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DIMENSIONS OF “SELF-AFFINE SPONGES” INVARIANT UNDER THE
ACTION OF MULTIPLICATIVE INTEGERS

GUILHEM BRUNET

ABSTRACT. Let my1 > ma > 2 be integers. We consider subsets of the product symbolic
sequence space ({0,...,m1 — 1} x {0,...,ma — 1})N* that are invariant under the action
of the semigroup of multiplicative integers. These sets are defined following Kenyon, Peres
and Solomyak and using a fixed integer ¢ > 2. We compute the Hausdorff and Minkowski
dimensions of the projection of these sets onto an affine grid of the unit square. The proof
of our Hausdorff dimension formula proceeds via a variational principle over some class of
Borel probability measures on the studied sets. This extends well-known results on self-affine

Sierpinski carpets. However, the combinatoric arguments we use in our proofs are more elab-

orate than in the self-similar case and involve a new parameter, namely j = llogq (}ZEEZ;DJ .
We then generalize our results to the same subsets defined in dimension d > 2. There, the

situation is even more delicate and our formulas involve a collection of 2d — 3 parameters.

For the reader’s convenience we summarize a list of commonly used symbols below :

A; Alphabet {0,...,m; — 1}
Y ma Symbolic space (A; x Ag)N
q Integer > 2
Q Closed subset of ¥, m,
X Closed subset of ¥,,, , invariant under the action of multiplicative integers
o Standard shift map on X, .,
. log(ma)
v 7= log(m)
@)l @yl = (e, Yge)) 20
L Map n € N* — [%-‘
I Borel probability measure on §2
P, Borel probability measure on Xgq, see Section 2.1
m Projection map of ¥,,, m, on the second coordinate
Q, Qy :=Qn7 ' ({y})
[u] Generalized cylinder on X, ,, see Section 2.1
Pref, ,(2) (p x ¢)-sized prefixes of 2, see Section 2.1
ol al :=={QN[u] : u € Prefy £ ()}

Key words and phrases. Hausdorff dimension, Minkowski dimension, Symbolic dynamics, Self-affine carpets,
Self-affine sponges.
2010 Mathematics Subject Classification: 28A80, 37C45.
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ol a? :={QN[u] : u € Prefo(Q)}

HY p-entropy of a finite partition with the base-mg logarithm

j The unique non-negative integer such that ¢/ < y~! < ¢/*!

Qu For u = (z1,y1) - - (T, Yk )Ykt1 - - - Yitj € Prefy ;(2), Q, is the follower set of
(x1,y1) - (Tk, y) in Q with ygi1,. .., yry; being fixed

Lo The normalized measure induced by p on €,

dim.(v) Entropy dimension of the measure v

vy Disintegration of the measure v with respect to m
[;(Q)  j*™ tree of prefixes of Q, see Section 2.3
I'y;(Q) Tree of followers of w in I';(§2), see Section 2.3

t =t(u) The unique vector defined on the set of vertices of I, ;(12) satisfying equation (3)
ty See Section 2.3

1. INTRODUCTION
Let mq > mgo > 2 and ¢ > 2 be integers. Let €2 be a closed subset of
Zml,mg == (Al X AQ)N*7

where A; = {0,...,m; —1} and Ay = {0,...,ma —1}. We can associate to {2 a closed subset
of the torus T? by considering (), where 1 is the coding map defined as

x [o@)
Z Lk Z Yk

7/’ : (xkvyk)zozl S Eml,mg ( 7, k‘) S TQ.
=1 = M2

Let o be the standard shift map on X,,, ,,, and 7 be the projection on the second coordinate.
Closed subsets of ¥, m, that are o-invariant are sent through 1 to closed subsets of T? that

are invariant under the diagonal endomorphism of T? ;
(x,y) € T — (miz, mox).
Classical examples of such subsets are Sierpinski carpets. Given
0+AcCH{0,...,my —1} x{0,...,ma — 1},

consider

Q={(z,y) = (Tk, Yk)iz1 € Zmiymo : Vb > 1, (zk,yx) € A}
Then () is a Sierpinski carpet. In this case, ¥(2) is the attractor of the iterated function
system made of the contractions f(; ;) : (z,y) € T? (LJ” w) with (i,7) € A. When

m1’ mo
mi1 = meo = m, we obtain a self-similar fractal and it is well-known that
: : log(#A)
d Q) =d Q)= ——"—"+=
iy (6(62) = dim (4(9) = To 75



where dimy and dimy; stand for the Hausdorff and Minkowski (also called box-counting)
dimensions respectively. See for example Chapter 2 of [3]. More generally, as proved in [7], if
2 is a closed shift-invariant subset of X, ,, then we have

h(olg)
log(m)’
where h stands for the topological entropy. McMullen [10] and Bedford [1] independently com-

dimpy (1(Q)) = dimp ((Q)) =

puted the Hausdorff and Minkowski dimensions of general Sierpinski carpets when mi > mo,
which we will assume from now on. Furthermore, the Hausdorfl and Minkowski dimensions
of Sierpinski sponges - defined as the generalization of Sierpinski carpets in all dimensions -
were later computed in [8].

Let
Y= log(msz)
log(m1)
and
L:neN+— WL—‘
~
We will need the following metric on X, m, : for (z,y) and (u,v) in X, m, let

d((l'ka yk)zozla (uk, Uk)l(?:ozl)

— min{k>0:(x s u U —ymin{k>0: v
— max (ml {k>0:(p11,Yp41) 7 (Urt1 k+1)}’ m17 {k20:yp 417 k+1}>‘

This metric allows us to consider “quasi-squares” as defined by McMullen when computing the

dimensions of Sierpiniski carpets. It is easy to see that for (z,y) € X,,, m, the balls centered
t (z,y) are

B, (x,y) = Bm;n(az,y) ={(u,v) € Xy s up =2 V1 <k <nand v, =y; V1 < k < L(n)}.

Using this metric on ¥,,, m, the Hausdorff and Minkowski dimensions of {2 are then equal to

those of ¢(€2). Thus from now on we will only work on the symbolic space. In this paper, our

goal is to compute the Hausdorff and Minkowski dimensions of more general carpets that are

not shift invariant. More precisely, given an arbitrary closed subset €2 of X,,, ,,, we consider

XQ = {(xlwyk)zozl € EmLmZ : (xiqlayiqz)?io € Q for all ’i, Q",Z}

Such sets were studied in [9], where the authors restricted their work to the one dimensional

case : they computed the Hausdorff and Minkowski dimensions of sets defined by
{(xk)zozle{oa-- —1} D (Tiq0) 2 € Q for all 4, g1 }

where €2 is an arbitrary closed subset of {0,...,m — 1}N*. It is easily seen that this case
covers the situation where m; = mo in our setting. Their interest in these sets was prompted
by the computation of the Minkowski dimension of the "multiplicative golden mean shift"

{QEZZJSZIHG{OJ} andﬂfk$2k:0foraﬂk‘21}
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done in [4]. We aim to give formulas for dimy(Xq) and dimp/(Xgq) in the two-dimensional
case, and then in all dimensions. Note that if € is shift-invariant, then X is invariant under
the action of any integer r € N*

(Thy Y )oer — (ks Yrk ) et -

For example, as in the case of dimension one we can consider subshifts of finite type on
Ymi,me- Todoso, let D = {(0,0),(0,1),...,(0,mg2—1),(1,0),(1,1),...,(1,ma—1),...,(m1—
1,0),(m1 —1,1),...,(m1 — 1,ma — 1)} and let A be an myms - sized square matrix indexed
by D x D with entries in {0,1}. Then define

EA = {(xkvyk)zozl S Emhmg : A((xk’yk)a (xk+1ayk+1)) = ]-7 k > 1}7

and
Xa=Xs, ={(xk, yr)iz1 € Lrmyms : A(@k, Yk), (Tgis Ygr)) = 1, k> 1}

"
!y

F1cURE 1. Approximation of order 4 of the set X 4 for mi; =3, mo =2, ¢ =2
and A a circulant matrix whose first row is (1,0,0,1,0,0).
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FI1GURE 2. Approximation of order 6 of the set X 4 for m; =3, mo =2, ¢ =2
and A a circulant matrix whose first row is (1,0,0,1,0,0).

Note that further generalizations of the sets considered in [9] were studied in [12], in the

one-dimensional case as well.

The paper is organized as follows. In Section 2, we focus on the two-dimensional sit-
uation. We first introduce in Subsection 2.1 a particular class of measures on Xqo. We
show that these measures are exact dimensional and we compute their Hausdorff dimensions.

This class of measures is the same as that considered in [9], but in our case the parameter

J = [logq GSEEZ;;)J comes into play when studying their local dimension. Indeed, this pa-
rameter plays a crucial role in the definition of generalized cylinders whose masses are used
to study the mass of balls under the metric d. In Subsection 2.2, out of curiosity, we study
under which condition the Ledrappier—Young formula (where the entropies of invariant mea-
sures are replaced by their entropy dimensions) can hold for these measures, which are not

shift-invariant in general.

In Subsections 2.3, 2.4 and 2.5, we compute the Hausdorff and Minkowski dimensions of
Xq, using a variational principle over the class of measures we studied earlier. We show that
there exists a unique Borel probability measure which allows us to bound dimg(Xgq) both

from below and from above.



Then, in Section 3, we extend our results to the general multidimensional case. The combi-
natorics involved there become significantly more complex, as the study of the local dimension
of the measures of interest invokes some generalized cylinders which depend in a subtle way
on a collection of 2d — 3 parameters.

2. THE TWO-DIMENSIONAL CASE

2.1. The measures P, and their dimensions. Throughout the paper we will use the no-

tation [m,n] = {m,...,n} if m < n are integers.

To compute dimp(Xq), we will use the classical strategy of stating a variational principle
over a certain class of Borel probability measures P, on Xq defined below, i.e we will show
that

dimpy(Xq) = r%)axdimH(Pu).

