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Let m1 ≥ m2 ≥ 2 be integers. We consider subsets of the product symbolic sequence space ({0, . . . , m1 -1} × {0, . . . , m2 -1}) N * that are invariant under the action of the semigroup of multiplicative integers. These sets are defined following Kenyon, Peres and Solomyak and using a fixed integer q ≥ 2. We compute the Hausdorff and Minkowski dimensions of the projection of these sets onto an affine grid of the unit square. The proof of our Hausdorff dimension formula proceeds via a variational principle over some class of Borel probability measures on the studied sets. This extends well-known results on self-affine Sierpiński carpets. However, the combinatoric arguments we use in our proofs are more elaborate than in the self-similar case and involve a new parameter, namely j = log q log(m 1 ) log(m 2 ) .

We then generalize our results to the same subsets defined in dimension d ≥ 2. There, the situation is even more delicate and our formulas involve a collection of 2d -3 parameters.

For the reader's convenience we summarize a list of commonly used symbols below : (x, y)| J i (x, y)| J i := ((x q i , y q i )) Ω y := Ω ∩ π -1 ({y}) [u] Generalized cylinder on Σ m 1 ,m 2 , see Section 2.1 Pref p, (Ω) (p × )-sized prefixes of Ω, see Section 2.1

A i Alphabet {0, . . . , m i -1} Σ m 1 ,m 2 Symbolic space (A 1 × A 2 ) N * q Integer ≥ 2 Ω Closed subset of Σ m 1 ,m 2 X Ω Closed subset of Σ m 1 ,m 2 invariant
α 1 k α 1 k := {Ω ∩ [u] : u ∈ Pref 0,k (Ω)} α 2 k α 2 k := {Ω ∩ [u] : u ∈ Pref k,0 (Ω)} H µ m 2
µ-entropy of a finite partition with the base-m 2 logarithm j

The unique non-negative integer such that q j ≤ γ -1 < q j+1 Ω u For u = (x 1 , y 1 )

• • • (x k , y k )y k+1 • • • y k+j ∈ Pref k,j (Ω)
, Ω u is the follower set of (x 1 , y 1 ) • • • (x k , y k ) in Ω with y k+1 , . . . , y k+j being fixed

µ u
The normalized measure induced by µ on Ω u dim e (ν) Entropy dimension of the measure ν ν y

Disintegration of the measure ν with respect to π Γ j (Ω) j th tree of prefixes of Ω, see Section 2.3 Γ u,j (Ω) Tree of followers of u in Γ j (Ω), see Section 2.3 t = t(u) The unique vector defined on the set of vertices of Γ u,j (Ω) satisfying equation (3) t ∅ See Section 2.3

Introduction

Let m 1 ≥ m 2 ≥ 2 and q ≥ 2 be integers. Let Ω be a closed subset of

Σ m 1 ,m 2 = (A 1 × A 2 ) N * ,
where A 1 = {0, . . . , m 1 -1} and A 2 = {0, . . . , m 2 -1}. We can associate to Ω a closed subset of the torus T 2 by considering ψ(Ω), where ψ is the coding map defined as

ψ : (x k , y k ) ∞ k=1 ∈ Σ m 1 ,m 2 -→ ∞ k=1 x k m k 1 , ∞ k=1 y k m k 2 ∈ T 2 .
Let σ be the standard shift map on Σ m 1 ,m 2 and π be the projection on the second coordinate. Closed subsets of Σ m 1 ,m 2 that are σ-invariant are sent through ψ to closed subsets of T 2 that are invariant under the diagonal endomorphism of T 2 ;

(x, y) ∈ T 2 -→ (m 1 x, m 2 x).

Classical examples of such subsets are Sierpiński carpets. Given

∅ = A ⊂ {0, . . . , m 1 -1} × {0, . . . , m 2 -1}, consider Ω = {(x, y) = (x k , y k ) ∞ k=1 ∈ Σ m 1 ,m 2 : ∀k ≥ 1, (x k , y k ) ∈ A}.
Then ψ(Ω) is a Sierpiński carpet. In this case, ψ(Ω) is the attractor of the iterated function system made of the contractions f (i,j) : (x, y) ∈ T 2 → x+i m 1 , y+j m 2 with (i, j) ∈ A. When m 1 = m 2 = m, we obtain a self-similar fractal and it is well-known that dim H (ψ(Ω)) = dim M (ψ(Ω)) = log(#A) log(m) ,

where dim H and dim M stand for the Hausdorff and Minkowski (also called box-counting) dimensions respectively. See for example Chapter 2 of [START_REF] Falconer | Techniques in fractal geometry[END_REF]. More generally, as proved in [START_REF] Furstenberg | Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation[END_REF], if Ω is a closed shift-invariant subset of Σ m,m then we have

dim H (ψ(Ω)) = dim M (ψ(Ω)) = h (σ| Ω ) log(m) ,
where h stands for the topological entropy. McMullen [START_REF] Mcmullen | Hausdorff dimension of general Sierpiński carpets[END_REF] and Bedford [START_REF] Bedford | Crinkly curves, Markov partitions and box dimension in self-similar sets[END_REF] independently computed the Hausdorff and Minkowski dimensions of general Sierpiński carpets when m 1 > m 2 , which we will assume from now on. Furthermore, the Hausdorff and Minkowski dimensions of Sierpiński sponges -defined as the generalization of Sierpiński carpets in all dimensionswere later computed in [START_REF] Kenyon | Measures of full dimension on affine-invariant sets[END_REF]. Let γ = log(m 2 ) log(m 1 ) and

L : n ∈ N * -→ n γ .
We will need the following metric on Σ m 1 ,m 2 : for (x, y) and (u,

v) in Σ m 1 ,m 2 let d((x k , y k ) ∞ k=1 , (u k , v k ) ∞ k=1 ) = max m -min{k≥0:(x k+1 ,y k+1 ) =(u k+1 ,v k+1 )} 1
, m -γ min{k≥0:y k+1 =v k+1 } 1

.

This metric allows us to consider "quasi-squares" as defined by McMullen when computing the dimensions of Sierpiński carpets. It is easy to see that for (x, y) ∈ Σ m 1 ,m 2 the balls centered at (x, y) are

B n (x, y) = B m -n 1 (x, y) = {(u, v) ∈ Σ m 1 ,m 2 : u k = x k ∀1 ≤ k ≤ n and v k = y k ∀1 ≤ k ≤ L(n)}.
Using this metric on Σ m 1 ,m 2 the Hausdorff and Minkowski dimensions of Ω are then equal to those of ψ(Ω). Thus from now on we will only work on the symbolic space. In this paper, our goal is to compute the Hausdorff and Minkowski dimensions of more general carpets that are not shift invariant. More precisely, given an arbitrary closed subset Ω of Σ m 1 ,m 2 we consider

X Ω = {(x k , y k ) ∞ k=1 ∈ Σ m 1 ,m 2 : (x iq , y iq ) ∞ =0
∈ Ω for all i, q i}. Such sets were studied in [START_REF] Kenyon | Hausdorff dimension for fractals invariant under multiplicative integers[END_REF], where the authors restricted their work to the one dimensional case : they computed the Hausdorff and Minkowski dimensions of sets defined by

(x k ) ∞ k=1 ∈ {0, . . . , m -1} N * : (x iq ) ∞ =0 ∈ Ω for all i, q i ,
where Ω is an arbitrary closed subset of {0, . . . , m -1} N * . It is easily seen that this case covers the situation where m 1 = m 2 in our setting. Their interest in these sets was prompted by the computation of the Minkowski dimension of the "multiplicative golden mean shift"

x = ∞ k=1
x k 2 k : x k ∈ {0, 1} and x k x 2k = 0 for all k ≥ 1 done in [START_REF] Fan | Level sets of multiple ergodic averages[END_REF]. We aim to give formulas for dim H (X Ω ) and dim M (X Ω ) in the two-dimensional case, and then in all dimensions. Note that if Ω is shift-invariant, then X Ω is invariant under the action of any integer r ∈ N *

(x k , y k ) ∞ k=1 -→ (x rk , y rk ) ∞ k=1 .
For example, as in the case of dimension one we can consider subshifts of finite type on Σ m 1 ,m 2 . To do so, let D = {(0, 0), (0, 1), . . . , (0, m 2 -1), (1, 0), (1, 1), . . . , (1, m 2 -1), . . . , (m 1 -1, 0), (m 1 -1, 1), . . . , (m 1 -1, m 2 -1)} and let A be an m 1 m 2 -sized square matrix indexed by D × D with entries in {0, 1}. Then define

Σ A = {(x k , y k ) ∞ k=1 ∈ Σ m 1 ,m 2 : A((x k , y k ), (x k+1 , y k+1 )) = 1, k ≥ 1},
and

X A = X Σ A = {(x k , y k ) ∞ k=1 ∈ Σ m 1 ,m 2 : A((x k , y k ), (x qk , y qk )) = 1, k ≥ 1}. Figure 1. Approximation of order 4 of the set X A for m 1 = 3, m 2 = 2, q = 2
and A a circulant matrix whose first row is (1, 0, 0, 1, 0, 0). Note that further generalizations of the sets considered in [START_REF] Kenyon | Hausdorff dimension for fractals invariant under multiplicative integers[END_REF] were studied in [START_REF] Peres | Dimensions of some fractals defined via the semigroup generated by 2 and 3[END_REF], in the one-dimensional case as well.

