Octave / packages / fc -amat -full / fc -amat -0.1.1 ') >> fc_amat . init () If it's the first time the fc_amat.init() function is used, then its output is Try to use default parameters ! Use fc_tools . configure to configure . Write in ... / home / cuvelier / tmp / fc -amat -full / fc_tools -0.0.29/ configure_loc . m ... Try to use default parameters ! Use fc_bench . configure to configure . Write in ... / home / cuvelier / tmp / fc -amat -full / fc_bench -0.1.1/ configure_loc . m ... Using fc_amat [0.1.1] with fc_tools [0.0.29] , fc_bench [0.1.1]. Otherwise, the output of the fc_amat.init() function is Using fc_amat [0.1.1] with fc_tools [0.0.29] , fc_bench [0.1.1].

''

 HTTP = http :// www . math . univ -paris13 . fr /~cuvelier / software / codes / Octave wget $HTTP / fc -amat /0.1.1/ fc -amat -0.1.1 -full . tar . gz tar zxf fc -amat -0.1.1 -full . tar . gz -C ~/ Octave / packages For each Octave session, one has to set the package by adding path of all packages: >> warning (' off ' , ' Octave : shadowed -function ') ; more off >> addpath ('~/ Octave / packages / fc -amat -0.1.1/ fc_amat -0.1.1 ') >> addpath ('~/ Octave / packages / fc -amat -0.1.1/ fc_tools -0.0.29 ') >> addpath ('~/ Octave / packages / fc -amat -0.1.1/ fc_bench -0.1.1 ') 3 Notations Some typographic conventions are used in the following: ' Z, N, R, C are respectively the set of integers, positive integers, reals and complex numbers. K is either R or C. ' All vectors or 1D-arrays are represented in bold: v v v P R n or X X X a 1Darray.The first alphabetic characters are aAbBcC aAbBcC aAbBcC All matrices or 2D-arrays are represented with the blackboard font as: M P M m,n pKq or b a m-by-n 2D-array. The first alphabetic characters are aAbBcC All arrays of matrices or 3D-arrays or amat objects are represented with the bold blackboard font as: M M M P pM m,n pKqq N or b b b a N -by-m-by-n 3Darray. The first alphabetic characters are aAbBcC aAbBcC aAbBcC

 matrices (nr-by-nc) values : N-by-nr-by-nc array which contains all the matrices Properties of amat class n,m) returns a N-by-n-by-m amat object where all its elements are set to 0. X=amat(T) when T is a N-by-n-by-m array, returns the N-by-n-by-m amat object set to T . When T is a N-by-n-by-m amat object, returns a N-by-n-by-m zero amat object. X=amat(N,A) with A a n-by-m matrix, return the N-by-n-by-m amat object where all its matrices are set to the matrix A . X=amat(...,classname) returns an amat object with values of class classname . In Listing 6, some examples are provided. ´b y ´2´b y ´3 a r r a y Y = amat (T) ; % Y : 2 0 0 ´b y ´2´b y ´3 a m a t

 . zeros (N ,m , n) X = fc_amat . zeros ([N ,m , n]) X = fc_amat . zeros ([N , d]) X = fc_amat . zeros (... , classname) Description X=fc_amat.zeros(N,m,n) return an N-by-m-by-n zero amat object. X=fc_amat.zeros([N,m,n]) same as X=fc_amat.zeros(N,m,n) X=fc_amat.zeros(N,d) same as X=fc_amat.zeros(N,d,d) X=fc_amat.zeros(...,classname) returns an amat object with values of class classname In Listing 7, some examples are provided. Listing 7: : examples of fc_amat.zeros function usage X = fc_amat . zeros (100 ,2 ,4) ; % X : 1 0 0 ´b y ´2´b y ´4 a m a t Y = fc_amat . zeros (200 ,3) ; % Y : 1 0 0 ´b y ´3´b y ´3 a m a t Z = fc_amat . zeros ([50 ,2 ,3] , ' single ') ; % Y : 1 0 0 ´b y ´2´b y ´3 s i n g l e a m a t disp (' List ␣ current ␣ variables ␣ : . ones (N ,m , n) X = fc_amat . ones ([N ,m , n]) X = fc_amat . ones (N , d) X = fc_amat . ones (... , classname) Description X=fc_amat.ones(N,m,n) return a N-by-m-by-n amat object of ones. X=fc_amat.ones([N,m,n]) same as X=fc_amat.ones(N,m,n) X=fc_amat.ones(N,d) same as X=fc_amat.ones(N,d,d) X=fc_amat.ones(...,classname) returns an amat object with values of class classname In Listing 7, some examples are provided.

SyntaxeX

 = fc_amat . random . randiher (Imax ,N , d) X = fc_amat . random . randiher ([Imin , Imax] ,...) X = fc_amat . random . randiher (... , ' class ' , classname) Description X=fc_amat.random.randiher(Imax,N,d) returns a N-by-d-by-d amat object whose matrices are Hermitian where real and imaginay part values are respectively drawn from the discrete uniform distribution on 1:Imax and the discrete uniform distribution on 1:Imax times a random sign. X=fc_amat.random.randiher([Imin,Imax], ...) pseudorandom integer values are drawn from the discrete uniform distribution on Imin:Imax X=fc_amat.random.randiher(...,'class',classname) returns an amat object with values of class classname . Accepted classname strings are those of the randi Matlab function. Default is 'double' . In Listing 18, some examples are provided. Listing 18: : examples of fc_amat.random.randiher function usage X = fc_amat . random . randiher (10 ,100 ,3) ; % X : 1 0 0 ´b y ´3´b y ´3 a m a t info (X) Y = fc_amat . random . randiher ([-5 ,5] ,100 ,2 , ' class ' , ' single ') ; % Y : 50 ´b y ´2´b y ´2 s i n g l e a m a t

SyntaxeX

 = fc_amat . random . randdiag (N , d) X = fc_amat . random . randdiag (... , key , value) Description X=fc_amat.random.randdiag(N,d) returns a N-by-d-by-d amat object whose matrices are diagonal with non zeros elements drawn from the uniform distribution on the interval sa, br" s0, 1r.

 13 fc_amat.random.randtril function The fc_amat.random.randtril function return an amat object whose matrices are lower triangular with non zeros elements drawn from the uniform distribution on the interval sa, br"s0, 1r. Syntaxe X = fc_amat . random . randtril (N , d) X = fc_amat . random . randtril (... , key , value) Description X=fc_amat.random.randtril(N,d) returns a N-by-d-by-d amat object whose matrices are lower triangular with non zeros elements drawn from the uniform distribution on the interval sa, br"s0, 1r.