I

To do so, we will use the following classical facts (for a proof, see [3, Proposition 2.3]) :

Theorem 2.1. Let p be a finite Borel measure on X, m, and let A C Xy, m, such that
p(A) > 0.

o Ifliminf,,_,o — 2 (2e2)

108, (1(Bn (2)))

log,.,, (1(Bn()))

n

> D for p-almost all x, then dimpg (p

> D
e Ifliminf, ., — < D for p-almost all x, then dimg <D

)
(1)
<D for all x € A, then dimy(A) < D.

e Ifliminf, ., —

For p,/ € Nand u € ({0,...,m1 — 1} x {0,...,mg — 1})? x {0,...,my — 1}¢, define the

generalized cylinder
[u] ={(z,9) € By ms : (2, 9)]p, 7(0((2,9))]e)) = u},

where (z,y)lp = (z1,91) -+ (2p, yp) and 7((2,y)[p) = ylp, and set

Pref, ((Q) = {u € ({0,...,my — 1} x {0,...,mg — 1})P x {0,...,mg — 1}* : QN [u] # @}.
For (z,y) € Xy, me, n > 1 and 7 an integer such that ¢ {4, we define

(z, y)|Ji" = (@4, ¥i) (Tqis Yai) - -~ (Tgris Ygri)

if ¢"i <mn < ¢"tli. Let u be a Borel probability measure on €. Following [9] we define P, on
the semi-algebra of cylinder sets of ¥,,, 1, by

£l = IT o ([ r])-

<n
ati



This is a well defined pre-measure. Indeed it is easy to see that P,([(k,1)]) = u([(k,1)]) for
(k,1) € A1 x A9, and for n+ 1 = ¢"¢ with ¢ 11,

Pul,y1) - @ yn) @ng 1, yna)]) ol 91) (2gis Ygi) - - - (Xgris Ygri)])
Pu(((z1,91) - (@0, yn)]) ([ i, Y1) (Tgi> Ygi) - - (Tgr—14, yqr_1i)])

Y

whence

Pu((ryn) - (@nyn)) = D0 Pulll@n,n) (@n, yn) (6, 9))-

(4,5) €A1 x A2
Denote also by P, the extension of P,, to a Borel probability measure on (X, my, B (Zmi,ms,))-

By construction, P, is supported on Xgq, since € is a closed subset of X,,, n, and hence

k=1 uePrefy, o(22)

Let us now introduce some more notations. For all kK > 1 we consider the finite partitions
of © defined by
ar = {QN[u] : u € Prefy 1 (Q)}
and
i ={QN[u : u € Prefyo(Q)}.
For a Borel probability measure g on €2 and a finite measurable partition P on €, denote by
H}. (P) the p-entropy of the partition, with the base-msy logarithm :

— > u(C)log,,, u(C).

ceP

Let j be the unique non-negative integer such that

1 log(m1) < gt
v log(mg)
Note that for all n > 1 large enough we have

¢ <

@n < L(n) < ¢ n.

Theorem 2.2. Let ;v be a Borel probability measure on ). Then P, is exact dimensional and

we have
. I HE (al) , < HE (a2 . Val)
dimp(P) = (¢ 1)) =% + (g - (¢ My - 1) Y, —i—"
p=1 1 p=j+1 1

Fla-D—gy 3 HhalCpaVoy)

P
p=j+1 q

Proof. Our method is inspired by the calculation of dimg(P,) in [9]. The strategy of the

proof is the same, nevertheless the computations will be more involved, due to the fact that

7



the P,-mass of a ball for the metric d is a product of p-masses of generalized cylinders rather

than standard ones as in [9].

Let £ > j + 1. We will first show that for IP,-almost all (z,y) € Xqo we have

108, (Bu(Bu(r,))) () jy2 5~ ()

lim inf
i ; >~
. ‘. HE (a2 Val)
Fa- Dy -1 3 Dmal vy
pqz;l gt
. ‘COHE (@2 . [ Val)
(-1 —gy) Yy
p=j+1 q
and
—log,,, (Pu(Bn(,y))) I HE (o))
lim su my L B ’ < (q—1)2 —Mm22 P
n—>oop n _(q )pz::l qp+1

l 2 1
F -y —1) Y Hmalo Vo)

p=j+1 ¢!
¢ 2 1
) HY (a2 _. Vo«
Ha-n0 gy Y el V)
p=j+1 1
N (¢ +1)log,,, (m1ms)
q' '

Letting ¢ — oo will yield the desired equality (cf. Theorem 2.1). To check these, we can
restrict ourselves to n = ¢‘r, » € N. Indeed if ¢'r < n < ¢*(r + 1) then

108, (Bu(Bn(2,9)) 1080, PulByr(@y)) v =108, (Pu(Byrr(2,9)))

n q‘(r+1) “r41 q‘r

)

which gives

-1 P,.(Bn(z, —1 m Pu(B &
ti i —108m Bu(Ba(,9)) _ .o~ 108, Bu(Byer(2,9)))

n—00 n r—00 q‘r

The lim sup is dealt with similarly.

As proved in [9] we have

—log,,, (P ({(,9)[4])) _ (g— 172 i Hii, (a3)

lim s

n—oo n

for P, — almost all (z,y) € Xq.
p=1
Note that



Bu(Balwy)) = > Pu([@ny0) @ yn) @ vsn) -+ (@ vim)] ) -

! !
T 10T ()

the sum being taken over all a,_ ... ’le(n) such that

[(1'17 yl) T (-’I;na yu)(x;w,-la yn+1> T (xll/(n)7 yL(n))} N Xq 7é 0.
Let

G]LW,L(”)] _ mw L(n)}

q° q? gt

p=1
such that ¢ 1 i. Note that if ¢ € } Lé;?), Z;,@} then the word (ac,y)\J;(n) is of length p. Recall
that j is defined by ¢ < % < ¢/t Suppose 7 > 1. If 1 < p < j then % >n, so
L(n) L(n)
|2 ] 2o,
q q
If j+1<p</{and/{is large enough, then g=iT € } 7 qp,l}, thus we can partition

}L(n) L(n)} :]L(n) n ]I_l} n L(n)}

Cgp ) grt gP ' gp—i-1 gr—i—1" gr—1

n__ L)
qP*j*l ’ qp_l

In the case where i € ] } we have

Il <n< "N < gPh < L(n) < ¢,

and if 1 € } L(n) L} then

qP ) gqr—i—1

N <n < ¢P i < Pl < L(n) < ¢Pi.

If 5 =0 then
L
i e] - (")} — P2 <n<g i< Ln) <
gP=1" gp1
L
E} (n)’n] = " li<n<Ln)<¢bi
q? gt

Thus for any j we have



pflie} Lq(p ’qu@”
qfi
¢
II ( 11 0 ([(fﬂi, Yi) o (Tgp—i—2is Ygp—i—2i)Ygqp—i—1i " yqpflz}) )
p=j+1 ie} W’QLJ"”
qfi

. ( H L ([(xl,yz) o (T gp—i—14s Ygp-i—1i)Ygp—ii " yql’*li:|) )} * D (,y),

with D, (z,y) being the product of the remaining quotients (words beginning with (z;,y;)
with ¢ < %) Here we used the notion of generalized cylinders we defined earlier :

(v varni] ) = / Z i ([ w) - @i v )

i’ 7qp711-

2 ({(l’u Yi) - (%p—f—% yqp—f'—%)yqp—j—li e 'yqpflz‘D

= Z H ({(‘/BZ? yl) e ('rqp*j*%? yqpfj*%)(x;;v*j*li) yqp*jfli) T (xgpflia yql’*li)i|) )
x;P—j—li""’x;P*%

W ({($za yz) e (qupfj*li’ yqpfjfli)yqpfji s yqpflz})

= Z 1% (|:($17 yi) T (xqp—f—lh yqp—f—li)(xizpsz‘v qu—ji) T (x;p—liy yql’*li)}> )
x;P—ji""’w;P*Ii

the sums being taken over the cylinders that intersect . If (uy,), (vn) € (R*)N, we say that
Uy ~ Un, ifﬁ—:%lasn—)oo. Here we have

P8 Ay B BN )

qp ’ qpfl | 7qp+1

{ ]qulv:iqui}fvn(q_liéi_qu?
{ ] i 1::q“}~n(q_1)(qj+17_1)'

fyqp-i-l

Note that for i € } (")} q 11 the random variables

p]17qp1

Yinp: (2,y) € Xo —> —log,,, (M ([(%yi) o (Tgp-i—2 Ygqp-i—24)Ygp—i—1i " -yqpfliD)

are i.i.d and uniformly bounded, with expectation being H¥, ( _j—1Vay, 1), Fixing j+1<p <1
and letting n = ¢‘r, 7 — 0o, we can use Lemma A.2 to get that for P,-almost all (z,y) € Xq

10



g
Y Z }/i,n,p(xay) _> H ( p J— 1\/Ot)

(¢ =11 = ¢7) o
le} qP— J 10 gp— 1}
qfi
Thus
Z .
> (-1 —¢v) 3 YPYinp(, y)
] V4 ‘ i1 M2~ DA = ¢7)
Z€:| W’q" 1]
qfi

(q—l)(l—quy) i Hy, ( Op—j— 1\/04).

r~>oo P
p=j+1 q

Similarly if we define

Zim+ ) s —oss (1 ([ vn])).
Y

whose expectation is H* (al), for P,-almost all (z,y) € Xq we have
m1 54 /

gt )
w1 L 2 Zsley) o HE (@),

hence

Zj: (¢—1)° 3 14" Zin (2, y) 1) XJ: HY,, (o)
n(g—1)2  rooo E grtt
| Lo m} p=1
qP 7qp71

qfi
The third term is treated in similar manner. We have thus proved the first inequality. Now
it remains to prove the second inequality using D, (z,y). It is easily seen that there exists

C > 0 such that for all b >a >0
-1
’#{ieNﬂ]a,b} :qm}—qT(b—a) <C.

Thus the number of letters in A; X Ay appearing in the words of the developed D, (x,y) is

_ RS : Ln) L(n)] .
dy, := L(n) pz::l#{z € Nﬂ} =y .qM}p
l
(¢—=1)°L(n)p , £(t+1)
" < L(n) —p:1 s 5 C

REUY RO NS

< (€+12L(n) 0(0+1) o

q 2



On the other hand

e} G

¢
du > L(n) = Y - czrlesn-2] -5

so 322,27 % < +400. Define
Sn={(2,y) € Xa: Du(w,y) < (2mima)~"}.

Clearly P, (S,) <279, s0 P, (ﬂNzl U v Sqer) = 0, using Borel-Cantelli lemma. Hence for
P,-almost all (z,y) € Xq there exists N(z,y) such that (z,y) & S, for all n = ¢‘r > N(z,y).
For such (z,y) and n > N(xz,y), using (1), we have
_logm1(D7’b(xay)) < (
n n
< (€ +1)L(n)log,,, (2mims2) N ((€ + 1) log,,, (2mima)
- ngt 2n

dy log,,, (2mima)

So

. - logml (qur (z,y)) ({+1) lOgm2 (2mima)
lim sup 7 < 7 .
r—00 qr q
Finally for such (z,y) we get the second desired inequality.
O

2.2. Study of the validity of the Ledrappier-Young formula. Here we will discuss the
validity of the Ledrappier-Young formula in our context. Recall that for a shift-invariant
ergodic measure g on X, m,, the Ledrappier-Young formula is (see [8, Lemma 3.1] for a

proof)
1 1

1
dim =——h a—l—( — )h*é,
1) = Toglmn) ) T\ Toglrm) ~ Tog(mn) ) @)
where & is the standard shift map on ¥,,,, 7 is the projection on the second coordinate and

hu(o) is the entropy of p with respect to o. This rewrites as

1 1 1
dime(p) + (

(2) dimp (p) = Tog(m1) log(ma)  log(m1)

) dim, (1),

where for any Borel probability measure v on X, m,, dim.(v) denotes, whenever it exists,
its entropy dimension defined by
. . 1
dime(v) = lim —— > v([u])log (v ([u])),

H
T (A x A

and where dim, (7,v) is defined similarly. We will show that this fails to hold for P,, in general.
This is expected since [P, is not shift-invariant in general. However, we will give a sufficient
condition on y for P, to satisfy (2.4).