The paper is organized as follows. In Section 2, we focus on the two-dimensional situation. We first introduce in Subsection 2.1 a particular class of measures on X Ω . We show that these measures are exact dimensional and we compute their Hausdorff dimensions. This class of measures is the same as that considered in [START_REF] Kenyon | Hausdorff dimension for fractals invariant under multiplicative integers[END_REF], but in our case the parameter

j = log q log(m 1 ) log(m 2 )
comes into play when studying their local dimension. Indeed, this parameter plays a crucial role in the definition of generalized cylinders whose masses are used to study the mass of balls under the metric d. In Subsection 2.2, out of curiosity, we study under which condition the Ledrappier-Young formula (where the entropies of invariant measures are replaced by their entropy dimensions) can hold for these measures, which are not shift-invariant in general.

In Subsections 2.3, 2.4 and 2.5, we compute the Hausdorff and Minkowski dimensions of X Ω , using a variational principle over the class of measures we studied earlier. We show that there exists a unique Borel probability measure which allows us to bound dim H (X Ω ) both from below and from above.

Then, in Section 3, we extend our results to the general multidimensional case. The combinatorics involved there become significantly more complex, as the study of the local dimension of the measures of interest invokes some generalized cylinders which depend in a subtle way on a collection of 2d -3 parameters.

2. The two-dimensional case 2.1. The measures P µ and their dimensions. Throughout the paper we will use the notation m, n = {m, . . . , n} if m ≤ n are integers.

To compute dim H (X Ω ), we will use the classical strategy of stating a variational principle over a certain class of Borel probability measures P µ on X Ω defined below, i.e we will show that dim H (X Ω ) = max

Pµ dim H (P µ ).

To do so, we will use the following classical facts (for a proof, see [3, Proposition 2.3]) :

Theorem 2.1. Let µ be a finite Borel measure on Σ m 1 ,m 2 and let A ⊂ Σ m 1 ,m 2 such that µ(A) > 0. • If lim inf n→∞ - log m 1 (µ(Bn(x))) n ≥ D for µ-almost all x, then dim H (µ) ≥ D. • If lim inf n→∞ - log m 1 (µ(Bn(x))) n ≤ D for µ-almost all x, then dim H (µ) ≤ D. • If lim inf n→∞ - log m 1 (µ(Bn(x))) n ≤ D for all x ∈ A, then dim H (A) ≤ D.
For p, ∈ N and u ∈ ({0, . . . , m 1 -1} × {0, . . . , m 2 -1}) p × {0, . . . , m 2 -1} , define the generalized cylinder

[u] = {(x, y) ∈ Σ m 1 ,m 2 : ((x, y)| p , π(σ p ((x, y))| )) = u}, where (x, y)| p = (x 1 , y 1 ) • • • (x p , y p ) and π((x, y)| p ) = y| p , and set Pref p, (Ω) = {u ∈ ({0, . . . , m 1 -1} × {0, . . . , m 2 -1}) p × {0, . . . , m 2 -1} : Ω ∩ [u] = ∅}. For (x, y) ∈ Σ m 1 ,m 2 , n ≥ 1 and i an integer such that q i, we define (x, y)| J n i = (x i , y i )(x qi , y qi ) • • • (x q r i , y q r i ) if q r i ≤ n < q r+1 i.
Let µ be a Borel probability measure on Ω. Following [START_REF] Kenyon | Hausdorff dimension for fractals invariant under multiplicative integers[END_REF] we define P µ on the semi-algebra of cylinder sets of Σ m 1 ,m 2 by

P µ ([(x, y)| n ]) = i≤n q i µ (x, y)| J n i .
This is a well defined pre-measure. Indeed it is easy to see that P µ ([(k, l)]) = µ([(k, l)]) for (k, l) ∈ A 1 × A 2 , and for n + 1 = q r i with q i,

P µ ([(x 1 , y 1 ) • • • (x n , y n )(x n+1 , y n+1 )]) P µ ([(x 1 , y 1 ) • • • (x n , y n )]) = µ([(x i , y 1 )(x qi , y qi ) • • • (x q r i , y q r i )]) µ (x i , y 1 )(x qi , y qi ) • • • (x q r-1 i , y q r-1 i ) , whence P µ ([(x 1 , y 1 ) • • • (x n , y n )]) = (i,j)∈A 1 ×A 2 P µ ([(x 1 , y 1 ) • • • (x n , y n )(i, j)]).
Denote also by P µ the extension of P µ to a Borel probability measure on

(Σ m 1 ,m 2 , B (Σ m 1 ,m 2 )). By construction, P µ is supported on X Ω , since Ω is a closed subset of Σ m 1 ,m 2 and hence Ω = ∞ k=1 u∈Pref k,0 (Ω) [u] .
Let us now introduce some more notations. For all k ≥ 1 we consider the finite partitions of Ω defined by

α 1 k = {Ω ∩ [u] : u ∈ Pref 0,k (Ω)} and α 2 k = {Ω ∩ [u] : u ∈ Pref k,0 (Ω)}.
For a Borel probability measure µ on Ω and a finite measurable partition P on Ω, denote by H µ m 2 (P) the µ-entropy of the partition, with the base-m 2 logarithm :

H µ m 2 (P) = - C∈P µ(C) log m 2 µ(C).
Let j be the unique non-negative integer such that

q j ≤ 1 γ = log(m 1 ) log(m 2 ) < q j+1 .
Note that for all n ≥ 1 large enough we have

q j n ≤ L(n) < q j+1 n.
Theorem 2.2. Let µ be a Borel probability measure on Ω. Then P µ is exact dimensional and we have

dim H (P µ ) = (q -1) 2 j p=1 H µ m 2 (α 1 p ) q p+1 + (q -1)(q j+1 γ -1) ∞ p=j+1 H µ m 2 (α 2 p-j ∨ α 1 p ) q p+1 + (q -1)(1 -q j γ) ∞ p=j+1 H µ m 2 (α 2 p-j-1 ∨ α 1 p ) q p .
Proof. Our method is inspired by the calculation of dim H (P µ ) in [START_REF] Kenyon | Hausdorff dimension for fractals invariant under multiplicative integers[END_REF]. The strategy of the proof is the same, nevertheless the computations will be more involved, due to the fact that the P µ -mass of a ball for the metric d is a product of µ-masses of generalized cylinders rather than standard ones as in [START_REF] Kenyon | Hausdorff dimension for fractals invariant under multiplicative integers[END_REF].

Let ≥ j + 1. We will first show that for P µ -almost all (x, y) ∈ X Ω we have

lim inf n→∞ -log m 1 (P µ (B n (x, y))) n ≥ (q -1) 2 j p=1 H µ m 2 (α 1 p ) q p+1 + (q -1)(q j+1 γ -1) p=j+1 H µ m 2 (α 2 p-j ∨ α 1 p ) q p+1 + (q -1)(1 -q j γ) p=j+1 H µ m 2 (α 2 p-j-1 ∨ α 1 p ) q p , and lim sup n→∞ -log m 1 (P µ (B n (x, y))) n ≤ (q -1) 2 j p=1 H µ m 2 (α 1 p ) q p+1 + (q -1)(q j+1 γ -1) p=j+1 H µ m 2 (α 2 p-j ∨ α 1 p ) q p+1 + (q -1)(1 -q j γ) p=j+1 H µ m 2 (α 2 p-j-1 ∨ α 1 p ) q k + ( + 1) log m 2 (m 1 m 2 ) q .
Letting → ∞ will yield the desired equality (cf. Theorem 2.1). To check these, we can restrict ourselves to n = q r, r ∈ N. Indeed if q r ≤ n < q (r + 1) then

-log m 1 (P µ (B n (x, y))) n ≥ -log m 1 (P µ (B q r (x, y))) q (r + 1) ≥ r r + 1 -log m 1 (P µ (B q r (x, y))) q r , which gives lim inf n→∞ -log m 1 (P µ (B n (x, y))) n = lim inf r→∞ -log m 1 (P µ (B q r (x, y))) q r .
The lim sup is dealt with similarly.

As proved in [START_REF] Kenyon | Hausdorff dimension for fractals invariant under multiplicative integers[END_REF] we have

lim n→∞ -log m 1 (P µ ([(x, y)| n ])) n = (q -1) 2 ∞ p=1 H µ m 1 (α 2 p ) q p+1 for P µ -almost all (x, y) ∈ X Ω .

Note that

P µ (B n (x, y)) = x n+1 ,...,x L(n) P µ (x 1 , y 1 ) • • • (x n , y n )(x n+1 , y n+1 ) • • • (x L(n) , y L(n) ) ,
the sum being taken over all x n+1 , . . . , x L(n) such that

(x 1 , y 1 ) • • • (x n , y n )(x n+1 , y n+1 ) • • • (x L(n) , y L(n) ) ∩ X Ω = ∅. Let i ∈ L(n) q , L(n) = p=1 L(n) q p , L(n) q p-1 such that q i. Note that if i ∈ L(n) q p , L(n) q p-1 then the word (x, y)| J L(n) i is of length p. Recall that j is defined by q j ≤ 1 γ < q j+1 . Suppose j ≥ 1. If 1 ≤ p ≤ j then L(n) q p ≥ n, so L(n) q p , L(n) q p-1 ⊂ ]n, L(n)]. If j + 1 ≤ p ≤ and is large enough, then n q p-j-1 ∈ L(n) q p , L(n) q p-1 , thus we can partition L(n) q p , L(n) q p-1 = L(n) q p , n q p-j-1 n q p-j-1 , L(n) q p-1 .
In the case where i ∈ n q p-j-1 , L(n) q p-1 we have q p-j-2 i ≤ n < q p-j-1 i ≤ q p-1 i ≤ L(n) < q p i, and if i ∈ L(n) q p , n q p-j-1 then q p-j-1 i ≤ n < q p-j i ≤ q p-1 i ≤ L(n) < q p i.