 Listing 24: : examples of fc_amat.random.randitril function usage X = fc_amat . random . randitril (10 ,100 ,3) ; % X : 1 0 0 ´b y ´3´b y ´3 a m a t Y = fc_amat . random . randitril(8 ,200 ,3 , ' nc ' ,4 , ' complex ' , true) ; % Y : 2 0 0 ´b y ´3´b y ´4 a m a t Z = fc_amat . random . randitril ([-5 ,5] ,50 ,3 , ' class ' , ' single ' , 'k ' ,1) ; % Z : 50 ´b y ´2´b y ´2 s i n g l e a m a t disp (' List ␣ current ␣ variables ␣ : ') whos disp (' Print ␣ Z ␣ amat ␣ object ␣ : 16 fc_amat.random.randtriu function The fc_amat.random.randtriu function return an amat object whose matrices are upper triangular with non zeros elements drawn from the uniform distribution on the interval sa, br"s0, 1r. Syntaxe X = fc_amat . random . randtriu (N , d) X = fc_amat . random . randtriu (... , key , value) Description X=fc_amat.random.randtriu(N,d) returns a N-by-d-by-d amat object whose matrices are diagonal with non zeros elements drawn from the uniform distribution on the interval sa, br" s0, 1r.

 19 fc_amat.random.randsdd function The fc_amat.random.randsdd function return an amat object whose matrices are strictly diagonally dominant with non-diagonal elements drawn from the uniform distribution on the interval sa, br"s0, 1r. Syntaxe X = fc_amat . random . randsdd (N , d) X = fc_amat . random . randsdd (... , key , value) Description X=fc_amat.random.randsdd(N,d) returns a N-by-d-by-d amat object whose matrices are strictly diagonally dominant with non-diagonal elements drawn from the uniform distribution on the interval sa, br"s0, 1r.

 Listing 33: : examples of fc_amat.random.randisympd function usage X = fc_amat . random . randisympd (10 ,100 ,3) ; % X : 1 0 0 ´b y ´3´b y ´3 a m a t Y = fc_amat . random . randisympd(8 ,200 ,3 , ' class ' , ' single ') ; % Y : 2 0 0 ´b y ´3´b y ´4 a m a t Z = fc_amat . random . randisympd([-5 ,5] ,50 ,3 , ' class ' , ' single ') ; % Z : 50 ´b y ´2´b y ´2 s i n g l e a m a t disp (' List ␣ current ␣ variables ␣ : ') whos disp (' Print ␣ Z ␣ amat ␣ object ␣ : ') disp(Z , 'n ' ,2)

 505.958 + 0.000i 4.3.27 fc_amat.random.randiherpd function The fc_amat.random.randiherpd function return an amat object whose matrices are Hermitian positive definite with random integers. This object is generated by using randiherpd function from fc_amat.random namespace. Syntaxe X = fc_amat . random . randiherpd (Imax ,N , d) X = fc_amat . random . randiherpd ([Imin , Imax] ,...) X = fc_amat . random . randiherpd (... , key , value) Description X=fc_amat.random.randiherpd(Imax,N,d) returns a N-by-d-by-d amat object whose matrices are strictly diagonally dominant and non-diagonal elements are pseudorandom integer drawn from the discrete uniform distribution on 1:Imax . X=fc_amat.random.randiherpd([Imin,Imax],N,d) returns a N-by-d-by-d amat object whose matrices are strictly diagonally dominant and non-diagonal elements are pseudorandom integer drawn from the discrete uniform distribution on Imin:Imax .X=fc_amat.random.randiherpd(...,key,value)

 Listing 36: : examples of fc_amat.random.randiherpd function usage X = fc_amat . random . randiherpd (10 ,100 ,3) ; % X : 1 0 0 ´b y ´3´b y ´3 a m a t Y = fc_amat . random . randiherpd (8 ,200 ,3 , ' class ' , ' single ') ; % Y : 2 0 0 ´b y ´3´b y ´4 a m a t Z = fc_amat . random . randiherpd ([-5 ,5] ,50 ,3 , ' class ' , ' single ') ; % Z : 50 ´b y ´2´b y ´2 s i n g l e a m a t disp (' List ␣ current ␣ variables ␣ : ') whos disp (' Print ␣ Z ␣ amat ␣ object ␣ :

Table 2 :

 2 Computational times in seconds of mtimes(X,Y) (X*Y matrix product) where X and Y are N-by-d-by-d amat objects.

Figure 1 :

 1 Figure 1: Computational times in seconds of mtimes(X,Y) or X*Y (matrix product) where X and Y are N-by-d-by-d amat objects.

 -# 1st parameter is : # -> matrix[double] with (m,n)=(3,4), size=[3 4] # 2nd parameter is : # -> amat[double] with (N,nr,nc)=(200000,4,5), size=[200000 4 5] #-

 Output#---# 1st parameter is : # -> amat[complex single] with (N,nr,nc)=(200000,4,4), size=[200000 4 4] # 2nd parameter is : # -> amat[complex single] with (N,nr,nc)=(200000,4,4), size=[200000 4 4] #-

 A be a N-by-m-by-m amat object. The [L,U,P]=lu(A) command returns three N-by-m-by-m amat objects where L , U and P are respectively a unit lower triangular amat , an upper triangular amat and a permutation amat such that P*A=L*U or A=P'*L*U .

 , computational times in seconds for a given N are represented in function of very small values of d . 231(s) 2.289(s) 10.081(s) 29.568(s) 72.387(s) 800 000 0.313(s) 3.016(s) 13.682(s) 41.049(s) 98.218(s) 1 000 000 0.354(s) 4.036(s) 17.833(s) 52.070(s) 120.526(s) Table 3: Computational times in seconds of [L,U,P]=lu(A) where A is a N-by-d-by-d amat object.