12



Let (Vy)y@r(E ) be the m,v-almost everywhere uniquely determined disintegration of
my,mog
the Borel probability measure v on ¥,,, ,,, with respect to m. Each v¥ is a Borel probability

measure on Y, m, supported on 7~1({y}), which can be computed using the formula

v([z|n] x {y}) = v([(z1,91) - (Tns Un)Ynt1 - Yp))

pﬁ\oo e ([Y1 - yp))

For some basics on the notion of disintegrated measure we advise [11] to the reader.

for m,v-almost all y € 7(Xy,, mo)-

Proposition 2.3. Let u be a Borel probability measure on 2. Then m.(P,) is exact dimen-
sional. Moreover P}, is exact dimensional for m.(Py)-almost all y € m(Xgq), and we have

essinf dim.(P}) = esssup dim.(P}).
Yy~ (Py) yroru (P)

Finally

dime (7 (Py)) + essinf dim.(P}) < dim.(P,),
Yoot (Pp)

with equality if and only if for all p > 1, for all I € «

s h-almost surely constant.

2

5 the map y € w(I) — p?(I) is

Proof. First note that for (z,y) € Xy, m,

m.(B,) [y =3 [Te([@ole]) =TT > w((@olr]) =Py va).

Tn <N i<N Tiyeey Tl
qfi qfi

Thus 7.(P,) is a Borel probability measure supported on 7(Xq) = Xr(q), which is equal to
Py, . Thus, using the one-dimensional case studied in [9] we easily get that m.(IP,) is exact

dimensional with

o) al
e (B) = (¢~ 1?3 75
p=1

Now we study P},. First observe that for ¢ such that ¢ {4, the map
Gi:y € W(XQ) — y|J¢ (yq z) =0 € W(Q)
is measure-preserving, i.e. (¢;)«(Pr,u) = mp. Let p >n > 1. For (z,y) € Xq we have

P, ([(z1,91) - (T Yn)Yns1 -~ Yp))
Prp ([y1 -+ yp])

I1 Z ju ({(ﬂfi,yi) s (qu—li’qu—li) (J'qui’qui) e ($;Zi7yqéi)])

i<pz' x!
qki” T .
qti T

= 0 w([@hw) (2l ve)])

iISpa,..al,
afi o
(XS PR PRESR)
o ) |

qfi
13



where ¢*~1i < n < ¢*i < ¢% < p < ¢"TY. Using the remark above and letting p — oo we
deduce that for m,(IP,)-almost all y

(B)" ([ala] > {y}) = TL i ([alor] < {la}) -
qti

We will use the P,-almost everywhere defined i.i.d. random variables

Xim : (@,y) € Xo — —log(u?Ve ([l | x {ls.}) for gt

whose expectation is

_/W(XQ) (/ﬁl(g) log (1 ([l ] % {Zﬂji}))d(PZ)(x,y))d(w*(Pﬂ))(g)
=/, (A, (241,,)) d(m(P)(5)
= [ HT (B () d(mep) (),

w(§2)

where Q, = 77 1({y}) N Q and A, is the partition of €2, into cylinders of length p on the first
coordinate z, if z| Jgr 1s of length p. Using again the same reasoning as in the one dimensional
case when computing dimg (P,) (see [9]), we get that for m.(P,)-almost all y, P is exact

dimensional and

}JHQ Sly))d(

dim,(PY) = (¢ — 1) 2 Z / pras: T ft) ().
p=1"7(

Now we have

H" (D () d(mep) (y)

m(€)

/ S w () log(u (1))d () ()

169( y)

== 3 [y P ) st (07 ())dren) )

Iea?
== 3 [, # 0 os 1) d(mp) )

Ica2

v (1) 1o (1)

< _1;:}2, W*M(F(I))(/ﬂ[) W*M(W(I))d(ﬂw)(y)) log (/77(1) mu(ﬂ(l'))d(mmw))
- o p(l)
= e (i)
~ H(adlal)

14



using Jensen’s inequality. The function x € [0, 1] — —x log(x) being strictly concave, this is a
strict inequality unless for all p > 1, for all I € 04]23, the map y € w(I) — p¥(I) is m,p-almost
surely constant. O

Using Lemma A.4 we get

Corollary 2.4. If for allp > 1, for all I € o3, the map y € w(I) — p¥(I) is almost surely
constant, then P, satisfies the Ledrappier-Young formula :
1 1 1

~ log(my) log(my) ~ log(my)

dimp (P,.) dim, (P,,) + ( ) dim, (7. (B,)) .

This sufficient condition is equivalent to saying that for allp > 1, forall I = [(z1,y1) - - - (2p, yp)] €

o2, for m,p-almost all y € m(I) we have

D a(e) - )
W= w @ - wlmw)

For instance, this is clearly satisfied when pu is an inhomogeneous Bernoulli product on 2. In

this case P, is not shift-invariant in general. However, we can easily build examples where
the equality in Corollary 2.4 does not hold.

Ezxample 2.5. Suppose that j = 0. Then there exists 2 and © a Borel probability measure on
) such that

1
< log(my)

1 1

dimp (P,) log(ms)  log(m1)

dim(P,) + dime (74 (P,)).
( )

Indeed, using the property H*(a2_; V ap) = H*(ap|a3_;) + H (o) we have

> a? 00 alla?
dimpr(B) = (4 = 1)° X H;H() +lg-D1-7Y Hm(q‘l)
p=1 p=1
and
1 . 1 1 .
gty <)+ (g ~ Ty ) e )

= 1 = [#(a)

042
= (- 1?3 S (g1 (1 )Y

o log(ma)  log(m)

It is then enough to choose 2 and p such that
« H'(aj) =0,
. H“(a})\ag_l) =0 for all p > 2,
« HM(ay) >0 forp>2.
Such Q and p yield the desired example.

2.3. Lower bound for dimpy(Xq). We are now interested in maximizing dimg(P,) over all
Borel probability measures p on . We define first the ;™ tree of prefixes of Q, which is a

15



directed graph I';(€2) whose set of vertices is (Jj—q Prefy, ;(£2), where Prefy ;(©2) = {@}. There
is a directed edge from a prefix
u=(21,91) - (Ths Y )Ykt1 "~ Yhtj

to another one v if

v=(21,91)  (Thy Y ) (T 1, Ykt 1) Yk42 * * * YhtjYhtj+1

for some w41 € {0,...,m; — 1} and yi1j41 € {0,...,mg — 1}. Moreover there is an edge
from @ to every u € Pref; ;(2). I';(Q2) is then a tree with its outdegree being bounded by
mimsg (except the first edges from @, which can be more numerous). The following result is
an analog of [9, Lemma 2.1].

Lemma 2.6. Let u € Pref;(Q) and T',;(2) be the tree of followers of uw in I';(2). Let

_2 7V, (©)
Vu,j () be its set of vertices. Then there exists a unique vector t = t(u) € {1 my 1~ 1)]
such that for all (x1,y1) - (Tks Yk)Yk1 - Yktj € Vau,; ()
oy
¢ty _
(3) (mlayl)"'(xk7yk)yk+1"'yk+j - /Z Z t(ﬂﬁl,yl)'"(ﬂfk,yk)(ﬁég_,_l:yk+1)yk+2"'yk+jy§c+j+1 ?

Yktsrr \ %kt
the sums being taken over the followers of (x1,y1) - (Thy Yk)Yk+1 - Yktj 1 Ly j ().

2 ]Vu,j(ﬂ)

Proof. Let Z = [1 m”(q R and F': Z — Z be given by

) 1
v\ a7ty
F(Z(xl7y1)"'(xkvyk)yk+l"'yk+]’) = Z Z Z(xl,yl)-~(;tk,yk)(x;€+l,yk+1)yk+2~~yk+jy§c+j+1

! !
Ykti+1 \Thk+1

We can see that F' is monotone for the pointwise partial order <, defined as
2 <2 &WweV,;(Q), z <z
for z,2' € Z. Indeed since ¢'7, g+1 > 0 we have
2 <2 = F(z2) < F(Z).

Denote by 1 the constant function equal to 1 over Z. Then 1 < F(1) < F?(1) < ---, so by
compactness (F"(1)),>1 has a pointwise limit ¢, which is a fixed point of F. Let us now verify
the uniqueness. Suppose that ¢t and ¢ are two fixed points of I’ and that ¢ is not smaller than
t' for < (without loss of generality). Let

w=inf{¢ > 1, t <&t}
2

~(g—1)

Clearly w < m, , and by continuity we have t < wt’, so w > 1. Now

t=F(t) < F(wt') = wiF(t’) = wit/,
16



contradicting the definition of w.

Furthermore we define

<R (E () )

/ !
1 2 y]+l

Proposition 2.7. For u = (x1,y1) - (Tk, Yk)Yk+1 - - Ykt; € Prefy ;(Q) define

@’v=1
bar )1 (Zx’l t(w'17y1)y2-"yj+1>

127]

p([u]) =

1

. H( > ( > ( (Z <Zt(x’17y1)yz---yg’py§+1p--.y;_H)qu)q

: ! !
p Yit1-p  Yirap Yitr T

)

k v-1

b1 1)+ (@p.yp)p 1 Vp g (Zx; t(xl7y1)'“(90;7yp)yp+1~'yp+j)
’ H Py
p=2 (xl7y1)"'(xp—l,Z/p—l)yp"'ypflJrj

where there are p 4+ 2 sums and p exponents % in each term of the first product. This defines

a Borel probability measure on €0 such that P, is the unique optimal measure, i.e. such

that dimg(P,) is maximal over all Borel probability measures i on Q. Moreover we have

dimy(P,) = % log,,,(tz). Using Theorem 2.1 we deduce that

. -1
dlmH(XQ) > logm2 (t@).
Proof. Let
I HE, (a}) & Hp(02 Val)
S@u) = (=172, =+ @- DA -d) D, qu
p=1 p=j+1
, < HE (a?_Val)
+(g—1(¢oy -1 ma\"p—j P/
(¢ D™ty >; -

We try to optimize S(£2, 1) over all Borel probability measures pon Q. Let S(£2) = max,, S(£, i).

Recall that for some measurable partitions P,Q of {2 we have

HYL,(PIQ) = ) (— > uPIQ) logmz(u(PlQ))> Q).