If j = 0 then i ∈ n q p-1 , L(n) q p-1 =⇒ q p-2 i ≤ n < q p-1 i ≤ L(n) < q p i i ∈ L(n) q p , n q p-1 =⇒ q p-1 i ≤ n ≤ L(n) < q p i.
Thus for any j we have

P µ (B n (x, y)) = j p=1 i∈ L(n) q p , L(n) q p-1 q i µ y i • • • y q p-1 i • p=j+1 i∈ n q p-j-1 , L(n) q p-1 q i µ (x i , y i ) • • • (x q p-j-2 i , y q p-j-2 i )y q p-j-1 i • • • y q p-1 i • i∈ L(n) q p , n q p-j-1 q i µ (x i , y i ) • • • (x q p-j-1 i , y q p-j-1 i )y q p-j i • • • y q p-1 i • D n (x, y),
with D n (x, y) being the product of the remaining quotients (words beginning with (x i , y i ) with i ≤ L(n) q ). Here we used the notion of generalized cylinders we defined earlier :

µ y i • • • y q p-1 i = x i ,...,x q p-1 i µ (x i , y i ) • • • (x q p-1 i , y q p-1 i ) , µ (x i , y i ) • • • (x q p-j-2 i , y q p-j-2 i )y q p-j-1 i • • • y q p-1 i = x q p-j-1 i ,...,x q p-1 i µ (x i , y i ) • • • (x q p-j-2 i , y q p-j-2 i )(x q p-j-1 i , y q p-j-1 i ) • • • (x q p-1 i , y q p-1 i ) , µ (x i , y i ) • • • (x q p-j-1 i , y q p-j-1 i )y q p-j i • • • y q p-1 i = x q p-j i ,...,x q p-1 i µ (x i , y i ) • • • (x q p-j-1 i , y q p-j-1 i )(x q p-j i , y q p-j i ) • • • (x q p-1 i , y q p-1 i ) ,
the sums being taken over the cylinders that intersect Ω. If (u n ), (v n ) ∈ (R * ) N * , we say that

u n ∼ v n if un vn → 1 as n → ∞.
Here we have

# i ∈ L(n) q p , L(n) q p-1 : q i ∼ (q -1) 2 n γq p+1 , # i ∈ n q p-j-1 , L(n) q p-1 : q i ∼ n(q -1)(1 -q j γ) γq p , # i ∈ L(n) q p , n q p-j-1 : q i ∼ n(q -1)(q j+1 γ -1) γq p+1 .
Note that for i ∈ n q p-j-1 , L(n) q p-1 , q i the random variables

Y i,n,p : (x, y) ∈ X Ω -→ -log m 1 µ (x i , y i ) • • • (x q p-j-2 i , y q p-j-2 i )y q p-j-1 i • • • y q p-1 i
are i.i.d and uniformly bounded, with expectation being H µ m 1 (α 2 p-j-1 ∨α 1 p ). Fixing j+1 ≤ p ≤ l and letting n = q r, r → ∞, we can use Lemma A.2 to get that for P µ -almost all (x, y) ∈ X Ω γq p n(q -1)(1 -q j γ)

i∈ n q p-j-1 , L(n) q p-1 q i Y i,n,p (x, y) -→ r→∞ H µ m 1 (α 2 p-j-1 ∨ α 1 p ). Thus p=j+1 (q -1)(1 -q j γ) γq p i∈ n q p-j-1 , L(n) q p-1 q i γq p Y i,n,p (x, y) n(q -1)(1 -q j γ) -→ r→∞ (q -1)(1 -q j γ) p=j+1 H µ m 2 (α 2 p-j-1 ∨ α 1 p ) q p .
Similarly if we define

Z i,n,p : (x, y) -→ -log m 1 µ y i • • • y q p-1 i , whose expectation is H µ m 1 (α 1 p ), for P µ -almost all (x, y) ∈ X Ω we have γq p+1 n(q -1) 2 i∈ L(n) q p , L(n) q p-1 q i Z i,n,p (x, y) -→ r→∞ H µ m 1 (α 1 p ), hence j p=1 (q -1) 2 γq p+1 i∈ L(n) q p , L(n) q p-1 q i γq p+1 Z i,n,p (x, y) n(q -1) 2 -→ r→∞ (q -1) 2 j p=1 H µ m 2 (α 1 p ) q p+1 .
The third term is treated in similar manner. We have thus proved the first inequality. Now it remains to prove the second inequality using D n (x, y). It is easily seen that there exists

C ≥ 0 such that for all b > a > 0 #{i ∈ N ∩ ]a, b] : q i} - q -1 q (b -a) ≤ C.
Thus the number of letters in A 1 × A 2 appearing in the words of the developed D n (x, y) is

d n := L(n) - p=1 # i ∈ N ∩ L(n) q p , L(n) q p-1 : q i p ≤ L(n) - p=1 (q -1) 2 L(n)p q p+1 + ( + 1) 2 C = L(n) q ( + 1) - q + ( + 1) 2 C ≤ ( + 1)L(n) q + ( + 1) 2 C.
(

) 1 
On the other hand

d n ≥ L(n) - p=1 (q -1) 2 L(n)p q p+1 - ( + 1) 2 C ≥ r ( + 1) - q - ( + 1) 2 C, so ∞ r=1 2 -d q r < +∞. Define S n = {(x, y) ∈ X Ω : D n (x, y) ≤ (2m 1 m 2 ) -dn }. Clearly P µ (S n ) ≤ 2 -dn , so P µ N ≥1
∞ r=N S q r = 0, using Borel-Cantelli lemma. Hence for P µ -almost all (x, y) ∈ X Ω there exists N (x, y) such that (x, y) / ∈ S n for all n = q r ≥ N (x, y). For such (x, y) and n ≥ N (x, y), using (1), we have

-log m 1 (D n (x, y)) n ≤ d n log m 1 (2m 1 m 2 ) n ≤ ( + 1)L(n) log m 1 (2m 1 m 2 ) nq + ( + 1) log m 1 (2m 1 m 2 ) 2n . So lim sup r→∞ -log m 1 (D q r (x, y)) q r ≤ ( + 1) log m 2 (2m 1 m 2 ) q .
Finally for such (x, y) we get the second desired inequality.

Study of the validity of the Ledrappier-Young formula.

Here we will discuss the validity of the Ledrappier-Young formula in our context. Recall that for a shift-invariant ergodic measure µ on Σ m 1 ,m 2 , the Ledrappier-Young formula is (see [START_REF] Kenyon | Measures of full dimension on affine-invariant sets[END_REF]Lemma 3.1] for a proof)

dim H (µ) = 1 log(m 1 ) h µ (σ) + 1 log(m 2 ) - 1 log(m 1 ) h π * µ (σ),
where σ is the standard shift map on Σ m 2 , π is the projection on the second coordinate and h µ (σ) is the entropy of µ with respect to σ. This rewrites as

(2) dim H (µ) = 1 log(m 1 ) dim e (µ) + 1 log(m 2 ) - 1 log(m 1 ) dim e (π * µ),
where for any Borel probability measure ν on Σ m 1 ,m 2 , dim e (ν) denotes, whenever it exists, its entropy dimension defined by

dim e (ν) = lim n→∞ - 1 n u∈(A 1 ×A 2 ) n ν([u]) log (ν ([u])) ,
and where dim e (π * ν) is defined similarly. We will show that this fails to hold for P µ in general. This is expected since P µ is not shift-invariant in general. However, we will give a sufficient condition on µ for P µ to satisfy (2.4).

Let (ν y ) y∈π(Σm 1 ,m 2 ) be the π * ν-almost everywhere uniquely determined disintegration of the Borel probability measure ν on Σ m 1 ,m 2 with respect to π. Each ν y is a Borel probability measure on Σ m 1 ,m 2 supported on π -1 ({y}), which can be computed using the formula

ν y ([x| n ] × {y}) = lim p→∞ ν ([(x 1 , y 1 ) • • • (x n , y n )y n+1 • • • y p ]) π * ν ([y 1 • • • y p ]) for π * ν-almost all y ∈ π(Σ m 1 ,m 2 ).
For some basics on the notion of disintegrated measure we advise [START_REF] Oliveira | Foundations of ergodic theory[END_REF] to the reader. 

I ∈ α 2 p , the map y ∈ π(I) → µ y (I) is π * µ-almost surely constant. Proof. First note that for (x, y) ∈ Σ m 1 ,m 2 π * (P µ )([y 1 • • • y n ]) = x 1 ,...,xn i≤n q i µ (x, y)| J n i = i≤n q i x i ,...,x q r i µ (x, y)| J n i = P π * µ ([y 1 • • • y n ]).
Thus π * (P µ ) is a Borel probability measure supported on π(X Ω ) = X π(Ω) , which is equal to P π * µ . Thus, using the one-dimensional case studied in [START_REF] Kenyon | Hausdorff dimension for fractals invariant under multiplicative integers[END_REF] we easily get that π * (P µ ) is exact dimensional with

dim e (π * (P µ )) = (q -1) 2 ∞ p=1 H µ (α 1 p ) q p+1 .
Now we study P y µ . First observe that for i such that q i, the map

φ i : y ∈ π(X Ω ) -→ y| J i = (y q i ) ∞ =0 ∈ π(Ω) is measure-preserving, i.e. (φ i ) * (P π * µ ) = π * µ. Let p ≥ n ≥ 1. For (x, y) ∈ X Ω we have P µ ([(x 1 , y 1 ) • • • (x n , y n )y n+1 • • • y p ]) P π * µ ([y 1 • • • y p ]) = i≤p q i x q k i ,...,x q i µ (x i , y i ) • • • x q k-1 i , y q k-1 i x q k i , y q k i • • • x q i , y q i i≤p q i x i ,...,x q i µ (x i , y i ) • • • x q i , y q i = i≤n q i µ (x i , y i ) • • • x q k-1 i , y q k-1 i y q k i • • • y q i π * µ y i • • • y q i
, where q k-1 i ≤ n < q k i ≤ q i ≤ p < q +1 i. Using the remark above and letting p → ∞ we deduce that for π * (P µ )-almost all y

(P µ ) y ([x| n ] × {y}) = i≤n q i µ y| J i x| J n i × {y| J i } .
We will use the P µ -almost everywhere defined i.i.d. random variables

X i,n : (x, y) ∈ X Ω -→ -log(µ y| J i x| J n i × {y| J i } for q i whose expectation is - π(X Ω ) π -1 (ỹ) log µ ỹ| J i x| J n i × {ỹ| J i } d(P ỹ µ )(x, y) d(π * (P µ ))(ỹ) = π(X Ω ) H µ ỹ| J i ∆ p Ω ỹ| J i d(π * (P µ ))(ỹ) = π(Ω) H µ y (∆ p (Ω y )) d(π * µ)(y),
where Ω y = π -1 ({y}) ∩ Ω and ∆ p is the partition of Ω y into cylinders of length p on the first coordinate x, if x| J n i is of length p. Using again the same reasoning as in the one dimensional case when computing dim H (P µ ) (see [START_REF] Kenyon | Hausdorff dimension for fractals invariant under multiplicative integers[END_REF]), we get that for π * (P µ )-almost all y, P y µ is exact dimensional and dim e (P y µ ) = (q -1) 

2 ∞ p=1 π(Ω) H µ y (∆ p (Ω y )) q p+1 d(π * µ)(y).