Figure 2 :

 2 Figure 2: Computational times in seconds of of [L,U,P]=lu(A) where A is a N-by-d-by-d amat object.

 Listing 52: : Benchmarking [L,U,P]=lu(A) with A a N-by-4-by-4 matrix amat object LN =10^5*[2:2:10]; fc_amat . benchs . lu (LN , 'd ' ,4) ; Output #--

 parameter is : # -> amat[complex single] with (N,nr,nc)=(200000,3,3), size=[200000 3 3] #-

 chol(A) command returns the positive Cholesky factorization of symmetric (or hermitian) positive definite amat object A as a upper triangular amat object with strictly positive diagonal entries. Explanations on programming techniques can be found in [1]. Syntaxe Let A be a N-by-d-by-d symmetric (or hermitian) positive definite amat object. Cholesky factorization of A as a N-by-d-by-d upper triangular amat object B with strictly positive diagonal entries such that A=B'*B (9)

Figure 3 :

 3 Figure 3: Computational times in seconds of of B=chol(A) where A is a N-by-d-by-d symmetric positive definite amat object.

 [1].Syntaxe Let A be a N-by-d-by-d amat object. the matrices of A as a N-by-1-by-1 amat object D such that @k P 1:N, D(k)=det(A(k)) .

Figure 4 :

 4 Figure 4: Computational times in seconds of of B=det(A) where A is a N-byd-by-d amat object.

 Listing 58: : Benchmarking D=det(A) with A a N-by-4-by-4 matrix amat object LN =10^5*[2:2:10]; fc_amat . benchs . det (LN , 'd ' ,4 , ' select ' , ' lu ') ; Output #--

 [1]. We only describe the solvetriu function because the two others are used similarly.The X=solvetriu(A,B) command returns solutions of the linear systems A*X=B where A is a regular upper triangular amat object. If A is not upper triangular, then X is solution of triu(A)*X=B .DescriptionX=solvetriu(A,B)The input A supposes to be a N-by-d-by-d regular upper triangular amat object and B is either a N-by-d-by-n amat object or a d-by-n matrix. Then, the ouput X is the N-by-d-by-n amat object such that@k P 1:N, A(k)*X(k)= " B(k) if B is an amat object B if B is a matrix .In Listing 60, some examples are provided.

Figure 5 :

 5 Figure 5: Computational times in seconds of of X=solvetriu(A,B) where A is a N-by-d-by-d amat object and B is a N-by-d-by-1 amat object.

The

 X=mldivide(A,B) or X=A\B commands return solutions of the linear systems A*X=B where A is a regular amat object. Explanations on programming techniques can be found in[1].DescriptionX=mldivide(A,B) or X=A\BThe input A supposes to be a N-by-d-by-d regular amat object and B is either a N-by-d-by-n amat object or a d-by-n matrix. Then, the ouput X is the N-by-d-by-n amat object such that@k P 1:N, A(k)*X(k)= " B(k) if B is an amat object B if B is a matrix .In Listing 63, some examples are provided.

Figure 6 :

 6 Figure 6: Computational times in seconds of of X=mldivide(A,B) where A is a N-by-d-by-d amat object and B is a N-by-d-by-1 amat object.

Table 1 :

 1

	-

Computational times in seconds of mtimes(A,B) (i.e. A*B), lu(A) , chol(A) and mldivide(A,b) (i.e. A\b) with A and B N ˆ4 ˆ4 amat objects and b n N ˆ4 ˆ1 amat object.

 returns an amat object with values of class classname . Accepted classname strings are those of the randi Matlab function. Default is 'double' . Y = fc_amat . random . randnsym (50 ,2 , ' class ' , ' single ') ; % Y : 50 ´b y ´2´b y ´2 ...