QEeQ PeP

Let p > 5+ 2. We have
2 1
HY, ( i 1\/04) HY, ( o, 1\/ap|041\/%+1)+H¢22(041\/aj+1)
and
1 2 1.2 1 2 1
Moreover

17



o2 1.2, 1
Hi (a1 Voglai Vg )
H(z1,91)v2 Y41 2 1
= Z 0@ y1)y2-yyr s (Olpfjf2 Vo, (Q(wl,yl)yz"-yg‘ﬂ))
T1,Y1,Y25--,Y5+1
and
HE (

1
_iVa, ]al\/a]H)

_ H(z1,91)v2 ¥ 41 2 1
- 0@ y1)y2-yyr s (ap—j—l Vi (Q(Cvlvyl)yQ"'ijrl)) ’
T1,Y1,Y25--5Y5+1
where
e(ml,yl)y2'“yj+1 = /“L([(mla yl)y2 U yj+1])7

“(w W1)Y2, Y
and Hp,, ="+ (oz% Vo,

the follower set of (w1, y1) in Q with y - - - y;41 being fixed, with respect to j
Then

(Q(wl,y1)y2---yj+1)) is the entropy of the partition of 2

T1,Y1)Y2Yj+1)

which

T1,Y1)Y2-Yj+1

is the normalized measure induced by f1on Qe y)ysy, -

S 1) = (g — 1) ZHM ,(a )Jr (q—l)(lqu'y)Hu (o JH)JFMH%Z(Q%VQ}H)

1 1
1 qp+ q.7+ q
1
+ 6 Z 0(I17y1)yz"~yj+1s (Q(ﬂﬁlyyl)yz"'yjﬂ’M(I17y1)y2“'yj+1) :
Z1,Y1,Y25---5Y5+1
Observe that the measure is completely determined by the knowledge of 6y, 4,)y..y;,, and
(a1 ,1)yz--y;4, O all (z1,y1)y2 - - - Yj+1. The optimization problems on Qa1 1) y2-y; 41 DEING
independent we get
L Hp(0p) | (a=1)(1 =)
S@ = max (q—1)2) e . HE (alyy)
0(5‘1791)92"'91'-&-1 pZ:l qp—l-l qj+1 @j+
v(g—1)
+ TH#LZ (a2 V a}ﬂ)
1
+ a Z e(xlzyl)yQ"'yj+IS (Q($1ayl)y2“'yj+1) :
T1,Y1,Y25--,Y5+1
After factorizing, we have
q—1 1 0 )
S(92) = max (H#LQ (B1) + - Z Oy, ( _ Z ng log,,, ( ;11/2
17y vz ui
1 Oyrys < Oy1yays <9y1y2y3>
+ - — —==log T
49 O %3: 041> "2\ Oqiys
1 Z 61/1922,/3 ( . + qj’)/ Z 0y1~.~yj+1 ( _ Z Q(xl,yl)y2~nyj+1 log (9(1:17y1)y2.‘.yj+1>
q Oy, Yit1 93/1'“3/;‘ 71 0y1~'yj+1 " 0y1~'yj+1
1 O (@1 ,y)y2-yj1
S S Cemnnn) ) ))))

18



We can now recursively optimize these quantities. First fix y1,...,y;4+1. To optimize the last
part of the above expression of S(2), we use Lemma A.1 and we obtain

S(Q($1,y1)y2-"yj+1)

(¢—1)
9(x17y1)y2---yj+1 _ My e
Opy oy
Yivitt s Q(””'yyﬁyzmyjﬂ
~v(g—1)
Zz’l my
and
Q(I . (9 . 1 0 .
1,Y1)Y2°Yj+1 1 (%1,y1)y2-Yj+1 (T1,y1)y2-Yj+1
_Z 08my + Z S Q(xhyl)yz'“y‘ﬂ
1 0y1~~~yj+1 0y1-~~yj+1 (g —1) o1 0y1-~~yj+1 !

S<Q(11,y1)y2‘“yj+1>
= log,,, ZmQ =)
1

Y1 Y41

0
Using again Lemma A.1, we get — , and so on. This gives us the weights 6

Y1y T1Y1)Y27 Y410

which are equal to

@Iy—1
A(a1,y1)y2 Y41 (Zw’l z(x'l,yl)yz'"yjﬂ)
(2

TS (2 (S (S ) ) )))

— / ’ /
P=0 Wity Yire—p Yirn T

S(Q(zl,y1>y2”-yg‘+1> 4S(Q)

— v(a—1) — q—1 ;
where Z(z) y1)ypoyjpq = Mo and zg = my" " . In particular we get

o= (S (S (S ) ) )

/ ! ! !
Y1 Ya Yit1 41

Now let us consider Q,, for fixed u = (21,91)y2 - - - yj+1 € Prefy j(©2). The optimization problem
is now analogous on this tree, but simpler : we now have to optimize the quantity

(¢g—1)(1— qj’y) H(x1,y1)y2:y;5 1
qj+1 Hm21 1)Y2 Y541 (aj-i-l (Q(x1,y1)y2-"yj+1)>

'Y(Q - 1) H(z1,y1)y2 - yj 2 1
+ q Hm21 R (al v Q1 (Q(Ihyl)yz'"yjﬂ))

+(11 Z 0(9c1,y1)(952,y2)93"'yj+2S

(Q(Zl7y1)(12,y2)y3~'yj+2) )

T2,Yj42 e(mlvyl)y2"'yj+l

which is after factorization
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e(zl’yl)y2”'yj+2 log (0(11,y1)y2---yj+2>
mo 9

(®1,y1)y2-Yj+1

q—1
W(—Z

Yjt+2 0(55173/1)92"'%'4»1

+qj,yze(rl’yl>yzmw+2(_z

Yjte ©(@1LY1)Y2Yj41 9 0($1791)92"‘yj+2

1 0 (1,91) (w2,2)y3-y;
+ ,y(q — 1) Z 1,Y1)(22,Y2)Y3 " Yj+2 S (Q(m,y1)(x2,y2)y3--~yj+2) >>

T2 H(xhyl)yz---yj+2

O

x1,Y1)(T2,Y2)Y3 " Yj 42 1 ‘9(11,y1)($27y2)y3'"yj+2
Ogmg 6(

T1,Y1)Y2 Y42

This gives the weights

giy—1
e(xl,yl)(xz,yz)yg---yj+2 - Z(@1,91) (w2,y2) Y3 Yj 42 (Zmé Z(Z’l7y1)(96'2,y2)y3~-yj+2)
- J+1 )
9( LT
(%1,y1)y2-Yj+1

o (Q(Ilvyl)(IQ,yz)yy“sz) s (Q(I1yy1)y2“‘y]’+1>

v(g—1) _ v(g—1)
» Z(m1,y1)y2 Y1 T and

T1,Y1)Y2-Yj+1

with Z(x1y1)(z2,y2)ys-yie2 — 12

v
Z(q:,lzZ)yz"'yﬂl - /Z (Z/ Z(xl’yl)(zé’yQ)y&“y;*Q) |

Yita \ T2

This is exactly equation (3) at the root of the graph I', ;(£2). The problem being the same
at each vertex for Iy, ;(€2), for all u € Pref; ;(€2), we can repeat the argument for the entire
graphs. We also get the given formula for the optimal measure from the form of all optimal
probability vectors that we found. The solutions z = z(u) of the systems (3) which we get

2 9 Vu,;(Q)

this way are in [1, my , thus we have z(u) = t(u) for all u (indeed for all £ > 1, for

all v € Pref, ;(2), for all 1 on ,, we have dimy(P,) < 2, so S(€2,) < 2).

2.4. Upper bound for dimy(Xg).

Theorem 2.8. Let i be the Borel probability measure on € defined in the last theorem, and
let P, be the corresponding Borel probability measure on Xq. Let (x,y) € Xq. Then

.. . —log,, (P,(By(x, -1
i it g Q(leiz) (@.9) _ 4 log,, (t),
from which we deduce that dimp(Xq) = q;ql log,,, (tz).
Proof. Recall that
1083, (Pu(Ba(2,9))) = = > Togyu, (i ([(21,93)(ais vs) -+ i Ygr1)gi -+ vgti] ) )
e
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where k and ¢ are determined by i < ¢i < --- < ¢* i <n < gFi<--- < qli < L(n) < gt

in each term of the sum.
Suppose first that j = 1 for the sake of simplicity. We have

1—gq

beryn)vs (Zm’l t(l‘pyl)yz>q7_1 (Zyé (in t(xllvyl)yé)qw) q

lo

p([(@1,91) - (@h, Yk) Y1) =

ay—1
) ﬁ s ) (@p.yp)up 1 (Zx; t($17y1)'“(%7yp)yp+1)
q2v )

p=2 (xlvyl)“'($p—17yp—1)yp

1—¢q

t(xl,yl)yz (Zx’l t($/1,yl)y2)q771 (Zyé (21/1 t(za’yl)yé)q’y) ’

122

p([(z1,91) - (e, Ye—1)YrVks1]) =

qy—1
Mt ) (@) ype (Zm;, t(m,w)---(x;,yp)ypH)

1

p=2 b ar,0)(@p-1.90-1)us
qy
. (Zz;c t(m,yl)“'(%,yk)yHl)
a2y
(@1,91) - (Tk—1,Y%—1) Yk
for k > 2,
. 7 \T,Y1)Y2 Ya 7 "\ T1,Y1)Y3
e ([y1y2]) = . ;
and

(Zyé (Zq;’l t(:c’17y1)yé)q’y)% ‘

to

n(lyi]) =
For each positive integer k < L(n), we can write kK = ¢"i with ¢ { 7 for some unique (r,1).
Now, developing the product P,(By(x,y)), we pick up
. é for each ¢ < L(n) such that ¢ 11,
* t(xiyyi)“'(zqri7yq’"i)yq7"+1i for each £ = ¢"i < n,
1 for each xk < {%J : that is because for these x we have ¢’k =

* tq2'Y

(z4, yz)( TyrirYqr i)yqr+li

q" 2% < L(n), and for x > {%J we have ¢’k > ¢ {%J +¢* > L(n),
-1

o for each xk < n,

)

(Zar,, twrw @i
ay L
¢ (Zx T (,yi) (= ;riquri)yqr-&-li) for each n <K S {%J

1—¢q

(Z bt i)y )qv) % for each i < {%J such that g 11,

Sy (Z tal iy )qv)% for each{ (q")J < i < L(n) such that ¢ {i.