Now we have

π(Ω) H µ y (∆ p (Ω y )) d(π * µ)(y) = - π(Ω) I∈θp(Ωy) µ y (I) log(µ y (I))d(π * µ)(y) = - I∈α 2 p π(Ω) µ y (I ∩ π -1 ({y})) log(µ y (I ∩ π -1 ({y})))d(π * µ)(y) = - I∈α 2 p π(I) µ y (I) log(µ y (I))d(π * µ)(y) ≤ - I∈α 2 p π * µ(π(I)) π(I) µ y (I) π * µ(π(I)) d(π * µ)(y) log π(I) µ y (I) π * µ(π(I)) d(π * µ)(y) = - I∈α 2 p µ(I) log µ(I) π * µ(π(I)) = H µ (α
dim H (P µ ) = 1 log(m 1 ) dim e (P µ ) + 1 log(m 2 ) - 1 log(m 1 ) dim e (π * (P µ )) .
This sufficient condition is equivalent to saying that for all p ≥ 1, for all

I = [(x 1 , y 1 ) • • • (x p , y p )] ∈ α 2 p , for π * µ-almost all y ∈ π(I) we have µ y (I) = µ(I) π * µ(π(I)) = µ ([(x 1 , y 1 ) • • • (x p , y p )]) µ ([y 1 • • • y p ]) .
For instance, this is clearly satisfied when µ is an inhomogeneous Bernoulli product on Ω. In this case P µ is not shift-invariant in general. However, we can easily build examples where the equality in Corollary 2.4 does not hold.

Example 2.5. Suppose that j = 0. Then there exists Ω and µ a Borel probability measure on Ω such that dim

H (P µ ) < 1 log(m 1 ) dim e (P µ ) + 1 log(m 2 ) - 1 log(m 1 )
dim e (π * (P µ )).

Indeed, using the property

H µ (α 2 p-1 ∨ α 1 p ) = H µ (α 1 p |α 2 p-1 ) + H µ (α 2 p-1 ) we have dim H (P µ ) = (q -1) 2 ∞ p=1 H µ m 1 (α 2 p ) q p+1 + (q -1)(1 -γ) ∞ p=1 H µ m 2 (α 1 p |α 2 p-1 ) q p and 1 log(m 1 ) dim e (P µ ) + 1 log(m 2 ) - 1 log(m 1 ) dim e (π * (P µ )) = (q -1) 2 ∞ p=1 H µ m 1 (α 2 p ) q p+1 + (q -1) 2 1 log(m 2 ) - 1 log(m 1 ) ∞ p=1 H µ (α 1 p ) q p+1 ,
It is then enough to choose Ω and µ such that

• H µ (α 1 1 ) = 0, • H µ (α 1 p |α 2 p-1 ) = 0 for all p ≥ 2, • H µ (α 1 p ) > 0 for p ≥ 2.
Such Ω and µ yield the desired example.

2.3.

Lower bound for dim H (X Ω ). We are now interested in maximizing dim H (P µ ) over all Borel probability measures µ on Ω. We define first the j th tree of prefixes of Ω, which is a directed graph Γ j (Ω) whose set of vertices is ∞ k=0 Pref k,j (Ω), where Pref 0,j (Ω) = {∅}. There is a directed edge from a prefix

u = (x 1 , y 1 ) • • • (x k , y k )y k+1 • • • y k+j to another one v if v = (x 1 , y 1 ) • • • (x k , y k )(x k+1 , y k+1 )y k+2 • • • y k+j y k+j+1
for some x k+1 ∈ {0, . . . , m 1 -1} and y k+j+1 ∈ {0, . . . , m 2 -1}. Moreover there is an edge from ∅ to every u ∈ Pref 1,j (Ω). Γ j (Ω) is then a tree with its outdegree being bounded by m 1 m 2 (except the first edges from ∅, which can be more numerous). The following result is an analog of [9, Lemma 2.1].

Lemma 2.6. Let u ∈ Pref 1,j (Ω) and Γ u,j (Ω) be the tree of followers of u in Γ j (Ω). Let V u,j (Ω) be its set of vertices. Then there exists a unique vector

t = t(u) ∈ 1, m 2 γ(q-1) 2 V u,j (Ω)
such that for all (x 1 , y 1 )

• • • (x k , y k )y k+1 • • • y k+j ∈ V u,j (Ω) (3) t q j+1 γ (x 1 ,y 1 )•••(x k ,y k )y k+1 •••y k+j = y k+j+1    x k+1 t (x 1 ,y 1 )•••(x k ,y k )(x k+1 ,y k+1 )y k+2 •••y k+j y k+j+1    q j γ
, the sums being taken over the followers of (x 1 , y 1 )

• • • (x k , y k )y k+1 • • • y k+j in Γ u,j (Ω). Proof. Let Z = 1, m 2 γ(q-1) 2 V u,j (Ω)
and F : Z → Z be given by

F (z (x 1 ,y 1 )•••(x k ,y k )y k+1 •••y k+j ) =     y k+j+1    x k+1 z (x 1 ,y 1 )•••(x k ,y k )(x k+1 ,y k+1 )y k+2 •••y k+j y k+j+1    q j γ     1 q j+1 γ .
We can see that F is monotone for the pointwise partial order ≤, defined as

z ≤ z ⇔ ∀v ∈ V u,j (Ω), z v ≤ z v for z, z ∈ Z. Indeed since q j γ, 1 q j+1 γ ≥ 0 we have z ≤ z =⇒ F (z) ≤ F (z ).
Denote by 1 the constant function equal to 1 over Z.

Then 1 ≤ F (1) ≤ F 2 (1) ≤ • • • , so by compactness (F n ( 1 
)) n≥1 has a pointwise limit t, which is a fixed point of F . Let us now verify the uniqueness. Suppose that t and t are two fixed points of F and that t is not smaller than t for ≤ (without loss of generality). Let

ω = inf{ξ > 1, t ≤ ξt }.
Clearly ω ≤ m 2 γ(q-1)

2

, and by continuity we have t ≤ ωt , so ω > 1. Now

t = F (t) ≤ F (ωt ) = ω 1 q F (t ) = ω 1 q t ,
contradicting the definition of ω.

Furthermore we define

t ∅ = y 1 y 2 • • • y j+1 x 1 t (x 1 ,y 1 )y 2 •••y j+1 q j γ 1 q • • • 1 q 1 q . Proposition 2.7. For u = (x 1 , y 1 ) • • • (x k , y k )y k+1 • • • y k+j ∈ Pref k,j (Ω) define µ([u]) = t (x 1 ,y 1 )y 2 •••y j+1 x 1 t (x 1 ,y 1 )y 2 •••y j+1 q j γ-1 t ∅ • j-1 p=0 y j+1-p y j+2-p • • • y j+1 x 1 t (x 1 ,y 1 )y 2 •••y j-p y j+1-p •••y j+1 q j γ 1 q • • • 1 q 1 q 1-q q • k p=2 t (x 1 ,y 1 )•••(xp,yp)y p+1 •••y p+j x p t (x 1 ,y 1 )•••(x p ,yp)y p+1 •••y p+j q j γ-1 t q j+1 γ (x 1 ,y 1 )•••(x p-1 ,y p-1 )yp•••y p-1+j
, where there are p + 2 sums and p exponents 1 q in each term of the first product. This defines a Borel probability measure on Ω such that P µ is the unique optimal measure, i.e. such that dim H (P µ ) is maximal over all Borel probability measures µ on Ω. Moreover we have dim H (P µ ) = q-1 q log m 2 (t ∅ ). Using Theorem 2.1 we deduce that

dim H (X Ω ) ≥ q -1 q log m 2 (t ∅ ). Proof. Let S(Ω, µ) = (q -1) 2 j p=1 H µ m 2 (α 1 p ) q p+1 + (q -1)(1 -q j γ) ∞ p=j+1 H µ m 2 (α 2 p-j-1 ∨ α 1 p ) q p + (q -1)(q j+1 γ -1) ∞ p=j+1 H µ m 2 (α 2 p-j ∨ α 1 p ) q p+1 .
We try to optimize S(Ω, µ) over all Borel probability measures µ on Ω. Let S(Ω) = max µ S(Ω, µ).