	Listing 10: : examples of fc_amat.random.rand function usage X = fc_amat . random . rand (100 ,2 ,4) ; % X : 1 0 0 ´b y ´2´b y ´4 a m a t X = fc_amat . random . randi (10 ,100 ,2 ,4) ; % X : 1 0 0 ´b y ´2´b y ´4 a m a t X=fc_amat.random.randn(N,d) X = fc_amat . random . randi (... , classname) Listing 12: : examples of fc_amat.random.randi function usage In Listing 13, some examples are provided.
	Y = fc_amat . random . rand (200 ,3) ; Z = fc_amat . random . rand ([50 ,2 ,3] , ' single ') ; a m a t disp (' List ␣ current ␣ variables ␣ : ') whos disp (' Print ␣ Z ␣ amat ␣ object ␣ : ') Z Output Y = fc_amat . random . randi (15 ,200 ,3) ; Listing 13: : examples of fc_amat.random.randsym function usage % Y : 2 0 0 ´b y ´3´b y ´3 a m a t % Y : 50 ´b y ´2´b y ´3 s i n g l e ... % Y : 2 0 0 ´b y ´3´b y ´3 a m a t same as X=fc_amat.random.randn(N,d,d) Description Z = fc_amat . random . randi ([-5 ,5] ,[50 ,2 ,3] , ' int32 ') ; % Z : 50 ´b y ´2´b y ´3 ... i n t 3 2 a m a t disp (' List ␣ current ␣ variables : ') X = fc_amat . random . randsym (100 ,3) ; % X : 1 0 0 ´b y ´3´b y ´3 a m a t % X : 1 0 0 ´b y ´3´b y ´3 ... Y = fc_amat . random . randsym (50 ,2 , ' class ' , ' single ') ; % Y : 50 ´b y ´2´b y ´2 ... a m a t s i n g l e a m a t X=fc_amat.random.randn(...,classname) returns an amat object with values of class classname . classname could be 'single' or 'double' (default). X=fc_amat.random.randi(Imax,N,m,n) returns a N-by-m-by-n amat object containing pseudorandom integer val-whos disp (' Print ␣ Z ␣ amat ␣ object : ') Z disp (' List ␣ current ␣ variables ␣ : ') s i n g l e a m a t whos disp (' List ␣ current ␣ variables ␣ : ') disp (' Print ␣ Y ␣ amat ␣ object ␣ : ') whos Y disp (' Print ␣ Y ␣ amat ␣ object ␣ : ') ues drawn from the discrete uniform distribution on 1:Imax . Output Y
	List current variables : In Listing 10, some examples are provided. List current variables: Output
	4.3.1 fc_amat.random.rand function The fc_amat.random.rand function return an amat object with random ele-Variables in the current scope: Attr Name Size Bytes Class ==== ==== ==== ===== ===== SaveOptions 1x6 25 cell X 1x1 0 amat Y 1x1 0 amat Z 1x1 0 amat Listing 11: : examples of fc_amat.random.randn function usage X = fc_amat . random . randn (100 ,2 ,4) ; Variables in the current scope: List current variables : Output X=fc_amat.random.randi(Imax,[N,m,n]) Attr Name Size Variables in the current scope: List current variables : Bytes Class % X : 1 0 0 ´b y ´2´b y ´4 a m a t Y = fc_amat . random . randn (200 ,3) ; % Y : 2 0 0 ´b y ´3´b y ´3 a m a t Z = fc_amat . random . randn ([50 ,2 ,3] , ' single ') ; % Y : 50 ´b y ´2´b y ´3 s i n g l e ... a m a t disp (' List ␣ current ␣ variables ␣ : ') whos ==== ==== ==== ===== ===== Attr Name Size Bytes Class Variables in the current scope: same as X=fc_amat.random.randi(Imax,N,m,n) X=fc_amat.random.randi(Imax,N,d) SaveOptions 1x6 25 cell X 1x1 0 amat Y 1x1 0 amat Z 1x1 0 amat ==== ==== ==== ===== ===== SaveOptions 1x6 Attr Name Size Bytes Class 25 cell X 1x1 ==== ==== ==== ===== ===== 0 amat Y 1x1 SaveOptions 1x6 25 cell 0 amat X 1x1 0 amat
	ments uniformly distributed on the interval s0, 1r. Total is 9 elements using 25 bytes Print Z amat object : disp (' Print ␣ Z ␣ amat ␣ object ␣ : ') Total is 9 elements using 25 bytes Total is 8 elements using 25 bytes Y 1x1 0 amat same as X=fc_amat.random.randi(Imax,N,d,d) Z Print Z amat object: Print Y amat object : Total is 8 elements using 25 bytes
	Syntaxe X = fc_amat . random . rand (N ,m , n) X = fc_amat . random . rand ([N ,m , n]) X = fc_amat . random . rand (N , d) X = fc_amat . random . rand (... , classname) Description X=fc_amat.random.rand(N,m,n) return a N-by-m-by-n amat object with random elements uniformly distributed on the interval s0, 1r. X=fc_amat.random.rand([N,m,n]) same as X=fc_amat.random.rand(N,m,n) X=fc_amat.random.rand(N,d) same as X=fc_amat.random.rand(N,d,d) X=fc_amat.random.rand(...,classname) returns an amat object with val-ues of class classname . classname could be 'single' or 'double' (default). In Listing 10, some examples are provided. Z = is a 50x2x3 amat[single] object matrix(1)= 0.11632 0.18182 0.12407 0.22650 0.33749 0.41202 matrix(2)= 0.129182 0.098865 0.601748 0.221843 0.309854 0.268917 ... matrix(49)= 0.038051 0.849642 0.061544 0.286805 0.572586 0.394980 matrix(50)= 0.440444 0.995168 0.469574 0.680158 0.042578 0.916317 4.3.2 fc_amat.random.randn function The fc_amat.random.randn function return an amat object with normally distributed random elements having zero mean and variance one. Syntaxe X = fc_amat . random . randn (N ,m , n) X = fc_amat . random . randn ([N ,m , n]) X = fc_amat . random . randn (N , d) X = fc_amat . random . randn (... , classname) Output Z = Y = Print Y amat object : X=fc_amat.random.randi([Imin,Imax],...) is a 50x2x3 amat[int32] object is a 50x2x2 amat[single] object Y = List current variables : Variables in the current scope: Attr Name Size Bytes Class ==== ==== ==== ===== ===== SaveOptions 1x6 25 cell X 1x1 0 amat Y 1x1 0 amat Z 1x1 returns an amat object containing integer values drawn from the discrete uniform distribution on Imin:Imax . X=fc_amat.random.randi(...,classname) matrix(1)= 2 -1 -1 -5 -1 1 matrix(2)= 2 -4 -1 3 -5 0 ... matrix(1)= is a 50x2x2 amat[single] object 0.750194 0.016790 matrix(1)= 0.016790 0.634660 -0.047627 0.251909 matrix(2)= 0.251909 0.832787 0.445732 0.013631 matrix(2)= Attr Name Size Bytes Class 0.013631 0.540378 0.76744 0.82266 ==== ==== ==== ===== ===== ... SaveOptions 1x6 25 cell 0.82266 0.35401 0 amat Total is 9 elements using 25 bytes Print Z amat object : Z = is a 50x2x3 amat[single] object matrix(1)= 1.71262 0.10902 -1.35594 -0.24406 -0.52086 -2.21049 matrix(2)= In Listing 10, some examples are provided. matrix(49)= 1 1 4 4 -4 4 matrix(50)= 3 2 5 2 0 1 4.3.4 fc_amat.random.randsym function ... X 1x1 0 amat matrix(49)= Y 1x1 0 amat 0.27546 0.82451 matrix(49)= Output 0.82451 0.44458 matrix(50)= 0.4484832 0.0058871 0.21091 -1.38048 Total is 8 elements using 25 bytes List current variables : Output -1.38048 -0.76772 matrix(50)= Print Y amat object : Variables in the current scope: List current variables : 0.0058871 0.0345997 0.0086328 -1.4171486 Y = Attr Name Size Variables in the current scope: Bytes Class -1.4171486 0.1385266 is a 100x2x2 amat[single] object matrix(1)= -4 4 4 3 ==== ==== ==== ===== ===== SaveOptions 1x6 Attr Name Size Bytes Class 25 cell X 1x1 ==== ==== ==== ===== ===== 0 amat Y 1x1 SaveOptions 1x6 25 cell 0 amat X 1x1 0 amat 1.1177368 -0.0023704 0.0841556 -0.2556832 -1.2814443 0.1101335 ... matrix(49)= matrix(2)= -3 1 Y 1x1 0 amat Total is 8 elements using 25 bytes The fc_amat.random.randsym function return an amat object whose matrices are symmetric with random elements uniformly distributed on the interval s0, 1r. 1 4 Total is 8 elements using 25 bytes Print Y amat object : ... Y = Print Y amat object : 0.231676 1.310904 -0.122387 0.247069 0.231958 -0.061286 matrix(50)= -0.28498 1.18910 0.64193 -1.02592 0.94108 0.55158 Syntaxe X = fc_amat . random . randsym (N , d) X = fc_amat . random . randsym (N ,d , ' class ' , value) matrix(99)= Y = is a 50x2x2 amat[complex single] object 4 4 4 5 matrix(100)= -4 -1 -1 5 matrix(1)= is a 50x2x2 amat[complex single] object 0.37703 + 0.89750i 0.04810 + 0.19992i matrix(1)= 0.04810 -0.19992i 0.22310 -0.96485i -0.59442 -0.42816i 0.73292 -2.53702i matrix(2)= 0.73292 + 2.53702i -0.46465 -1.07502i 0.97920 -0.40479i 0.35806 + 0.42714i matrix(2)= 0.35806 -0.42714i 0.64391 -0.87017i 1.28017 -0.11936i 0.01663 -0.30064i ... 0.01663 + 0.30064i -1.12893 + 1.16056i 4.3.3 fc_amat.random.randi function matrix(49)= ...
	Description The function fc_amat.random.randi return an amat object whose elements are random integers. Description X=fc_amat.random.randsym(N,d) 0.939823 -0.061725i 0.046003 -0.349185i matrix(49)= 0.046003 + 0.349185i 0.000790 -0.774461i 0.58809 -2.40979i 0.02161 -0.35857i matrix(50)= 0.02161 + 0.35857i 0.38315 + 0.44575i 0.73612 + 0.76445i 0.84192 + 0.40467i matrix(50)= 0.84192 -0.40467i 0.06102 -0.54484i 1.2362 + 1.1539i 0.0988 + 1.5253i
	X=fc_amat.random.randn(N,m,n) Syntaxe return a N-by-d-by-d amat object whose matrices are symmetric with ran-0.0988 -1.5253i -1.1595 -2.5880i
	returns a N-by-m-by-n amat object with normally distributed random ele-dom elements uniformly distributed on the interval s0, 1r. X = fc_amat . random . randi (Imax ,N ,m , n) ments having zero mean and variance one. X = fc_amat . random . randi (Imax ,[N ,m , n]) X=fc_amat.random.randsym(N,d,'class',classname) X = fc_amat . random . randi (Imax ,N , d) X=fc_amat.random.randn([N,m,n]) X = fc_amat . random . randi ([Imin , Imax] ,...) returns an amat object with values of class classname . classname
	same as X=fc_amat.random.randn(N,m,n) could be 'single' or 'double' (default).