Thus if we deﬁne
21



R(H) = 10gm2 (t(xi7'!/1')(xqiqui)'"(IqTi»yqri)yqr-‘rli)
for k = q"i with q 11,

R(k) = log,, Z% 06) @aistai) (@ ars 414

q i
for k = ¢"i with ¢ {4, and
W TRE. =S G
n k=1 n k=1
av
oY g (X (2t< e ) ),
" i<n, gt w7
we get
L(n L(n
108, (Pu(Bn(2,9))) = nuy, — v¢° {(Q)J Wl o | T4 {()J uTLf’”J — nu’

+ 2Lt — | 2 s — # € L L], 443} og 1)

q

Getting back to the general case, let us define j 4 2 sequences as follows. At first, set

- R

(]

)

=z

;HH

where
R(k) = logm2 (t(xi7yi)(xqi7yqi)'"(xqriquri)yqr—O—li"'yq'r“rji)
if Kk = ¢"i with ¢ 11, and

R(k) = log,,, Z t(rivyi)(zqi7yqi)"'($;ri7yqri)yqr+li"'yqr+jz‘
/

x!

q"i

if kK =¢q"i with ¢14. Then, for 3 <k <j+2let

S (2 (8 (S (Stmen) ) )

1 < . .
Z n, qfi git3—k; yq1+4*ki aJi

Q|

/)

where there are exactly k¥ — 1 sums and k — 3 exponents % in each log,,, term. It is easy to

see that all these sequences are nonnegative, bounded, with

VI<k<j+2 lim up, —uy=0.

22



Let € > 0. Using the definition of p we can get the following expression for n large enough,
which will be justified when studying the case d > 2

— 1080, (Pu(Bn(x,y))) g/t {L(n) J | n n_o & {LWJ 2

L(n) ~ L) Lt | T L)

ql =k

#{i € [1, L(n)], qti}
+ L(n) 10gm2 (t@)

< (“T;%J ) " ( ‘“TL;M)

j_li k+3 _  k+3

qg—1

1 2 (L) 1| L(n)
o (|, - )

+ log,,,, (tz) + €.

To conclude we now use Lemma A.3 and then let € — 0.
O

Ezample 2.9. If Q is a Sierpinski carpet, then clearly Xq = €. Using uniqueness in Theorem
2.6 we deduce that the values t(;, y1)y,..y; 4

typ-y;r - Equation (3) now reduces to

do not depend on z; and y;. We call them

I N ()T ST

Y2 Yj+1 Y3 Y42

Yj+2

where N(y2) = #{x2, (z2,y2) € A}. Thus

1
J j—1 j q
St = N7 Y (X))

Yj+1 Yi+1 S Yjt2

and so on. After having summed on the different coordinates we get

S (X (2 tzéi.yj+1)‘1’)'l’...)3>$:(yZQN(yQ)V);

Y2 Y3 Yj Yj+1

9
So finally ty = <Zy2 N(y2)7> " and dimp (Xq) = log,,, (Zw N(yg)V), which is as expected
in the McMullen formula. Also, we check that the maximizing measure is the Bernoulli prod-

uct measure used by McMullen.
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Ezample 2.10. Let ¢ = 2, m; = 3, me = 2 and D = {(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}.
We have j = 0. Let

o= o o o
e T = T e S =SS
= T = S == Qe
e S WG

O = O = =
O = O = ==

1
be a 0 — 1 matrix indexed by D x D. Let

Xa={(k, yk)iz1 € 32, A((xk, yk), (T2k, y2r)) = 1, k > 1}.

We look for the solutions t of the systems of equations described in Lemma 2.6. Using

uniqueness we know that

L0,00 = t0,1) = ta0 =20 a1 =l

Moreover
00— (t o +temo) + (ton +tan +ton) =26+ (too +2ta1)
©0.0) = (ta0) 120 o1 tta +ien 00 T (too +2tan)

Y
0 = (foo +tao +teo) +iy =@ + D),

thus ¢74

;1 Y
o) = 200 (t(o,O) +2(37+ 1) t{070)> . Finally we have

v Y vy . R v
o = (t(170> +1(1,0) +t<27o>) +(t<o,1> 1) +t<2,1>) =3 t(0,0)+(t(0,0) +2(37 4+ 1) t(o,o)) :

Using Scilab we get (o gy =~ 7.1446, thus dimpy (X4) = %103;2(75@) ~ 1.878.

2.5. The Minkowski dimension of Xg.

Theorem 2.11. We have

) I log,,, (|Prefy (02 C o log,, (|Pref,_j_1 j+1(
dimy (Xq) = (q—l)QZ -l p+10,p( ) + (g —1)(1—¢y) Z .l ppj Li+1(2)))
p=1 4 p=j+1 q

: o log,, ([Prefy—;;(€2)])
+@-D@@ -1 Y 2 qpﬁ 2

p=j+1
Proof. Recall that, by definition

IOgml (Prefn,L(n) -n (XQ ) )
n

dim/(Xq) = hnrgiogf
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We can again fix £ > j + 1 and take n = ¢‘r with r — oo in this liminf. Now using the

computations used in the proof of Theorem 2.2 we get

g, (Prety (X)) 2 3 {i € | 2L 2] g i} rog,, (Prefn ()
p=1

L
; L )
# 3 #lie] i DAt} (ot @)
: Ln) n
] . tqfipl Pref,_; ;(Q)]).
v 3 #{ie |5 ] st s (et
On the other hand
J L(n) L
85, (Pref 0y (X)) < 3 # fi € | 2L 2] b o, (Pret, 0
= ® g
S L) . .
+ 3 #{ie ] e ] ot g Pt sl
¢ . L(n) n .
+ 3 #{ie ]| ] ot s Pt

+ log,,,, (m1ma)dy,

by putting arbitrary digits in the remaining places (d,, being defined in (1)). Remember that
dp < (£+2ZL(N) + CW;U. By letting r — oo we obtain

dimy;(Xq) > (¢ —1)° EJ: 10y ([Prefo,p ()]) F@-D1-¢7) 3 10g,y,, (|Prefp—j—1,j+1(2)])

p=t o p=j+1 v
l
: log,,,, (|Pref,—;,; (€2)])
+lg= D@y -1 (et
p;& qu
and
— I 1 Prefy ,(Q : o Pref. 1 ..1(Q
dlmM(XQ) < (q _ 1)2 Z Ogmz(’ ;‘flom( )D + (q _ 1)(1 _ q’v) Z Ogmg(‘ re ppj Lj—&-l( )’)
p=1 q p=j+1 q
¢
: log,,, ([Prefp—j,; (€)])
+@ -1y -1 ? :
p;& qu
£+ 1

+ IOgmg (mlmQ) qg

Since /¢ is arbitrary we can conclude.
O

Proposition 2.12. We have dimy;(Xq) = dimg(Xq) if and only if the following four con-

ditions are satisfied
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the tree I';(Q) is spherically symmetric,

#{x1: (x1,y1)y2- - - yj+1 € Prefy j(Q)} does not depend on yi - - - yj+1 € Prefy j11(Q),
for 1. < p < j, #{ypt1:y1- Yps1 € Prefp p11(Q)} does not depend on yy---y, €
Prefy ,(€2),

forp>2, #{xp: (x1,y1) - (Zp, Yp)Yp+1 - - Yp+j € Prefy j(Q)} does not depend on
(@1, 91) - (Tp—1, Yp—1)Yp - - Yptj € Prefp1,;(92).

Proof. Compare the formulas in Theorems 2.2 and 2.11. We have

HY, (g5 V o) < log,, (|Pref,—;;()]),

with equality if and only if every [u] for u € Pref,_; ;(2) has equal measure y, and similar
results for Hf, (o) and HE (o2 5 1V o). Now, the expression of y in Proposition 2.7 and

uniqueness in Lemma 2.6 give the conditions we stated.

3. GENERALIZATION TO THE HIGHER DIMENSIONAL CASES

We are now trying to compute dimg (P,) in any dimension d > 2. €2 is now a closed subset
of
S peimg = (A1 % - x AN
where my > -+ > my > 2 and A; = {0,...,m; — 1}. We define

~ log(my)
" log(mi-1)
and
Li:neN— [n"
Vi
for 2 < i < d (L1 being the identity on N). We can again define the Borel probability
measures P, on Xq as in the two-dimensional case. For (x!,..., xd) € X we need to compute

Pu(Byn(zt,...,2%)), where
Bn(gvl7 . ,xd) = {(ul,...,ud) € Xmmy V1 <k <d, V1<i<(Lgo---oLi)(n), uf = xf}

3.1. Computation of dimy(P,) for 3-dimensional sponges. First suppose that d = 3,
as the computation of dimg(P,) in this case helps to better understand the general one. Let
jo, 73 be the unique non-negative integers such that ¢/2 < %2 < @2t and ¢ < %3 < I3t
Now we get two cases : either ¢72173 < 721% < @P2tistl op g2t < ﬁ < ¢72133+2 Suppose
we are in the first one. In this case for all n large enough we have ¢/2n < La(n) < ¢27!n,
¢3n < L3(n) < ¢**n and ¢7273n < L3(La(n)) < ¢273+1n. In order to compute dimpy (P,,)
we now use the same method as in Proposition 2.2. For n = ¢‘r with ¢ fixed we can write
¢
L3(Lz(n)) } Ls(La(n)) Ls(L2(n))

q , L3(La <n>)} = p|T|1 qP Togpl
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We now have for all r large enough

o 1<p < jy = | Lellal) Lalla@Ol] € 115 (n), Ly(Ls(n))
e ja+1<p< s+ = } (Zﬁ(")), Ls( L2 (n)) } In, L3(La(n))]. We have p23(3)1 €
} L3(€1127(n))v L3$g(ln))} and

Ls(L L . .
= } 3 i(")), pfgf_)l} —n<i< @B < Ly(n) < "0 < ¢ Vi < Ls(La(n)) < ¢,
q q

L L3(L j j
e} 2(n) Ls( z(n))} — < i < P < Ly(n) < P < PN < La(La(n)) < gPi.

gr—is=17  gp-1
e For js+jo+1 < p < £ we have 20 —no ¢ |Lallat) Lallafn)] anq
L op o L3 (L
qpfj;ij?),l < qpfgi)l, thus if ¢ E} 3(q§(n)), qp,h",jrl] then

qpszfjsfli <n< qpszfjsi < qpfjsfli < Lg(n) < qpfjsi < qpfli < L3(L2(n)) < qpi,

ifie} N 1) } then

qP—I2—33— 19 gp—i3—1

qp*jzfjsf%' <n< qp*jzfjsflz' < qp*jS*li < Lg(n) < qp*jsz' < qpfli < Lg(LQ(TI,)) < qu'7

and if i € } qLQW Ld(“(”))] then

p—j3—17 qP
qp—j2—j3—2i <n< qp—jz—]é—li < qp—js—Qi < Ly(n) < qp—jza—li < qp_li < L3(La(n)) < ¢i.
Denote by ag, a; and all, the partitions of €2 into cylinders of length p along all three coordi-

nates, the second and the third ones, and the third one respectively. Using the same approach

as in the two dimensional case we can get

‘ J3 HE (al) ' J2+73 HE ( V al)
dimp () = (¢ = 1) =25 + (@ = Dae™™ = 1) 3] q’;ﬁf .
p=1 p=j3+1
Jatis pru (a2 RV, al)
— _ J3 m3\~'p—j3—1 D
+(g= 1)1 —wd®) > pr
p=j3+1
.y ©  HE (a2 . . Vval . val)
+(q— 1)(7273q32ﬂ3+1 —1) Z m3\"p—j2—J3 P—J3 P
+1
p=j2+j3+1 7
00 o 2 1
+(g— D)0 =92 ) Y Hln a1 ¥ oy 2)
p=ja-tia+1 q°
+(g = 1)(1 — 73¢™) i (O pino1 Y Oy V )
p=j2+j3+1 @
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If we suppose now that ¢/2ts+l < L < gi2+is+2 e have 200 < for n large

> ,),273 qP—I3=1 = ¢p— 12 Jj3—2
enough and we get
. J3 HE (Ozl) 4 J2+i3+1 H,u ( 2 \/041)
dimpg (P) = (¢ —1)* Y~ + (¢ = (" = 1) Y iy T
p=1 4 p=js+1 q

1
Jotis+ H,u ( p o 1\/Od)

+(g—1)(1—7s¢) Y

P
p=j3+1 q
00 o 1
(4) +(g-Dpt -1 Y Hy (0 jp—js 11\/ s V )
+
p=jatjs+2 ¢
.y , < HY (o3 (Va2 . val)
+ (g — 1) (g —3¢) Y Cp—ga—ja- e
p=j2+J3+2 q
00 1
+ (-1 - 7273qj2+j3+1) Z Hy, ( Op—jo—js—2 V O‘p a1V O‘p)_
p=jatis+2 7"

In the next subsection we will adopt a more general point of view to avoid this dichotomy

case.