Recall that for some measurable partitions P,Q of Ω we have

H µ m 2 (P|Q) = Q∈Q - P ∈P µ(P |Q) log m 2 (µ(P |Q)) µ(Q).
Let p ≥ j + 2. We have

H µ m 2 (α 2 p-j-1 ∨ α 1 p ) = H µ m 2 (α 2 p-j-1 ∨ α 1 p |α 2 1 ∨ α 1 j+1 ) + H µ m 2 (α 2 1 ∨ α 1 j+1 )
and

H µ m 2 (α 2 p-j ∨ α 1 p ) = H µ m 2 (α 2 p-j ∨ α 1 p |α 2 1 ∨ α 1 j+1 ) + H µ m 2 (α 2 1 ∨ α 1 j+1 ). Moreover H µ m 2 (α 2 p-j-1 ∨ α 1 p |α 2 1 ∨ α 1 j+1 ) = x 1 ,y 1 ,y 2 ,...,y j+1 θ (x 1 ,y 1 )y 2 •••y j+1 H µ (x 1 ,y 1 )y 2 •••y j+1 m 2 α 2 p-j-2 ∨ α 1 p-1 Ω (x 1 ,y 1 )y 2 •••y j+1
and

H µ m 2 (α 2 p-j ∨ α 1 p |α 2 1 ∨ α 1 j+1 ) = x 1 ,y 1 ,y 2 ,...,y j+1 θ (x 1 ,y 1 )y 2 •••y j+1 H µ (x 1 ,y 1 )y 2 •••y j+1 m 2 α 2 p-j-1 ∨ α 1 p-1 Ω (x 1 ,y 1 )y 2 •••y j+1 ,
where

θ (x 1 ,y 1 )y 2 •••y j+1 = µ([(x 1 , y 1 )y 2 • • • y j+1 ]),
and

H µ (x 1 ,y 1 )y 2 ,•••y j+1 m 2 α 2 p-j-2 ∨ α 1 p-1 Ω (x 1 ,y 1 )y 2 •••y j+1 is the entropy of the partition of Ω (x 1 ,y 1 )y 2 •••y j+1 , the follower set of (x 1 , y 1 ) in Ω with y 2 • • • y j+1 being fixed, with respect to µ (x 1 ,y 1 )y 2 •••y j+1 which is the normalized measure induced by µ on Ω (x 1 ,y 1 )y 2 •••y j+1 . Then S(Ω, µ) = (q -1) 2 j p=1 H µ m 2 (α 1 p ) q p+1 + (q -1)(1 -q j γ) q j+1 H µ m 2 (α 1 j+1 ) + γ(q -1) q H µ m 2 (α 2 1 ∨ α 1 j+1 ) + 1 q x 1 ,y 1 ,y 2 ,...,y j+1 θ (x 1 ,y 1 )y 2 •••y j+1 S Ω (x 1 ,y 1 )y 2 •••y j+1 , µ (x 1 ,y 1 )y 2 •••y j+1 .
Observe that the measure is completely determined by the knowledge of θ (x 1 ,y 1 )y 2 •••y j+1 and

µ (x 1 ,y 1 )y 2 •••y j+1 for all (x 1 , y 1 )y 2 • • • y j+1 .
The optimization problems on Ω (x 1 ,y 1 )y 2 •••y j+1 being independent we get

S(Ω) = max θ (x 1 ,y 1 )y 2 •••y j+1 (q -1) 2 j p=1 H µ m 2 (α 1 p ) q p+1 + (q -1)(1 -q j γ) q j+1 H µ m 2 (α 1 j+1 ) + γ(q -1) q H µ m 2 (α 2 1 ∨ α 1 j+1 ) + 1 q x 1 ,y 1 ,y 2 ,...,y j+1 θ (x 1 ,y 1 )y 2 •••y j+1 S Ω (x 1 ,y 1 )y 2 •••y j+1 .
After factorizing, we have

S(Ω) = max q -1 q H µ m 2 (β 1 ) + 1 q y 1 θ y 1 - y 2 θ y 1 y 2 θ y 1 log m 2 θ y 1 y 2 θ y 1 + 1 q y 2 θ y 1 y 2 θ y 1 - y 3 θ y 1 y 2 y 3 θ q 1 y 2 log m 2 θ y 1 y 2 y 3 θ q 1 y 2 + 1 q y 3 θ y 1 y 2 y 3 θ y 1 y 2 • • • + q j γ y j+1 θ y 1 •••y j+1 θ y 1 •••y j - x 1 θ (x 1 ,y 1 )y 2 •••y j+1 θ y 1 •••y j+1 log m 2 θ (x 1 ,y 1 )y 2 •••y j+1 θ y 1 •••y j+1 + 1 γ(q -1) x 1 θ (x 1 ,y 1 )y 2 •••y j+1 θ y 1 •••y j+1 S Ω (x 1 ,y 1 )y 2 •••y j+1 • • • .
We can now recursively optimize these quantities. First fix y 1 , . . . , y j+1 . To optimize the last part of the above expression of S(Ω), we use Lemma A.1 and we obtain

θ (x 1 ,y 1 )y 2 •••y j+1 θ y 1 •••y j+1 = m S Ω (x 1 ,y 1 )y 2 •••y j+1 γ(q-1)
2

x 1 m S Ω (x 1 ,y 1 )y 2 •••y j+1 γ(q-1)
2 and -

x 1 θ (x 1 ,y 1 )y 2 •••y j+1 θ y 1 •••y j+1 log m 2 θ (x 1 ,y 1 )y 2 •••y j+1 θ y 1 •••y j+1 + 1 γ(q -1) x 1 θ (x 1 ,y 1 )y 2 •••y j+1 θ y 1 •••y j+1 S Ω (x 1 ,y 1 )y 2 •••y j+1 = log m 2     x 1 m S Ω (x 1 ,y 1 )y 2 •••y j+1 γ(q-1) 2     .
Using again Lemma A.1, we get

θy 1 •••y j+1 θy 1 •••y j
, and so on. This gives us the weights θ (x 1 ,y 1 )y 2 •••y j+1 , which are equal to

z (x 1 ,y 1 )y 2 •••y j+1 x 1 z (x 1 ,y 1 )y 2 •••y j+1 q j γ-1 z ∅ • j-1 p=0 y j+1-p y j+2-p • • • y j+1 x 1 z (x 1 ,y 1 )y 2 •••y j-p y j+1-p •••y j+1 q j γ 1 q • • • 1 q 1 q 1-q q , where z (x 1 ,y 1 )y 2 •••y j+1 = m S Ω (x 1 ,y 1 )y 2 •••y j+1 γ(q-1)

2

and z ∅ = m qS(Ω) q-1 2

. In particular we get

z ∅ = y 1 y 2 • • • y j+1 x 1 z (x 1 ,y 1 )y 2 •••y j+1 q j γ 1 q • • • 1 q 1 q . Now let us consider Ω u for fixed u = (x 1 , y 1 )y 2 • • • y j+1 ∈ Pref 1,j (Ω)
. The optimization problem is now analogous on this tree, but simpler : we now have to optimize the quantity

(q -1)(1 -q j γ) q j+1 H µ (x 1 ,y 1 )y 2 •••y j+1 m 2 α 1 j+1 Ω (x 1 ,y 1 )y 2 •••y j+1 + γ(q -1) q H µ (x 1 ,y 1 )y 2 •••y j+1 m 2 α 2 1 ∨ α 1 j+1 Ω (x 1 ,y 1 )y 2 •••y j+1 + 1 q x 2 ,y j+2 θ (x 1 ,y 1 )(x 2 ,y 2 )y 3 •••y j+2 θ (x 1 ,y 1 )y 2 •••y j+1 S Ω (x 1 ,y 1 )(x 2 ,y 2 )y 3 •••y j+2 ,
which is after factorization

q -1 q j+1 - y j+2 θ (x 1 ,y 1 )y 2 •••y j+2 θ (x 1 ,y 1 )y 2 •••y j+1 log m 2 θ (x 1 ,y 1 )y 2 •••y j+2 θ (x 1 ,y 1 )y 2 •••y j+1 + q j γ y j+2 θ (x 1 ,y 1 )y 2 •••y j+2 θ (x 1 ,y 1 )y 2 •••y j+1 - x 2 θ (x 1 ,y 1 )(x 2 ,y 2 )y 3 •••y j+2 θ (x 1 ,y 1 )y 2 •••y j+2 log m 2 θ (x 1 ,y 1 )(x 2 ,y 2 )y 3 •••y j+2 θ (x 1 ,y 1 )y 2 •••y j+2 + 1 γ(q -1) x 2 θ (x 1 ,y 1 )(x 2 ,y 2 )y 3 •••y j+2 θ (x 1 ,y 1 )y 2 •••y j+2 S Ω (x 1 ,y 1 )(x 2 ,y 2 )y 3 •••y j+2 .
This gives the weights

θ (x 1 ,y 1 )(x 2 ,y 2 )y 3 •••y j+2 θ (x 1 ,y 1 )y 2 •••y j+1 = z (x 1 ,y 1 )(x 2 ,y 2 )y 3 •••y j+2 x 2 z (x 1 ,y 1 )(x 2 ,y 2 )y 3 •••y j+2 q j γ-1 z q j+1 γ (x 1 ,y 1 )y 2 •••y j+1 , with z (x 1 ,y 1 )(x 2 ,y 2 )y 3 •••y j+2 = m S Ω (x 1 ,y 1 )(x 2 ,y 2 )y 3 •••y j+2 γ(q-1) 2 , z (x 1 ,y 1 )y 2 •••y j+1 = m S Ω (x 1 ,y 1 )y 2 •••y j+1 γ(q-1)
2 and

z q j+1 γ (x 1 ,y 1 )y 2 •••y j+1 = y j+2   x 2 z (x 1 ,y 1 )(x 2 ,y 2 )y 3 •••y j+2   q j γ .
This is exactly equation ( 3) at the root of the graph Γ u,j (Ω). The problem being the same at each vertex for Γ u,j (Ω), for all u ∈ Pref 1,j (Ω), we can repeat the argument for the entire graphs. We also get the given formula for the optimal measure from the form of all optimal probability vectors that we found. The solutions z = z(u) of the systems (3) which we get this way are in 1, m

2 γ(q-1) 2 V u,j (Ω)
, thus we have z(u) = t(u) for all u (indeed for all k ≥ 1, for all v ∈ Pref k,j (Ω), for all µ on Ω v we have dim H (P µ ) ≤ 2, so S(Ω v ) ≤ 2).