4.3.5 fc_amat.random.randnsym function

The fc_amat.random.randnsym function return an amat object whose matrices are symmetric with normally distributed random elements having zero mean and variance one. Syntaxe X = fc_amat . random . randnsym (N , d) X = fc_amat . random . randnsym (N ,d , ' class ' , value) Description X=fc_amat.random.randnsym(N,d) return a N-by-d-by-d amat object whose matrices are symmetric normally distributed random elements having zero mean and variance one. X=fc_amat.random.randnsym(N,d,'class',classname) returns an amat object with values of class classname . classname could be 'single' or 'double' (default). In Listing 14, some examples are provided. Listing 14: : examples of fc_amat.random.randnsym function usage X = fc_amat . random . randnsym (100 ,3) ; 4.3.6 fc_amat.random.randisym function The fc_amat.random.randisym function return an amat object whose matrices are symmetric with random integers values. Syntaxe X = fc_amat . random . randisym (Imax ,N , d) X = fc_amat . random . randisym ([Imin , Imax] ,...) X = fc_amat . random . randisym (... , ' class ' , classname) Description X=fc_amat.random.randisym(Imax,N,d) returns a N-by-d-by-d amat object whose matrices are symmetric pseudo random integer values drawn from the discrete uniform distribution on 1:Imax X=fc_amat.random.randisym([Imin,Imax], ...) pseudo random integer values are drawn from the discrete uniform distribution on Imin:Imax X=fc_amat.random.randisym(...,'class',classname) returns an amat object with values of class classname . Accepted classname strings are those of the randi Matlab function. Default is 'double' . In Listing 15, some examples are provided. Listing 15: : examples of fc_amat.random.randisym function usage X = fc_amat . random . randisym (10 ,100 ,3) ; % X : 1 0 0 ´b y ´3´b y ´3 a m a t Y = fc_amat . random . randisym ([-5 ,5] ,100 ,2 , ' class ' , ' single ') ; % Y : 50 ´b y ´2´b y ´2 s i n g l e a m a t disp (' List ␣ current ␣ variables ␣ : ') whos disp (' Print ␣ Y ␣ amat ␣ object ␣ : ') Y Output List current variables : Variables in the current scope: 4.3.7 fc_amat.random.randher function The fc_amat.random.randher function return an amat object whose matrices are hermitian with random real part elements uniformly distributed on the interval s0, 1r and imaginary part elements uniformly distributed on the interval s ´1, 1r. Syntaxe X = fc_amat . random . randher (N , d) X = fc_amat . random . randher (... , ' class ' , value) Description X=fc_amat.random.randher(N,d) returns a N-by-d-by-d amat object whose matrices are symmetric with random elements uniformly distributed on the interval s0, 1r. X=fc_amat.random.randher(...,'class',classname) returns an amat object with values of class classname . classname could be 'single' or 'double' (default). In Listing 16, some examples are provided. Listing 16: : examples of fc_amat.random.randher function usage X = fc_amat . random . randher (100 ,3) ; % X : 1 0 0 ´b y ´3´b y ´3 a m a t Y = fc_amat . random . randher (50 ,2 , ' class ' , ' single ') ; % Y : 50 ´b y ´2´b y ´2 s i n g l e a m a t disp (' List ␣ current ␣ variables ␣ : ') whos disp (' Print ␣ Y ␣ amat ␣ object ␣ : ') Y 4.3.8 fc_amat.random.randnher function The fc_amat.random.randnher function return an amat object whose matrices are hermitian with normally distributed random real and imaginary part elements having zero mean and variance one.

Syntaxe X = fc_amat . random . randnher (N , d) X = fc_amat . random . randnher (... , ' class ' , value) Description X=fc_amat.random.randnher(N,d) returns a N-by-d-by-d amat object whose matrices are Hermitian normally distributed random elements having zero mean and variance one. X=fc_amat.random.randnher(...,'class',classname) returns an amat object with values of class classname . classname could be 'single' or 'double' (default). In Listing 17, some examples are provided. Listing 17: : examples of fc_amat.random.randnher function usage X = fc_amat . random . randnher (100 ,3) ; % X : 1 0 0 ´b y ´3´b y ´3 a m a t Y = fc_amat . random . randnher (50 ,2 , ' class ' , ' single ') ; % Y : 50 ´b y ´2´b y ´2 s i n g l e a m a t disp (' List ␣ current ␣ variables ␣ : ') whos disp (' Print ␣ Y ␣ amat ␣ object ␣ : ') Y 4.3.9 fc_amat.random.randiher function The fc_amat.random.randiher function return an amat object whose matrices are Hermitian with random integers values.