3.2. Results in any dimension. We get back to the general case, by first introducing
some notations and making a few observations before stating the theorems. Let I C N* and

K C [1,d] be finite sets. If z € Q and (z¥) ;7 is a finite set of coordinates of  (the upper
keK
index corresponding to the “geometric” coordinate and the lower one being the digit) we

define the generalized cylinder
{(xf)iel] Z{QEQ:yf:xf Viel, Yk € K}.
keK

For some arbitrary coordinate functions x1,...,xy € {{x € Q> 2F} 1 k € [1,d], i > 1} we

also define

Prefy, v () ={0a(2),....xn(@)) : x € Q}.
For all ¢t € [2,d], let j; € N such that

Vt
There is a unique sequence of integers (n¢)2<;<q such that
vVt e [1,d—1], qjd"'” 1ttt < ; < qjd+jd—1+"'+jt+1+'flt+1+1.
YdVd—1 " Vi+l

Let

Pt =Jd+ Jd—1 + -+ Jer1 + ey
The sequence (n;) takes its values in [0,d — 2] and is non-decreasing; moreover ng = 0 and
ne € {nyy1, 41+ 1} for 2 <t < d—1. The integers j, t € [2,d] and ny, t € [2,d — 1] are the

2d — 3 parameters mentioned in the introduction. Thus we get that for all n large enough,
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for s € [1,d — 1]

Lio--olL Lio-oLi(n) Lio---olL
vte [s,d—1], ¥p € [pa + 1,poci], 1(n) (JLao---oli(n) Lao---oLi(n)

)

gp—pt—1 @ -
and
Lgo---oLi(n) > Ly 10 0Li(n),
qP
with po = £ and Lo(n) = 0. If p € [1, pg_1] then
Lyo- q;) Li(n) > Lg 10---0Li(n).

For s € [1,d — 1] let 05 € &([s,d — 1]) be the unique permutation such that the sequence

<Las(t) 0---0 Ll(”))
Poat)—1
qPPee® te[s,d—1]

is non-decreasing for all n large enough and all p. We define

ool _ ] Lyo---oLi(n) Loywo---o Ll(n)]
p - )

qp ’ qp_pas(s)_l

it — | Lo oo Ln(n) Loy oo La(n)
P qP—PaS(t)—l ’ qp_pas(t+l)_1
for ¢t € [s,d — 2] and

el _ ] Ly,g-1y0---oLi(n) Lyo--- OLl(”)]
p - .

qPPos(d-1) -1 ’ qr—1

We will use the partitions

d—1
- U

}Ldo---oLl(n) Ldou.oLl(n)]

7 -1
@ @ t=s—1
for all p € [ps + 1,ps—1]. Observe that for i € } Ldo";le("), Ldo;];,O_Lll (n)} such that ¢ 1 i we have

¢ % < Lpo---oLi(n) < ¢" P*i

for all k € [1,d — 1]. Hence for k € [1,d — 1] either

PP 2 < Lpo---o0 Li(n) < gP Pl

or

qpfprli < Lpo---oLi(n) < ¢’ Pri.

29



Moreover if i € I;’t then

L O.--OL n L O-'.OL n
os(s) 1) _ Lo 1(n) _
qp_pcrs(s)_l - - qp_pas(t)_l -

Lo o--ola(n) Loy o--ola(n)
qp—pas<t+1>—1 - = qp—pos(dq)—l )

For s € [1,d — 1] and ¢t € [s — 1,d — 1] let (pZ’t)ke[[s,d_”] be defined by pZ’t =pr+ 1if
k € og([[s,t]), and p;* = pi otherwise. Then we have

s,t st
iely' =Vkels,d-1], ¢" P Y < Lpo---oLi(n) < ¢° P .
Thus the P,-mass of an arbitrary “quasi-cube” is

P(Bu(a',...,a%) :( 1 11 u([xdxi]))

p=1 ic Lgo---oLy(n) Lgo---oLj(n)
qP ’ qpfl

afi

d—1 Ps—1 d—1
®) I (I T 1T weien)
s=2 p=ps+1 t=s—1 Z'GI;’t
qti

l d—1 L
(I T T #(@@)) - Daletoa),
qfi

1 1
(et ) (e e e )|
gP7Ps’ g qP~Ps 1§ qp*p5+1 1Z PPy 1
d—1 d d—1 d d d
[ CmPr T I C T I o PR
¢’ Pa—2; " Pd-zg g Pa1 Tl TP ¢ Pd-14
. . t .
and Dy (x!,...,2%) is the residual term. Note that Cyi(x) can also be compactly written as

A +1 R e
[ws(x)z Ws(x)qp‘pi’t‘li} m ™ (x)q”"’?ti ™ (w)qp_p:il‘lj m
m {Wd(a:) oyt '-.'ﬂ'd(ﬂ?)qp—li:| ,

q d

—14

using the projections 7% : x> (2F,... 2%) for k € [1,d].

Now, for all p > 1 we define

30



. Lgjo---oLi(n) Lgo--oLi(n)] . .
o #lie]regpt R gt oy
n—o0 Ldo oLl(n) qp-'rl
. 0 . .
5551 — lim # {Z € I; - 4q J( Z} . (qpas(s)+1 Hfiizas(s)Jrl Yi — 1)((] - 1)
> =

n—co Lgo---0Lj(n) N A ’

#{ie]g’t:q“}

n—o0 Ldo---oL1<n)

d,d—1
(Sp

I

chS(t+1) ‘,i: . qpcrs(t) {i: (g — 1
_ [lio.(t11)11 i ‘ [0, )41 %) (g — 1) for t € [s.d— ]
q

and

i FUERT At (- Iy e = D)
p  nSoo Ldo---OLl(n) - qp '

Moreover denote by o/; the partition of 2 into cylinders of length p along the last k£ coordinates
for k € [1,d]. Finally let

d—1
Te St T 1 2 3 . d—s+1
Hy, = t E 1 oy HY, (ap \Y% O, _pot \Y% O, pst VeV e
—s5—

for s € [1,d].

Theorem 3.1. The Borel probability measure P, is exact dimensional and its dimension is

jd _ d—1 Ps—1 _ [e'e) "
S, p) = ZHZP + Z Z Hg,p + Z Hﬁp'
p=1 5=2 p=ps+1 p=p1+1
Proof. We use exactly the same method as in the proof of Theorem 2.2, using the computation
of P, (By(z!,...,x%)) above, the different families of i.i.d random variables

(Vo2 € Xa v —log(u(Cyi(2))) }

eyt

whose expectations are H* alva?2 ., vVad ., V-V ozdfsjtl respectively, and Theo-
ma \ 7P " Tp—pit, p—p5 p—ps ’

rem 2.1 and Lemma A.2 repeatedly. We then show again that the residual term D, (2!, ..., z9),
which is larger than or equal to the IP,-mass of those points in X which share the same sym-
bolic coordinates as x for those indices j which do not appear in the cylinders of the forme
C;f (x) with p < ¢, is P,-almost always negligible. To this end, we use like in the proof of

Theorem 2.2 Borel-Cantelli lemma and the set

S, = {(:L‘l,. . .,.%'d) € Xq: Dn(l‘l,. . .,xd) < (2m1m2 . -md)_d"},
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where the exponent

0
Lio--oL Lio---ol
dp=Lgo---0oLi(n E {iENﬂ] d° ° 1(n)7 d° ° 1(n)]:qfi}p

can likewise easily be controlled. O

We can again optimize this quantity following the method we used in the two-dimensional
case, by conditioning all the entropy terms appearing in the third part of this expression for
p > p1 + 2 by the finest partition appearing in the term H {L pi+1- We know that for all s we
have

it N
t<t'=Vk, pi" <p",
(6) / s,t st
t<t' = dk, p,” <p. .,
so this partition is the one appearing in the ¢t = 0 term, i.e.