Upper bound for dim H (X Ω ).

Theorem 2.8. Let µ be the Borel probability measure on Ω defined in the last theorem, and let P µ be the corresponding Borel probability measure on X Ω . Let (x, y) ∈ X Ω . Then

lim inf n→∞ -log m 2 (P µ (B n (x, y))) L(n) ≤ q -1 q log m 2 (t ∅ ),
from which we deduce that dim H (X Ω ) = q-1 q log m 2 (t ∅ ).

Proof. Recall that

-log m 2 (P µ (B n (x, y))) = - i, q i i≤L(n) log m 2 µ (x i , y i )(x qi , y qi ) • • • (x q k-1 i , y q k-1 i )y q k i • • • y q i ,
where k and are determined by i < qi <

• • • < q k-1 i ≤ n < q k i < • • • < q i ≤ L(n) < q +1 i
in each term of the sum. Suppose first that j = 1 for the sake of simplicity. We have

µ ([(x 1 , y 1 ) • • • (x k , y k )y k+1 ]) = t (x 1 ,y 1 )y 2 x 1 t (x 1 ,y 1 )y 2 qγ-1 y 2 x 1 t (x 1 ,y 1 )y 2 qγ 1-q q t ∅ • k p=2 t (x 1 ,y 1 )•••(xp,yp)y p+1 x p t (x 1 ,y 1 )•••(x p ,yp)y p+1 qγ-1 t q 2 γ (x 1 ,y 1 )•••(x p-1 ,y p-1 )yp , µ ([(x 1 , y 1 ) • • • (x k-1 , y k-1 )y k y k+1 ]) = t (x 1 ,y 1 )y 2 x 1 t (x 1 ,y 1 )y 2 qγ-1 y 2 x 1 t (x 1 ,y 1 )y 2 qγ 1-q q t ∅ • k-1 p=2 t (x 1 ,y 1 )•••(xp,yp)y p+1 x p t (x 1 ,y 1 )•••(x p ,yp)y p+1 qγ-1 t q 2 γ (x 1 ,y 1 )•••(x p-1 ,y p-1 )yp • x k t (x 1 ,y 1 )•••(x k ,y k )y k+1 qγ t q 2 γ (x 1 ,y 1 )•••(x k-1 ,y k-1 )y k for k ≥ 2, µ ([y 1 y 2 ]) = x 1 t (x 1 ,y 1 )y 2 qγ y 2 x 1 t (x 1 ,y 1 )y 2 qγ 1-q q t ∅ ,
and

µ ([y 1 ]) = y 2 x 1 t (x 1 ,y 1 )y 2 qγ 1 q t ∅ .
For each positive integer κ ≤ L(n), we can write κ = q r i with q i for some unique (r, i). Now, developing the product P µ (B n (x, y)), we pick up

• 1 t∅ for each i ≤ L(n) such that q i, • t (x i ,y i )•••(x q r i
,y q r i )y q r+1 i for each κ = q r i ≤ n,

• 1 t q 2 γ (x i ,y i )••• ( x q r i ,y q r i) y q r+1 i for each κ ≤ L(n) q 2
: that is because for these κ we have q 2 κ = q r+2 i ≤ L(n), and for κ > L(n) q 2 we have q 2 κ ≥ q 2 L(n)

q 2 + q 2 > L(n), • x q r i t (x i ,y i )•••(x q r i ,y q r i )y q r+1 i qγ-1 for each κ ≤ n, • x q r i t (x i ,y i )•••(x q r i ,y q r i )y q r+1 i qγ for each n < κ ≤ L(n) q , • y qi x i t (x i ,y i )y qi qγ 1-q q for each i ≤ L(n) q such that q i, • y qi x i t (x i ,y i )y qi qγ 1 q for each L(n) q < i ≤ L(n) such that q i.

Thus if we define

R(κ) = log m 2 t (x i ,y i )(x qi ,y qi )•••(x q r i ,y q r i )y q r+1 i for κ = q r i with q i, R(κ) = log m 2    x q r i t (x i ,y i )(x qi ,y qi )•••(x q r i ,y q r i )y q r+1 i   
for κ = q r i with q i, and

u 1 n = 1 n n κ=1 R(κ), u 2 n = 1 n n κ=1 R(κ), u 3 n = 1 n i≤n, q i log m 2 y qi x i t (x i ,y i )y qi qγ , we get log m 2 (P µ (B n (x, y))) = nu 1 n -γq 2 L(n) q 2 u 1 L(n) q 2 + γq L(n) q u 2 L(n) q -nu 2 n + 1 q L(n)u 3 L(n) - L(n) q u 3 L(n) q -#{i ∈ 1, L(n) , q i} log m 2 (t ∅ ).
Getting back to the general case, let us define j + 2 sequences as follows. At first, set

u 1 n = 1 n n κ=1 R(κ) u 2 n = 1 n n κ=1 R(κ),
where

R(κ) = log m 2 t (x i ,y i )(x qi ,y qi )•••(x q r i
,y q r i )y q r+1 i •••y q r+j i if κ = q r i with q i, and

R(κ) = log m 2    x q r i t (x i ,y i )(x qi ,y qi )•••(x q r i ,y q r i )y q r+1 i •••y q r+j i    if κ = q r i with q i. Then, for 3 ≤ k ≤ j + 2 let u k n = 1 n i≤n, q i log m 2 y q j+3-k i y q j+4-k i • • • y q j i x i t (x i ,y i )y qi •••y q j i q j γ 1 q • • • 1 q 1 q
, where there are exactly k -1 sums and k -3 exponents 1 q in each log m 2 term. It is easy to see that all these sequences are nonnegative, bounded, with

∀1 ≤ k ≤ j + 2, lim n→∞ u k n+1 -u k n = 0.
Let > 0. Using the definition of µ we can get the following expression for n large enough, which will be justified when studying the case d ≥ 2

-log m 2 (P µ (B n (x, y))) L(n) = γ q j+1 L(n) L(n) q j+1 u 1 L(n) q j+1 - n L(n) u 1 n + n L(n) u 2 n -γ q j L(n) L(n) q j u 2 L(n) q j + 1 L(n) j-1 k=0   L(n) q j-k u k+3 L(n) q j-k - 1 q L(n) q j-k-1 u k+3 L(n) q j-k-1   + #{i ∈ 1, L(n) , q i} L(n) log m 2 (t ∅ ) ≤ γ   u 1 L(n) q j+1 -u 1 n   + γ   u 2 n -u 2 L(n) q j   + j-1 k=0 1 q j-k   u k+3 L(n) q j-k -u k+3 L(n) q j-k-1   + q -1 q log m 2 (t ∅ ) + .
To conclude we now use Lemma A.3 and then let → 0.

Example 2.9. If Ω is a Sierpiński carpet, then clearly X Ω = Ω. Using uniqueness in Theorem 2.6 we deduce that the values t (x 1 ,y 1 )y 2 ...y j+1 do not depend on x 1 and y 1 . We call them

t y 2 •••y j+1 . Equation (3) now reduces to t q j+1 γ y 2 •••y j+1 = N (y 2 ) q j γ y j+2 t q j γ y 3 •••y j+2 ,
where N (y 2 ) = #{x 2 , (x 2 , y 2 ) ∈ A}. Thus

y j+1 t q j γ y 2 •••y j+1 = N (y 2 ) q j-1 γ y j+1 y j+2 t q j γ y 3 •••y j+2 1 q
, and so on. After having summed on the different coordinates we get

y 2 y 3 • • • y j y j+1 t q j γ y 2 •••y j+1 1 q 1 q • • • 1 q 1 q = y 2 N (y 2 ) γ q q-1 . So finally t ∅ = y 2 N (y 2 ) γ q q-1 and dim H (X Ω ) = log m 2 y 2 N (y 2
) γ , which is as expected in the McMullen formula. Also, we check that the maximizing measure is the Bernoulli product measure used by McMullen.

Example 2.10. Let q = 2, m 1 = 3, m 2 = 2 and D = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}. We have j = 0. Let

A =            0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0            . be a 0 -1 matrix indexed by D × D. Let X A = {(x k , y k ) ∞ k=1 ∈ Σ 3,2 , A((x k , y k ), (x 2k , y 2k )) = 1, k ≥ 1}.
We look for the solutions t of the systems of equations described in Lemma 2.6. Using uniqueness we know that

t (0,0) = t (0,1) = t (1,0) = t (2,0) , t (1,1) = t (2,1) . Moreover t γq (0,0) = t (1,0) + t (2,0) γ + t (0,1) + t (1,1) + t (2,1) γ = 2 γ t γ (0,0) + t (0,0) + 2t (1,1) γ , t γq (1,1) = t (0,0) + t (1,0) + t (2,0) γ + t γ (0,1) = (3 γ + 1)t γ (0,0) ,
thus t γq (0,0) = 2 γ t γ (0,0) + t (0,0) + 2 (3 γ + 1)

1 γq t 1 q
(0,0) γ . Finally we have

t ∅ = t (1,0) + t (1,0) + t (2,0) γ + t (0,1) + t (1,1) + t (2,1) γ = 3 γ t γ (0,0) + t (0,0) + 2 (3 γ + 1) 1 γq t 1 q (0,0) γ .
Using Scilab we get t (0,0) 7.1446, thus dim H (X A ) = 1 2 log 2 (t ∅ ) 1.878.