 The fc_amat.random.randitriu function return an amat object whose matrices are upper triangular and non zeros elements are random integers

	Listing 27: : examples of fc_amat.random.randitriu function usage
	X = fc_amat . random . randitriu (10 ,100 ,3) ;
	% X : 1 0 0 ´b y ´3´b y ´3 a m a t	
	Y = fc_amat . random . randitriu (8 ,200 ,3 , ' nc ' ,4 , ' complex ' , true) ;
	% Y : 2 0 0 ´b y ´3´b y ´4 a m a t	
	Z = fc_amat . random . randitriu ([-5 ,5] ,50 ,3 , ' class ' , ' single ' , 'k ' ,1) ;
	% Z : 50 ´b y ´2´b y ´2 s i n g l e a m a t	
	disp (' List ␣ current ␣ variables ␣ : ')	
	whos		
	disp (' Print ␣ Z ␣ amat ␣ object ␣ : ')	
	disp (Z , 'n ' ,2)		
			Output
	List current variables :	
	Variables in the current scope:	
	Attr Name	Size	Bytes Class
	==== ====	====	===== =====
	SaveOptions	1x6	25 cell
	X	1x1	0 amat
	Y	1x1	0 amat
	Z	1x1	0 amat
	disp (' Print ␣ Z ␣ amat ␣ object ␣ : ')	
	disp (Z)		
			Output
	X is a 100x3x3 amat[double] object	
	Y is a 200x3x4 amat[complex double] object	
	Print Z amat object :		
	Z is a 50x3x3 amat[single] object	
	Z(1)=		
	3.68445 3.69596 5.01343	
	4.67820 4.15220 4.28478	
	0.00000 3.19696 3.22938	
	Z(2)=		
	4.91812 3.75382 4.26172	
	4.95688 5.33169 3.08506	
	0.00000 3.14698 4.73564	
	...		
	Z(49)=		
	3.32753 3.90885 3.47341	
	2.40127 5.59333 3.23073	
	0.00000 3.96006 4.06464	
	Z(50)=		
	5.08935 3.48016 4.58166	
	4.27741 5.40893 4.76488	
	0.00000 2.88230 4.80349	
	4.3.18 fc_amat.random.randitriu function
	Syntaxe		
	X = fc_amat . random . randitriu (Imax ,N , d)
	X = fc_amat . random . randitriu ([Imin , Imax] ,...)
	X = fc_amat . random . randitriu (... , key , value)

Listing 26: : examples of fc_amat.random.randntriu function usage X = fc_amat . random . randntriu (100 ,3) ; info (X) % X : 1 0 0 ´b y ´3´b y ´3 a m a t Y = fc_amat . random . randntriu

(200 ,3 , ' nc ' ,4 , ' complex ' , true , ' sigma ' ,5)

; info (Y) % Y : 2 0 0 ´b y ´3´b y ´4 a m a t Z = fc_amat . random . randntriu

(50 ,3 , ' class ' , ' single ' , 'k ' , -1 , ' mean ' ,4)

; % Z : 50 ´b y ´3´b y ´3 s i n g l e a m a t

 'class' , to set amat object data type; value are those of the randi Matlab function. Default is 'double' .

	In Listing 30, some examples are provided.
			Output
	List current variables :	
	Variables in the current scope:	
	Attr Name	Size	Bytes Class
	==== ====	====	===== =====
	SaveOptions	1x6	25 cell
	X	1x1	0 amat
	Y	1x1	0 amat
	Z	1x1	0 amat
	Total is 9 elements using 25 bytes	
	Print Z amat object :		
	Z is a 50x3x3 amat[complex single] object	
	Z		

Listing 30: : examples of fc_amat.random.randisdd function usage X = fc_amat . random . randisdd (10 ,100 ,3) ; % X : 1 0 0 ´b y ´3´b y ´3 a m a t Y = fc_amat . random . randisdd (8 ,200 ,3 , ' class ' , ' single ') ; % Y : 2 0 0 ´b y ´3´b y ´4 a m a t Z = fc_amat . random . randisdd ([-5 ,5] ,50 ,3 , ' class ' , ' single ' , ' complex ' , true) ; % Z : 50 ´b y ´2´b y ´2 s i n g l e a m a t disp (' List ␣ current ␣ variables ␣ : ') whos disp (' Print ␣ Z ␣ amat ␣ object ␣ : ') disp

(Z , 'n ' ,2)

 , computational times in seconds for a given N are represented in fonction of very small values of d .

	N	d=2	d=4	d=6	d=8	d=10
	200 000 0.008(s) 0.026(s) 0.097(s) 0.182(s) 0.300(s)
	400 000 0.014(s) 0.071(s) 0.196(s) 0.371(s) 0.616(s)
	600 000 0.021(s) 0.111(s) 0.277(s) 0.574(s) 0.973(s)
	800 000 0.029(s) 0.151(s) 0.407(s) 0.751(s) 1.315(s)
	1 000 000 0.036(s) 0.211(s) 0.465(s) 0.894(s) 1.674(s)

Table 4 :

 4 Computational times in seconds of B=chol(A) where A is a N-by-dby-d symmetric positive definite amat object.

 Table 5 computational times in seconds of B=det(A) are given.In Figure 4, computational times in seconds for a given N are represented in function of very small values of d .

	N	d=2	d=4	d=6	d=8	d=10
	200 000 0.074(s) 0.453(s)	3.538(s) 10.015(s)	25.434(s)
	400 000 0.178(s) 1.286(s)	7.115(s) 20.968(s)	50.041(s)
	600 000 0.262(s) 2.350(s) 10.161(s) 30.395(s)	74.450(s)
	800 000 0.373(s) 3.048(s) 13.220(s) 38.759(s) 100.856(s)
	1 000 000 0.391(s) 4.204(s) 16.959(s) 50.394(s) 118.775(s)

Table 5 :

 5 Computational times in seconds of B=det(A) where A is a N-by-dby-d amat object.

 Benchmarking X=solvetriu(A,B) where A is N-by-3-by-3 amat object and B is N-by-3by-1 amat object with both complex single values.