1 2 3 ol
a =« Vo Vo Vo .
P+l Tpi1—ph® Y Tpi1-p) Y, p1+1fp}'0

| 2 d
= 0p 41V Xpip1py g V ap1+1—pd_2 Ve Vo
If C is a cylinder of this partition in €2, denote by Q¢, 6c and uc the associate rooted set

at C € a in ), its p-mass and the normalized measure induced on it respectively. Since for
p>p1+2andte€[0,d— 1] we can write

H* (alva? 1. vVa® 1. V---vat .,
P—Py_1 Py_o P—py’

zHﬁbd(a)wLH#@d(a;\/ai e Vad 4, veeevad 1,t|oz)

_pdfl p— Pd 2 pP—p]
c%:c CHmg | ¥p—1 p— p;tl 1 p—pYt,—1 pip},til( ),
we get
— Ps—1
m
ZHdp+Z Z H
s=2 p=ps+1
d
o? eV a
(7) Z 1+1 < p1+1\/ Pl pd 1\/ V pl-‘rl—p%’t)

00 d—1
1
1,0
Gt Yo D" | Hh (o) + p > 0cS(Qc, pe).
p=p1+2 t=0 cec

Now we can obtain the unique optimal measure as in the proof of Theorem 2.7 by getting
the go with a recursive reasoning and repeating the argument for the entire suitable graphs.
To make things clearer and to highlight the fact that the structure of the optimal measure
is similar to the one appearing in the two-dimensional case, we introduce now the unique

sequence of coordinate functions (;)i>1 such that if we reorder the partitions of {2 appearing
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in the expression of dimg(P,) above as an increasing sequence 51 < 2 < --- (the symbol <
corresponding there to the “finer than” partial order) we have

— [ 108, (1 (Ba (o) -+ xal))) ()

for all ¢ > 1. Here we used a slight generalization of the notion of cylinders we defined at the
beginning of Section 3.2, allowing ourselves to use any family A C N* x [[1, d] of coordinates
of x and not necessarily a product. This order is exactly the following (using again facts (6)):
2

O‘%S <apd 1 Sapd 1V f,d 11— pﬁﬁ }d 1 <apd 1+1\/Ozpd 1+1— pcdl }d 2 <

all’d*1+2v 12?d 1+2— PZ }d ! <apd 1+2\/ Pd—1+2— Pdiid 2 S <apd 2\/04127(1 2— Pdiid =
a;’d72vaid2piid2< <a102_|r1\/04p_~_1 Pidllv -V« iil_pgdlg...g

Q1 Vg g Vo Ve e S Sap Vg e Voo ValT e S S

ap, Va2 L Ve Va Z;—lp%lSa;’ﬁlvaiﬂ—p;d;lv' \/ap+1_1d1§...§
azl,1+1\/oz12)1+17p;,31 V- \/ozlerl ph :oz<am+2\/ap Lo bt \/...\/Ozz1+2_pi,d,1 < <
0411)1+2\/Oé2+2 o VeooVa z1+2 o S

For example, when d = 3 and dimpg(IP,) is given by (4), this sequence is given by

N (.3 3,3 2 .3 2 3 1.2
(Xi)i>1 = (xl,...,ij,a:jSH,xl,ijH,xQ,...,xj2+j3+2,x1,:cj2+2,...) i

We also denote by (8;);c1,n7 the sequence of real factors giving weights to the IV entropies in
S(Q, 1) (see (7)) when being reordered that way. Let

d—1

N=pi+1+> (p1+1—pp)
=1

be the number of coordinates x; appearing in the partition « distinguished above. Finally for
(X1,..., Xn) € Prefy, () let T'x, . x,)(§2) be the directed graph whose set of vertices
is (X1,..., XN)UUEZ Prefy, vy, (), and where for all £ > 0 there is a directed edge from
u = X1+ XNtea to another one v if and only if v = X3 -+ Xy yea XNa+1 - Xy (e41)a for
some X;, i € [N +4d+1, N+ (£ + 1)d].

N
&;
Theorem 3.2. Let w; = Zﬁil 0;, Wi = %75 for2 <k < N and w1 = %N. For all
i=k—1""
Q
(X1,...,XnN) € Prefy, . () there is a unique vectort € {1 such that

for all £ >0 and (X1,..., XNyea) € T(xy,.. . xy) () we have

1 wN WN—d+3\ WN—d+2
ON—d+19¥N+1 — Ce e
(tX1~~-XN+w) + o= § : ( z : ( < Z txy X;\I+(£+1)d) > ) ’

7 ’ !’
XN edt1 XN+ed+2 XN+(£+1)d
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where ON_g+1 = wWiwa - - - WN—g+1. Moreover if we define

X (S (Foes)) ™))"

Xi X Xy

the unique Borel probability measure maximizing S(Q, ) is defined for all £ > 0 by

(8)
p (X1 Xnged])

e (e (-2 <Z>) Y

’ ’
X Xp+1 N—-1

4 1 d wN WN—dt+p+1\ WN—d+p—1
t t wN d+1¥N+1 .
X1 XNtrd X1 XNg(h=1)d tx,- XN tra
X/

k=1 p=2 N+(k—1)d+p XNtk

and its Hausdorff dimension is equal to wy log,, (tz).

Proof. The existence and uniqueness of ¢ are checked using a fixed point theorem as in Lemma
2.6. We get with these notations that

N

1

Q :u) = Z 5ZHT'L)L1d(BZ) + 6 Z 6X1"'XNS(QX1“-XN7:U’Xr--XN)
i=1 X1 XN

0 0
:("Jl(H#ld(ﬁl)_‘_a&ZeXl( Z X1X21 ( ;()1()1(2>
+ w3 Z 0x,x2 < Z 9)0(1X2X3 log <9X1X2X3>
X1Xo

0x, x5

+w Z X1X2X3<..'+wN Z GXI"'XNfl <—Z 9X1 XN 1 <0X1“'XN )
X3 N-1 TAN— XN

9X1X2 0X1 ‘XN GXI“‘anl

+UJN+1209X17XNS(QX1 X HX - XN)> ))))

XN-1

Optimizing this expression as before, we get that 0x,..x, equals

2 (2 (T (Sovewmen) ) =)

/ ’ ’ ’
Xp+ 1 XN* 1 XN

5(Q)

wN 1S QX X w . . . L.
where zx,..x, = my #15(%xxy) and zg = m, ' . It remains to optimize the conditional

measures on the subtrees Qx,...x, , by maximizing the expression S (x,..xy, X, .- X, ) Which
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is equal to
N

LXe X 1 9X1"'XN+d
Z 5iHmd1 N (52 (QXr"XN)) + - Z 97‘9 (Qxl"'XN+d7/'LX1"'XN+d)
i=N—d+1 XNt1roXnga - SUXN
. O0x,..x Ox,..x
g = Y g, (XX
0X1"'XN 0X1"'XN
XNt1
0x,...x
1" AN+1
+ WN—d+2 Z 9(
XnNt1 XiXn
Ox1 - Xnta_1 0x1Xnia 0X) Xy
by Y B (5 B g (0
9X1"'XN a2 X1 XNtd—1 6X1"'XN d—1
XNtd—1 + XN+d + +

Ox,...
Fova 3 g (00 v ) ) . >>

and repeating the argument for the entire graphs. This yields the desired results.
O

Theorem 3.3. Let i be the Borel probability measure on ) defined in the last theorem, and
let P, be the corresponding probability measure on Xq. Let v € Xq. Then

-1 P.(B,
i inf —108ma Pu(Bn(2)))
n—oo Ldo...oLl(n)

< wilog,, (tg).

Using Theorem 2.1 we deduce that

. -1
dimy(Xq) = w1 log,, (tz) = a . log,,,(tz).

qT
following increasing sequence :

d
roof. Let n) = T E . e can reorder the elements o n) as the
Proof. Let A U {Leemoli(n) Nb W der the el fA h
k=1
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Lgo---0Li(n) >“.>Ldo-~-oL1(n)
q - - qu,1
Ldo-~~oL1(n)>Ld_1o---oL1(n)>”' Ly qo0- oLl()>Ldo---oL1(n)>

gpa—1+1 = q = = qPd—2—Pa—1—1 = qPd—2 -

LO'd_Q(d—l)o"'OLl(n) > LUd_Q(d—Q)o"'OLl( ) > Ld OLl(n)
qu—Q—pad_Q(dq) qu—Q_pod_Q(d72) - qu72+1 - -
Ly, ya-1y©---0Li(n) - Ly, yd—2)© - Li(n) - Lgo---oLy(n) .
qu73*pgd72(d71)*1 = qu737p0d72(d72)71 = qPd—3 =

LdO"'OLl(n) S Lal(dfl)o---oLl(n) s Lgl(l)o"'OLl(n) > Ldo.--oLl(n)
qrt - qplfpgl(dq) - - qplfpal(l) - qp1+1

Lo (d-1y© -0 Li(n) Loqyo---oLi(n) _ Lgo---oLi(n)
> > >
qpl_pal(dfl)""l = = qpl—Pal<1)+1 - qp1t2

Ldo---oLl(n)Z ZLd—lo"'oLl(n)Z

-2

>

We denote by
¢o(n) = Lgo---oLi(n) > ¢1(n) = ¢2(n) =

Ldo OL1 ( )

this sequence, which is valid for all n. Observe that ¢y (n) = e

We now fix n > 1.
Let S > 0 be the unique integer such that we have

ps(n) <1< gg-1(n) < -+ < go(n).

We can write S = N + Md + R, with M > 0 and R € [0,d — 1]. Recall formula (5). With
these notations we get that

S
(9) P (Bn(z)) = [] 11 i (xa (zly) - xw (2])]) -
k=1 ¢k(n)<iq§i¢k—l(n)

Now, for all 1 <k < N — 1, we have

w(xa (@lr) - xe (2]5)])

1 k wN wp—1
10 - % H ( Z , o < Z /tX1(m|Ji)"'X;D1(m|Ji)Xp(lei)/'”XN(ﬂJi)/) o )
(10) p=2 xp(217;) xw (]
wWN Wk41
Z T ( Z tX1($|Ji)'“Xk($Ji)Xk+1(33|Ji)/“'XN(x|Ji)/> o ) .
Xk+1(2l;) xn(xlg;)
If R =0 then
m(xa (@) - XNaa (2].2,)])
M _ 1
— . WN—d+1¥N+1
= p(xa (@l5) - xn (z])] Tl;[l tX1 (2l;)~xn+ra(zls;) tX1(x‘Ji)"'XN+(r71)d(x|Ji)
d wN WN—dtp+1\ WN—d+p—1
1:[ ( Z / ( ( Z L 1(JJJZ-)“'XN+rd($J7;)/) ) ) ]’
p=2 XN+ (r—1ya+p(2]7;) XN+rd(-'E|JL
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and if R € [[1,d — 1] then
(11)
w(xa (@lr) - xN+amarr (2]5,)])

M _ 1
- . SN—d+19N+1
=p (D (@) - xw (2]5,)] 1_[1 {t (2l ) v sra(@l ) D (21 ) xr s o nra(xl, )

r=
d wN WN—d4p+1\ WN—d+p—1
H< > (( >t AXMM(I%),) ) > ]
p=2 XN+(r—1)d+p(I‘Ji)/ XN+7d(I|J

. —(ON—dt1wN4+1) "
X1 (IlJ,i)H-XN+1\/1d(x|Ji)

ﬁ( 2 (( > tmw)-“wawd(m)’)MN"')wHHI)WHP—l

p— ’ ’
p=2 XN+]VId+p(1‘Ji) XN+(M+1)¢L(I|J1;)
wN WN—d+R+1
2 : < 2 : tXl(zJi)"'XN+(M+1)d(3:|Ji)/> ) :
XN+Md+R+1(2];) XN (Mm+1ya(zls;)

Observe that for k£ € [0,d] and r € N we have ¢y _g4ra(n) = 4’1\';733(”)_ Thus for k € [0,d — 1]
and r € N

(12) ON—ktrd(n) <1 < ON—ktrd—1(n) == On-k(n) < "1 < dN_k—1(n).