The Minkowski dimension of X Ω .

Theorem 2.11. We have

dim M (X Ω ) = (q -1) 2 j p=1 log m 2 (|Pref 0,p (Ω)|) q p+1 + (q -1)(1 -q j γ) ∞ p=j+1 log m 2 (|Pref p-j-1,j+1 (Ω)|) q p + (q -1)(q j+1 γ -1) ∞ p=j+1 log m 2 (|Pref p-j,j (Ω)|) q p+1
Proof. Recall that, by definition

dim M (X Ω ) = lim inf n→∞ log m 1 (Pref n,L(n)-n (X Ω ))
n .

We can again fix ≥ j + 1 and take n = q r with r → ∞ in this lim inf. Now using the computations used in the proof of Theorem 2.2 we get

log m 1 (Pref n,L(n)-n (X Ω )) ≥ j p=1 # i ∈ L(n) q p , L(n) q p-1 : q i log m 1 (|Pref 0,p (Ω)|) + p=j+1 # i ∈ n q p-j-1 , L(n) q p-1 : q i log m 1 (|Pref p-j-1,j+1 (Ω)|) + p=j+1 # i ∈ L(n) q p , n q p-j-1 : q i log m 1 (|Pref p-j,j (Ω)|).
On the other hand

log m 1 (Pref n,L(n)-n (X Ω )) ≤ j p=1 # i ∈ L(n) q p , L(n) q p-1 : q i log m 1 (|Pref 0,p (Ω)|) + p=j+1 # i ∈ n q p-j-1 , L(n) q p-1 : q i log m 1 (|Pref p-j-1,j+1 (Ω)|) + p=j+1 # i ∈ L(n) q p , n q p-j-1 : q i log m 1 (|Pref p-j,j (Ω)|) + log m 1 (m 1 m 2 )d n
by putting arbitrary digits in the remaining places (d n being defined in ( 1)). Remember that

d n ≤ ( +1)L(n) q + C ( +1) 2 . By letting r → ∞ we obtain dim M (X Ω ) ≥ (q -1) 2 j p=1 log m 2 (|Pref 0,p (Ω)|) q p+1 + (q -1)(1 -q j γ) p=j+1 log m 2 (|Pref p-j-1,j+1 (Ω)|) q p + (q -1)(q j+1 γ -1) p=j+1 log m 2 (|Pref p-j,j (Ω)|) q p+1 and dim M (X Ω ) ≤ (q -1) 2 j p=1 log m 2 (|Pref 0,p (Ω)|) q p+1 + (q -1)(1 -q j γ) p=j+1 log m 2 (|Pref p-j-1,j+1 (Ω)|) q p + (q -1)(q j+1 γ -1) p=j+1 log m 2 (|Pref p-j,j (Ω)|) q p+1 + log m 2 (m 1 m 2 ) + 1 q .
Since is arbitrary we can conclude.

Proposition 2.12. We have dim M (X Ω ) = dim H (X Ω ) if and only if the following four conditions are satisfied

• the tree Γ j (Ω) is spherically symmetric, • # {x 1 : (x 1 , y 1 )y 2 • • • y j+1 ∈ Pref 1,j (Ω)} does not depend on y 1 • • • y j+1 ∈ Pref 0,j+1 (Ω), • for 1 ≤ p ≤ j, # {y p+1 : y 1 • • • y p+1 ∈ Pref 0,p+1 (Ω)} does not depend on y 1 • • • y p ∈ Pref 0,p (Ω), • for p ≥ 2, # {x p : (x 1 , y 1 ) • • • (x p , y p )y p+1 • • • y p+j ∈ Pref p,j (Ω)} does not depend on (x 1 , y 1 ) • • • (x p-1 , y p-1 )y p • • • y p+j ∈ Pref p-1,j (Ω).
Proof. Compare the formulas in Theorems 2.2 and 2.11. We have

H µ m 2 (α 2 p-j ∨ α 1 p ) ≤ log m 2 (|Pref p-j,j (Ω)|),
with equality if and only if every [u] for u ∈ Pref p-j,j (Ω) has equal measure µ, and similar results for

H µ m 2 (α 1 p ) and H µ m 2 (α 2 p-j-1 ∨ α 1 p )
. Now, the expression of µ in Proposition 2.7 and uniqueness in Lemma 2.6 give the conditions we stated.

Generalization to the higher dimensional cases

We are now trying to compute dim

H (P µ ) in any dimension d ≥ 2. Ω is now a closed subset of Σ m 1 ,...,m d = (A 1 × • • • × A d ) N * ,
where

m 1 ≥ • • • ≥ m d ≥ 2 and A i = {0, . . . , m i -1}.
We define

γ i = log(m i ) log(m i-1 )
and

L i : n ∈ N → n γ i for 2 ≤ i ≤ d (L 1
being the identity on N). We can again define the Borel probability measures P µ on X Ω as in the two-dimensional case. For (x 1 , . . . , x d ) ∈ X Ω we need to compute P µ (B n (x 1 , . . . , x d )), where

B n (x 1 , . . . , x d ) = {(u 1 , . . . , u d ) ∈ Σ m 1 ,...,m d : ∀1 ≤ k ≤ d, ∀1 ≤ i ≤ (L k •• • ••L 1 )(n), u k i = x k i }.
3.1. Computation of dim H (P µ ) for 3-dimensional sponges. First suppose that d = 3, as the computation of dim H (P µ ) in this case helps to better understand the general one. Let j 2 , j 3 be the unique non-negative integers such that q j 2 ≤ 1 γ 2 < q j 2 +1 and q j 3 ≤ 1 γ 3 < q j 3 +1 . Now we get two cases : either q j 2 +j 3 ≤ 1 γ 2 γ 3 < q j 2 +j 3 +1 or q j 2 +j 3 +1 ≤ 1 γ 2 γ 3 < q j 2 +j 3 +2 . Suppose we are in the first one. In this case for all n large enough we have q j 2 n ≤ L 2 (n) < q j 2 +1 n, q j 3 n ≤ L 3 (n) < q j 3 +1 n and q j 2 +j 3 n ≤ L 3 (L 2 (n)) < q j 2 +j 3 +1 n. In order to compute dim H (P µ ) we now use the same method as in Proposition 2.2. For n = q r with fixed we can write

L 3 (L 2 (n)) q , L 3 (L 2 (n)) = p=1 L 3 (L 2 (n)) q p , L 3 (L 2 (n)) q p-1 .
We now have for all r large enough

• 1 ≤ p ≤ j 3 =⇒ L 3 (L 2 (n)) q p , L 3 (L 2 (n)) q p-1 ⊂ ]L 2 (n), L 3 (L 2 (n))] • j 3 + 1 ≤ p ≤ j 3 + j 2 =⇒ L 3 (L 2 (n)) q p , L 3 (L 2 (n)) q p-1 ⊂ ]n, L 3 (L 2 (n))]. We have L 2 (n) q p-j 3 -1 ∈ L 3 (L 2 (n)) q p , L 3 (L 2 (n)) q p-1 and i ∈ L 3 (L 2 (n)) q p , L 2 (n) q p-j 3 -1 =⇒ n < i ≤ q p-j 3 -1 i ≤ L 2 (n) < q p-j 3 i ≤ q p-1 i ≤ L 3 (L 2 (n)) < q p i, i ∈ L 2 (n) q p-j 3 -1 , L 3 (L 2 (n)) q p-1 =⇒ n < i ≤ q p-j 3 -2 i ≤ L 2 (n) < q p-j 3 -1 i ≤ q p-1 i ≤ L 3 (L 2 (n)) < q p i. • For j 3 + j 2 + 1 ≤ p ≤ we have L 2 (n) q p-j 3 -1 , n q p-j 2 -j 3 -1 ∈ L 3 (L 2 (n)) q p , L 3 (L 2 (n)) q p-1 and n q p-j 2 -j 3 -1 ≤ L 2 (n) q p-j 3 -1 , thus if i ∈ L 3 (L 2 (n)) q p , n q p-j 2 -j 3 -1 then q p-j 2 -j 3 -1 i ≤ n < q p-j 2 -j 3 i ≤ q p-j 3 -1 i ≤ L 2 (n) < q p-j 3 i ≤ q p-1 i ≤ L 3 (L 2 (n)) < q p i, if i ∈ n q p-j 2 -j 3 -1 , L 2 (n) q p-j 3 -1 then q p-j 2 -j 3 -2 i ≤ n < q p-j 2 -j 3 -1 i ≤ q p-j 3 -1 i ≤ L 2 (n) < q p-j 3 i ≤ q p-1 i ≤ L 3 (L 2 (n)) < q p i,
and if i ∈ L 2 (n) q p-j 3 -1 , L 3 (L 2 (n)) q p-1 then q p-j 2 -j 3 -2 i ≤ n < q p-j 2 -j 3 -1 i ≤ q p-j 3 -2 i ≤ L 2 (n) < q p-j 3 -1 i ≤ q p-1 i ≤ L 3 (L 2 (n)) < q p i.
Denote by α 3 p , α 2 p and α 1 p the partitions of Ω into cylinders of length p along all three coordinates, the second and the third ones, and the third one respectively. Using the same approach as in the two dimensional case we can get dim H (P µ ) = (q -1) 2