	Listing 62: : LN =10^5*[2:2:10];		
	fc_amat . benchs . solvetriu (LN
		09:57:16	
	#nbruns:5			
	#numpy:	i4	f4	f4
	#format:	%d	%.3f	%.3e
	#labels:	N solvetriu(s)	Error[0]
		200000	0.248	1.109e-14
		400000	0.898	9.881e-15
		600000	1.611	7.515e-15
		800000	2.086	1.442e-14
	1000000	2.647	1.028e-14
				90

This work was supported by the ANR project DEDALES under grant ANR-14-CE23-0005.

Description

X=fc_amat.random.randidiag (Imax,N,d) returns a N-by-d-by-d amat object whose matrices are diagonal and non zeros elements are pseudorandom integer drawn from the discrete uniform distribution on 1:Imax .

X=fc_amat.random.randidiag ([Imin,Imax], N,d) returns a N-by-d-by-d amat object whose matrices are diagonal and non zeros elements are pseudorandom integer drawn from the discrete uniform distribution on Imin:Imax .

X=fc_amat.random.randidiag(...,key,value) Some optional key/value pairs arguments are available with keys:

• 'complex' , if value is true the amat object is complex and the imaginary parts of the diagonal matrices elements are also drawn from the normal distribution having zero mean and unit standard deviation (default false i.e real amat object)

• 'class' , to set amat object data type; value are those of the randi Matlab function. Default is 'double' .

• 'nc' , number of columns of the matrices (default: d)

• 'k' , offset of k diagonals above or below the main diagonal; above for positive k and below for negative k .

In Listing 21, some examples are provided.

Description

X=fc_amat.random.randitriu (Imax,N,d) returns a N-by-d-by-d amat object whose matrices are upper triangular and non zeros elements are pseudorandom integer drawn from the discrete uniform distribution on 1:Imax .

X=fc_amat.random.randitriu ([Imin,Imax],N,d) returns a N-by-d-by-d amat object whose matrices are upper triangular and non zeros elements are pseudorandom integer drawn from the discrete uniform distribution on Imin:Imax .

X=fc_amat.random.randitriu(...,key,value) Some optional key/value pairs arguments are available with keys:

• 'complex' , if value is true the amat object is complex and the imaginary parts of the upper triangular matrices elements are also drawn from the normal distribution having zero mean and unit standard deviation (default false i.e real amat object)

• 'class' , to set amat object data type; value are those of the randi Matlab function. Default is 'double' .

• 'nc' , number of columns of the matrices (default: d)

• 'k' , offset of k diagonals above or below the main diagonal; above for positive k and below for negative k .

In Listing 27, some examples are provided. X=fc_amat.random.randsympd(...,key,value)

Optional key/value pairs arguments are those of the fc_amat.random.randnsdd function except for 'complex' key which is forced to false . Keys can be:

• 'class' , to set amat object data type; value can be 'single' or 'double' (default).

• 'a' , to set a (lower bound of the interval) value (0 by default).

• 'b' , to set b (upper bound of the interval) value (1 by default).

In Listing 31, some examples are provided. Optional key/value pairs arguments are those of the randnsdd function except for 'complex' key which is forced to true . Keys can be:

• 'class' , to set amat object data type; value can be 'single' or 'double' (default).

• 'mean' , to set mean of the normal distribution (0 by default).

• 'sigma' , to set standard deviation of the normal distribution (1 by default).

In Listing 35, some examples are provided.

-B is a length(K)-by-length(I)-by-length(J) amat object then @ k P 1:length(K) the K(k)-th matrix of A is set to k-th matrix of B , i.e. @i P 1:length(I), @j P 1:length(J), A(K(k),I(i),J(j))=B(k,i,j).

• I , J and K are M-by-p-by-q amat objects of indices Then three cases are possible -B is a scalar, then @i P 1:p, @j P 1:q, @k P 1:M

B is a M-by-p-by-q amat object then @i P 1:p, @j P 1:q, @k P 1:M

If max(I)>m , max(J)>n or max(K)>N then before assignment A is reshaped to fit the new size by setting 0 for missing elements.

A(K)=B

Identically to the equivalent commands A(K,1:m,1:n)=B or A(K,:,:)=B or A(K,1:end,1:end)=B

A(I,J)=B

If B is a scalar or a matrix or an amat object, this command is equivalent to one of these commands A(1:N,I,J)=B or A(:,I,J)=B or A(1:end,I,J)=B .

If B is a N-by-1 array then @k P 1:N, @i P 1:length(I), @j P 1:length(J), A(k,I(i),J(j))=B(k).

In Listing 38, some examples are provided.

Listing 38: : examples of subsasgn method usage

6 Elementary operations

Arithmetic operations

The implemented element by element arithmetic operators/methods for amat objects are:

• + / plus , addition

• + / uplus , unary plus

• -/ minus , subtraction

• -/ uminus , unary minus

• .* / times , element-wise multiplication

• ./ rdivide , element-by-element right division

element-by-element left division

Let A A A P pM m,n pKqq N , (i.e. a N -by-m-by-n amat object) we now explain how a generic binary operator, denoted by , act between A A A and another input data. We define four kinds of element by element arithmetic binary operations when A A A is the left operand.

With these binary operators, four kind element by element operations occur. They are the same as those described for the element by element arithmetic operations, Section 6.1, and given by (1) to (4) except that the output differs: it is a logical amat object.

In Listing 40, some examples are provided.

Listing 40: : examples of relational operators

Logical operations

The implemented logical operators/methods for amat objects are:

• & / and , logical and

With the binary operators and , or , and xor four kind element by element operations occur. They are the same as those described for the element by element arithmetic operations, section 6.1, and given by (1) to (4) except that the output differs: it is a logical amat object.

In Listing 41, some examples are provided.

Listing 41: : examples of relational operators

Let X be a N-by-m-by-n amat object. The all method of X return a N-by-1-by-1 logical amat object such that its k-th element (1-by-1 matrix) is true (logical 1) if all elements of the k-th matrix of X are all nonzero.

Syntaxe

B=all(X,dim)

• dim=1 , along rows of matrices of X. Returns a N-by-1-by-n logical amat object such that B(k,1,j) is one (logical true) if @i P

Exponents and Logarithms

• exp , exponential function

• expm1 , exponential function minus one

• log , natural logarithm

• reallog , real-valued natural logarithm

• log1p , compute log(1+x)

• log10 , base-10 logarithm

• nextpow2 , exponent of next higher power of 2

• realpow , real-valued power

• sqrt , square root

• realsqrt , real-valued square root

• cbrt , cube root

• cbrtsqrt , real-valued cube root

• nthroot , real (non-complex) n-th root

Complex Arithmetic

• abs , magnitude

• arg , angle , argument

• real , real part

Utility methods

• ceil , round toward positive infinity

• fix , round toward zero

• floor , round toward negative infinity

• round , Round to the nearest integer

max method

Let X be a N-by-m-by-n amat object. The max method of X return its maximum values.