Now we can develop the expression (9) of P,(By(x)) and group together the terms with the
same number of sums. We get ' for all 1 < i < ¢o(n) such that g { i; using property (12)

we get
M
H H tX1(ff\Ji)"'XN+rd(ff\Ji) = H tXl(x|Ji)"'XN+rd(33|Ji)’
=0 1<i<¢nirg—1(n) k=q"i<¢Nn_1(n)
afi qti
and
M
H H t*(®N7d+1wN+1)_1 _ H t*(‘:’N—dlewN-H)_l .
x1(x|s,) - XxNtra(zls) x1(z|s;) - xNtra(zls,)’
r=0 1<i<¢n4ra(n) k=q"i<¢pn(n)
qti ati

we gather the product of terms coming from (10) with k € [1, N — d] to get

N—d WN Wk+1
II II ( > ( > tX1<x|Ji>---Xk(x|Ji>Xk+1(a:Jiy---xmmi)/) )
k=1 ¢p(n)<i<dr—1(n) ~xr+1(zls;) xn (x]g;)
N wN WN—p+2
II 11 (T (T o) )
p=d+1 ¢n_p11(N)<i<ON_p(n) " XN-p+2(zls;)’ xn (zl5,)

qfi
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and similarly

s wN Wkt
H H ( Z ( Z tx1(zJi)mxk(ﬂ?Ji)X’C‘H(le'i)/'“XN(IlJi)/) )

k=N—d+1 ¢ (n)<i<¢r-1(n) *Xwr+1(zls;)’ xn(zl7;)

wN WN—p+2
: H H ( Z ( Z tXl(zl"i)‘“XN(ﬂJi),) ) )
XN

p=2 ¢N—p+1(")<+?§¢N—p(n) XN —pt2(xls;) (z]5;)
q1t

~

that we combine with

M d—1 wN WN—d+R+1
| | | I | I < E ( E tX1<z|Ji)"‘XN+(1VI+1)d(fE|J,L),> )
k=0 R=1 ¢N1ka+RrR(N)<i<PN1kd+R-1(N) ~XNtkatr+1(2|1;) XN+ (k+1ya(zls;)’

qti

M+1 d B o
= H H H < Z < Z tXl(ZJi)“‘XNJrrd(zJi)') ) 7

r=1 p=2¢Niri—p+1(N)<i<PNtrd—p(R) ~XN4rd—pt+2(T]s;)’ XN +ra(®];)

qfi
to get
d wN WN —pt2
I1 II ( > ( > tm(xji)---mw(mm)') ) 3
P=2 ¢n—pr1(n)<n=q"i<PN—p(n) " XN+ra-pt2(e]s;)’ XN+rd(z];)

qfi

finally we combine in a similar way all the remaining terms from the products (11) and (10)

and obtain

d wN WN_pt2—1
II II ( > ( > %<x|JZ.)~--XN+Td<x|Ji)'> )
p=2 I*”v=qTiS¢i(v'—p+1(n) XN+rd—p+2(@|s;) XN+rd(®5;)’

qti

N WN WN_pt2—1

II II ( > ( > %(mi)---m(m)/) ) :
p=d+1l i<¢n_pir1(n) " xwv-pra2(zls;) xn(zl7,)

qfi
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Thus

Pu(Bn())

_ —#{i€[l,do(n)], ati} —(@n- )7t
=t e ( II %<x|.u>~--xw+m<z|.n>>( II txl@NJi?fl;fLmi))
k=q"i<dpN_1(n) k=q"i<¢n(n)
qfi qfi
d WN wN7P+271

I I ( > ( 3 tXl(m)___XNW(I,Ji),> )
P=2 k=q"i<odN_p+1(n) " XN4ra—pt+2(z]s;) XN +ra(z]s;)

qti
d

wN WN —p+2
. H H ( Z ( Z txl(w‘]'i)"'XN+rd(II?.Ii)/> )

P=2 ¢N—pt+1(n)<k=q"i<IN_p(n) XNtra—p+2(z|s;) XN+ra(zlr;)
qti

N WN WN—pt2—1
11 II < > ( > fX1<xJi)~-><N<m>’> )

p=d+1 i<on_pt1(n) " xN-pt2(z]s;) xn(z];)

qfi
N WN WN —p+2
I T (2 o neer) )
p=d+1 ¢n_pr1(n)<i<on_p(n) XN7p+2(w‘Ji)/ XN(I‘Ji)/

afi

For k = ¢"i with ¢ 11, let
Ri(k) = 10gmd (tX1($\Ji)"'XN+rd($\Ji)) )

R2("<':) = logmd ( Z tXl(lei)"'XN-Q—T‘d(lei)/)7

XN+rd(z]g;)

and for p € [3,d], let

wN WN-—p+3
Rp(/{) = logmd ( Z ( ( Z tXl(l'Ji)"'XJ\H—Td(Z'Ji)/) > )

XN+rd—p+2(z],) XN+rd(z]1,)

For p € [1,d] and n > 1 let
1 n
--%'r
n = p(K)

and for p € [[d+ 1, N let

wN WN—_p+3
iy 10gmd< > (( > tx1(in)~~XN(w|Ji)’> ) )

" i<n, qi XN —p+2(x]s;) xn(zlg;)

This gives us IV bounded sequences. We can now write

—log,,,,(Pu(Bn(x))) = (@N—d+1wN+1)71L¢N(n)Jui¢N(n)J — lon—1(n)]ulyy ()

+ Z (Lwsr ()l ) = wrsalontm)]uly b))
+ #{Z € [1, po(n)] } log,,, (tz).
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Furthermore some basic recursive computations give us the values of the exponents

d—1 DPs—1 — o0 —
Z5dd 1+Z Z Z 5st+ Z Z6lt q—-1
s=2 p=ps+1t=s—1 p=p1+1 t=0
o #liSLao 0 L) i)
n—o00 Ldo---oLl(n) ’
. Lgo---oLq(
—51 . #{Z<u qu} 1 w1—51—52 1
WQZ = lim - - :77 w3:7:7’
w1 n—oo #{i < Lgjo---oLi(n):qti} ¢ wy — 01 q
1
Wy=""=Wp, 42 = 5, Wpg_1+3 = 'qupdil’
kz_:l(s
w1 — ‘ :
it = —r ey = e = iy 2SO () a1])
Pd—1 - DPa—1+1"7 t - k—2 _n—><>o 1 < n): i’
Ydaq Wi — 3 6 #{i < pp—2(n) : qfi}
=1
d D41 Vi qpl—pal(l)
WN = qp01(1)_p01(2)d70#, WN41 =
[limo (2)41 i (a= DIy v
This yields
d
(@Nn—driwn+1) =g OF T
i=0q (1)+1

and the asymptotic equivalences
lon-1(n)] ~ (@n—an1wn+1) " [on(n)],
LPrt1(n)] ~ w2 dr(n)]

for all k € [0, N — 2], when n — +o00. We conclude by using again lemma A.3.

Theorem 3.4. For ny,...,nqg € N let

Pref,, . n,(Q) = {u € ﬁ([[O,mi — 1] x -+ x [0,mg — 1])™ : QN [u] # @} .

=1
We have

dimp;(Xq) = Zédd Y[Prefy 0,(Q)]
p=1
— Ps—1

d—1
55! |Pref, Q
+ Z Z Z p | 07" 707p pi t:pi tipzilz ’pd t2 pd l’pd 1 ( )|

s=2 p=ps+1 t=s—1

00 -1
+ Z 25]1)’t|P1"ef e e e 1t L 1 ()]

p—py Py 7p2 N ’p(i 2 pd l’pd 1
p=p1+1 t=0

Proof. The proof follows the same path as in the two-dimensional case. We leave it to the

reader, along with the characterization of the equality case with the Hausdorff dimension. [J
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APPENDIX A.

Lemma A.1. Let p1,...,pm >0 with > 7 p1 = 1, and let q1,...,qm € R. Then

m m
> pi(—log(ps) + ¢;) < log <Z eqi> ,
=1 i=1

with equality if and only if p; = s~z for all .

i

j=1

Proof. See [3, Corollary 1.5].
U

Lemma A.2. Let (Q,F,P) be a probability space, (my) € (NN be a strictly increasing
sequence such that Y.°° | 2> < 400 and for all n > 1 let (Xin)ie[1,mn] be a family of inde-

m’VL
pendent centered random variables on (Q, F,IP). Assume that there exists K > 0 such that

Vn € N*, Vi € [1,my], E [X;fn} < K.
Then min > Xin ﬁ 0.
Proof. Fix n > 1. We have

mMn 4 mMn
(Z Xn> ] =F [Z Xi,+6> Xﬁnxﬁn]
=1 =1

1<j

E

<myK + 3mn(mn - 1)K

< 3Km?

4
by using independence and Jensen’s inequality. Now Y >° ; (n% Yoo Xi,n) is a well-defined

random variable taking values in Rt U{+o00}. Moreover by the monotone convergence theorem

00 1 Mn 4 o q mMn 4 © q
> ( IXW> =2 m—%]E [(ZZIXW> ] <BK Y — < +oo.

E

n=1 \""n ;= n—1 n=1"n

4
1 m 1 m a.s
Thus Y521 (7 X Xip) < 400 a.s and ;1 Y7 X, —25 0,

Lemma A.3. Let p € N* and for 1 < j < p let (u)) € RN be p bounded sequences with

; I .0 =
i ey =, = 0.

For j € [1,p] let ¢;,v; : N = N be such that
Jej,r; >0, 3A;, Bj € N, Vn, |¢;(n) — [rjn]| < Aj and [¢j(n) — [¢;n]| < Bj.
Then we have

p . .
1%“#%.‘?; (e 0y = ) <O
I



Proof. Observe that for all j and n we have [rjn] € {¢;(n) + k, |k| < A;} and [¢jn] €
{1%(71) +k, k| < Bj}. Thus

J _ad J _ad
146 ) = oy | S X (00 = U, 4l 52,0

using the hypothesis on u/ above. Similarly ]ufb_(n) - ujfc_nw] — 0. Now conclude with [6,
J J n—o0
Lemma 5.4] or [8, Lemma 4.1].

g

Lemma A.4. Let ;1 be a Borel probability measure on Xy, m,. Suppose that pn is exact

dimensional with respect to the metric

with dimension §. Denote by do the lower Hausdorff dimension of m.u with respect to the
metric induced by d, and let 01 and 01 be the essential infimum and the essential supremum
of the lower Hausdorff dimensions of the conditional measures p¥ with respect to d again,
where iy, is obtained from the disintegration of p with respect to mep. Then, with respect to

the metric d, for u-almost every point z we have

51 59 ) S 5 ( 1 1 )
+ < dimy,.(p, 2) < dimyee(p, 2) < — — 01.
log(my) " log(mg) = Secltt:2) < dimuoelits 2) < ey =\ fogmg) ~ Tog(mn)) 2

So, if 61 = 81 and § = §1 + & then p is exact dimensional with respect to d.

Proof. The first inequality follows from the proof of a result of Marstrand (see [2, Theorem
5.8]), while the second one can be deduced from the proof of [5, Theorem 2.11]. O
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