Syntaxe

return a m-by-n matrix such that W(i,j) is the maximum value of X(:,i,j) W = max (X, [], dim)

• dim=0 , along the number of matrices of X. Same as W = max (X).

• dim=1 , along rows of matrices of X. Returns a N-by-1-by-n amat object such that W(k,1,j) is the maximum value of X(k,:,j) .

• dim=2 , along columns of matrices of X. Returns a N-by-m-by-1 amat object such that W(k,i,1) is the maximum value of X(k,i,:) .

• dim=3 , along rows and columns of matrices of X. Returns a N-by-1-by-1 amat object such that W(k,1,1) is the maximum value of X(k,:,:) .

W = max (X, Y)

Returns a N-by-m-by-n amat object such that

Returns two m-by-n matrices such that W(i,j)=max(X(:,i,j)) and W(i,j)=X(K(i,j),i,j)

• if DIM=1 , returns two N-by-1-by-n amat objects such that W(k,1,j)=max(X(k,:,j))andW(k,1,j)=X(K,Idx(k,1,j),j),

• if DIM=2 , returns two N-by-m-by-1 amat objects such that W(k,i,1)=max(X(k,i,:)) and W(k,i,1)=X(K,i,Idx(k,i,1)).

[W, I, J] = max (X, [], 3) returns three N-by-1-by-1 amat objects such that W(k,1,1)=max(X(k,:,:)) and W(k,1,1)=X(K,I(k,1,1),J(k,1,1)).

In Listing 45, some examples are provided.

Listing 45: : examples of fc_amat.random.randher function usage

min method

Let X be a N-by-m-by-n amat object. The min method of X return its minimum values.

Syntaxe

return a m-by-n matrix such that W(i,j) is the minimum value of X(:,i,j) W = min (X, [], dim)

• dim=0 , along the number of matrices of X. Same as W = min (X).

• dim=1 , along rows of matrices of X. Returns a N-by-1-by-n amat object such that W(k,1,j) is the minimum value of X(k,:,j) .

• dim=2 , along columns of matrices of X. Returns a N-by-m-by-1 amat object such that W(k,i,1) is the minimum value of X(k,i,:) .

• dim=3 , along rows and columns of matrices of X. Returns a N-by-1-by-1 amat object such that W(k,1,1) is the minimum value of X(k,:,:) .

W = min (X, Y)

Returns a N-by-m-by-n amat object such that

Returns two m-by-n matrices such that W(i,j)=min(X(:,i,j)) and W(i,j)=X(K(i,j),i,j)

• if DIM=1 , returns two N-by-1-by-n amat objects such that W(k,1,j)=min(X(k,:,j))andW(k,1,j)=X(K,Idx(k,1,j),j),

• if DIM=2 , returns two N-by-m-by-1 amat objects such that W(k,i,1)=min(X(k,i,:)) and W(k,i,1)=X(K,i,Idx(k,i,1)).

[W, I, J] = min (X, [], 3) returns three N-by-1-by-1 amat objects such that W(k,1,1)=min(X(k,:,:)) and W(k,1,1)=X(K,I(k,1,1),J(k,1,1)).

In Listing 46, some examples are provided.

Listing 46: : examples of fc_amat.random.randher function usage

8 Linear algebra 8.1 Linear combination

. Let X be a N-by-m-by-n amat object, alpha and beta two scalars. We define four kinds of linear combinations for the Octave instruction:

the inputs must be an amat object. When running this function the matrices orders are fixed and only the number N of matrices contained in amat objects varies and it is given by a list of values LN . runs a benchmark of the mtimes method of the amat class between two N-by-2-by-2 amat objects for all N in LN .

fc_amat.benchs.mtimes(LN,key,value,...)

Optional key/value pairs arguments are available. key can be one of the following strings

• 'd' , left and right matrices dimension (default value is [2,2])

• 'type' , to set type of left and right operands. value is either 'amat' (amat object), 'mat' (matrix), 'array1d' (N-by-1 1Darray) or 'scalar' (default value is 'amat').

• 'class' , to set classname of left and right operands. Value can be 'double' (default), 'single' , 'int32' ,...

• 'complex' , if true left and right operands are complex (default value is false).

• 'ld' , same as 'd' but only for left operand.

• 'rd' , same as 'd' but only for right operand.

• 'ltype' same as 'type' but only for left operand.

• 'rtype' same as 'type' but only for right operand.

• 'lclass' same as 'class' but only for left operand.

• 'rclass' same as 'class' but only for right operand.

• 'lcomplex' same as 'complex' but only for left operand.

• 'rcomplex' same as 'complex' but only for right operand.

In Listings 49 and 50 two examples with outputs are provided.

Syntaxe Let A be a N-by-m-by-m amat object.

Here operator * is the amat matricial product, i.e.

@k P 1:N, P(k)*A(k)=L(k)*U(k).

[L,U,P]=lu(A,type)

• If type is 'amat' , then the command is equivalent to [L,U,P]=lu(A) .

• If type is 'vector' or 'matrix' then, returns the permutation information P as a N-by-m matrix instead of an amat . If so, the permutation amat object can be build with the fc_amat.permind2amat(P) command.

In Listing 51, some examples are provided.

Efficiency

For benchmarking purpose the function fc_amat.benchs.solvetriu can be used and is described in Section 8.6.2. This function uses the fc-bench Octave package described in [2] and performs all computational times of this section.

Let A be a N-by-d-by-d regular triangular upper amat object and B be a N-by-d-by-1 amat object. In Table 6 computational times in seconds of X=solvetriu(A,B) are given. In Figure 5

Efficiency

For benchmarking purpose the function fc_amat.benchs.mldivide can be used and is described in Section 8.7.2. This function uses the fc-bench Octave package described in [2] and performs all computational times of this section.

Let A be a N-by-d-by-d regular triangular upper amat object and B be a N-by-d-by-1 amat object. In Table 7 computational times in seconds of X=mldivide(A,B) are given.In Figure 6