j 3 p=1 H µ m 3 (α 1 p ) q p+1 + (q -1)(γ 3 q j 3 +1 -1) j 2 +j 3 p=j 3 +1 H µ m 3 (α 2 p-j 3 ∨ α 1 p ) q p+1 + (q -1)(1 -γ 3 q j 3 ) j 2 +j 3 p=j 3 +1 H µ m 3 (α 2 p-j 3 -1 ∨ α 1 p ) q p + (q -1)(γ 2 γ 3 q j 2 +j 3 +1 -1) ∞ p=j 2 +j 3 +1 H µ m 3 (α 3 p-j 2 -j 3 ∨ α 2 p-j 3 ∨ α 1 p ) q p+1 + (q -1)(γ 3 q j 3 -γ 2 γ 3 q j 2 +j 3 ) ∞ p=j 2 +j 3 +1 H µ m 3 (α 3 p-j 2 -j 3 -1 ∨ α 2 p-j 3 ∨ α 1 p ) q p + (q -1)(1 -γ 3 q j 3 ) ∞ p=j 2 +j 3 +1 H µ m 3 (α 3 p-j 2 -j 3 -1 ∨ α 2 p-j 3 -1 ∨ α 1 p ) q p .
If we suppose now that q j 2 +j 3 +1 ≤ 1 γ 2 γ 3 < q j 2 +j 3 +2 , we have L 2 (n) q p-j 3 -1 ≤ n q p-j 2 -j 3 -2 for n large enough and we get dim H (P µ ) = (q -1) 2 j 3 p=1 H µ m 3 (α 1 p ) q p+1 + (q -1)(γ 3 q j 3 +1 -1)

j 2 +j 3 +1 p=j 3 +1 H µ m 3 (α 2 p-j 3 ∨ α 1 p ) q p+1
+ (q -1)(1 -γ 3 q j 3 )

j 2 +j 3 +1 p=j 3 +1 H µ m 3 (α 2 p-j 3 -1 ∨ α 1 p ) q p + (q -1)(γ 3 q j 3 +1 -1) ∞ p=j 2 +j 3 +2 H µ m 3 (α 3 p-j 2 -j 3 -1 ∨ α 2 p-j 3 ∨ α 1 p ) q p+1 + (q -1)(γ 2 γ 3 q j 2 +j 3 +1 -γ 3 q j 3 ) ∞ p=j 2 +j 3 +2 H µ m 3 (α 3 p-j 2 -j 3 -1 ∨ α 2 p-j 3 -1 ∨ α 1 p ) q p + (q -1)(1 -γ 2 γ 3 q j 2 +j 3 +1 ) ∞ p=j 2 +j 3 +2 H µ m 3 (α 3 p-j 2 -j 3 -2 ∨ α 2 p-j 3 -1 ∨ α 1 p ) q p . ( 4 
)
In the next subsection we will adopt a more general point of view to avoid this dichotomy case. For some arbitrary coordinate functions χ 1 , . . . , χ

N ∈ {{x ∈ Ω → x k i } : k ∈ 1, d , i ≥ 1} we also define Pref χ 1 ,...,χ N (Ω) = {(χ 1 (x), . . . , χ N (x)) : x ∈ Ω}.
For all t ∈ 2, d , let j t ∈ N such that

q jt ≤ 1 γ t < q jt+1 .
There is a unique sequence of integers (n t ) 2≤t≤d such that

∀t ∈ 1, d -1 , q j d +j d-1 +•••+j t+1 +n t+1 ≤ 1 γ d γ d-1 • • • γ t+1 < q j d +j d-1 +•••+j t+1 +n t+1 +1 .
Let

p t = j d + j d-1 + • • • + j t+1 + n t+1 .
The sequence (n t ) takes its values in 0, d -2 and is non-decreasing; moreover n d = 0 and n t ∈ {n t+1 , n t+1 + 1} for 2 ≤ t ≤ d -1. The integers j t , t ∈ 2, d and n t , t ∈ 2, d -1 are the 2d -3 parameters mentioned in the introduction. Thus we get that for all n large enough,

for s ∈ 1, d -1 ∀t ∈ s, d -1 , ∀p ∈ p s + 1, p s-1 , L t • • • • • L 1 (n) q p-pt-1 ∈ L d • • • • • L 1 (n) q p , L d • • • • • L 1 (n) q p-1 and L d • • • • • L 1 (n) q p ≥ L s-1 • • • • • L 1 (n), with p 0 = and L 0 (n) = 0. If p ∈ 1, p d-1 then L d • • • • • L 1 (n) q p ≥ L d-1 • • • • • L 1 (n).
For s ∈ 1, d -1 let σ s ∈ S( s, d -1 ) be the unique permutation such that the sequence

L σs(t) • • • • • L 1 (n) q p-p σs(t) -1 t∈ s,d-1
is non-decreasing for all n large enough and all p. We define

I s,s-1 p = L d • • • • • L 1 (n) q p , L σs(s) • • • • • L 1 (n) q p-p σs(s) -1 , I s,t p = L σs(t) • • • • • L 1 (n) q p-p σs(t) -1 , L σs(t+1) • • • • • L 1 (n)
q p-p σs(t+1) -1 for t ∈ s, d -2 and

I s,d-1 p = L σs(d-1) • • • • • L 1 (n) q p-p σs(d-1) -1 , L d • • • • • L 1 (n) q p-1 .
We will use the partitions

L d • • • • • L 1 (n) q p , L d • • • • • L 1 (n) q p-1 = d-1 t=s-1 I s,t p for all p ∈ p s + 1, p s-1 . Observe that for i ∈ L d •••••L 1 (n) q p , L d •••••L 1 (n) q p-1
such that q i we have

q p-p k -2 i ≤ L k • • • • • L 1 (n) < q p-p k i for all k ∈ 1, d -1 . Hence for k ∈ 1, d -1 either q p-p k -2 i ≤ L k • • • • • L 1 (n) < q p-p k -1 i or q p-p k -1 i ≤ L k • • • • • L 1 (n) < q p-p k i. Moreover if i ∈ I s,t p then L σs(s) • • • • • L 1 (n) q p-p σs(s) -1 ≤ • • • ≤ L σs(t) • • • • • L 1 (n) q p-p σs(t) -1 < i ≤ L σs(t+1) • • • • • L 1 (n) q p-p σs(t+1) -1 ≤ • • • ≤ L σs(d-1) • • • • • L 1 (n)
q p-p σs(d-1) -1 .

For s ∈ 1, d -1 and t ∈ s -1, d -1 let (p s,t k ) k∈ s,d-1 be defined by p s,t k = p k + 1 if k ∈ σ s ( s, t ), and p s,t k = p k otherwise. Then we have

i ∈ I s,t p =⇒ ∀ k ∈ s, d -1 , q p-p s,t k -1 i ≤ L k • • • • • L 1 (n) < q p-p s,t k i.
Thus the P µ -mass of an arbitrary "quasi-cube" is

P µ (B n (x 1 , . . . , x d )) = j d p=1 i∈ L d •••••L 1 (n) q p , L d •••••L 1 (n) q p-1 q i µ x d i • • • x d q p-1 i • d-1 s=2 p s-1 p=ps+1 d-1 t=s-1 i∈I s,t p q i µ(C s,t p,i (x)) • p=p 1 +1 d-1 t=0 i∈I 1,t p q i µ(C 1,t p,i (x)) • D n (x 1 , . . . , x d ), (5) 
where

C s,t p,i (x) = x s i , . . . , x d i • • • x s q p-p s,t s -1 i
, . . . , x d q p-p s,t s -1 i

x s+1 q p-p s,t s i , . . . , x d q p-p s,t s i

• • • x s+1 q p-p s,t s+1 -1 i , . . . , x d q p-p s,t s+1 -1 i • • • x d-1 q p-p s,t d-2 i , x d q p-p s,t d-2 i • • • x d-1 q p-p s,t d-1 -1 i , x d q p-p s,t d-1 -1 i x d q p-p s,t d-1 i • • • x d q p-1 i
and D n (x 1 , . . . , x d ) is the residual term. Note that C s,t p,i (x) can also be compactly written as

π s (x) i • • • π s (x) q p-p s,t s -1 i π s+1 (x) q p-p s,t s i • • • π s+1 (x) q p-p s,t s+1 -1 i • • • π d (x) q p-p s,t d-1 i • • • π d (x) q p-1 i , using the projections π k : x → (x k , . . . , x d ) for k ∈ 1, d .
Now, for all p ≥ 1 we define

δ d,d-1 p = lim n→∞ # i ∈ L d •••••L 1 (n) q p , L d •••••L 1 (n) q p-1 : q i L d • • • • • L 1 (n) = (q -1) 2 q p+1 , δ s,s-1 p = lim n→∞ # i ∈ I s,0 p : q i L d • • • • • L 1 (n) = (q p σs(s) +1 d i=σs(s)+1 γ i -1)(q -1) q p+1 , δ s,t p = lim n→∞ # i ∈ I s,t p : q i L d • • • • • L 1 (n) = (q p σs(t+1) d i=σs(t+1)+1 γ i -q p σs(t) d i=σs(t)+1 γ i )(q -1) q p for t ∈ s, d -2 and δ s,d-1 p = lim n→∞ # i ∈ I s,s p : q i L d • • • • • L 1 (n) = (1 -q p σs(d-1) d i=σs(d-1)+1 γ i )(q -1) q p .
Moreover denote by α k p the partition of Ω into cylinders of length p along the last k coordinates for k ∈ 1, d . Finally let

H µ s,p = d-1 t=s-1 δ s,t p H µ m d α 1 p ∨ α 2 p-p s,t d-1 ∨ α 3 p-p s,t d-2 ∨ • • • ∨ α d-s+1 p-p s,t s for s ∈ 1, d .
Theorem 3.1. The Borel probability measure P µ is exact dimensional and its dimension is

S(Ω, µ) =   j d p=1 H µ d,p   +   d-1 s=2 p s-1 p=ps+1 H µ s,p   + ∞ p=p 1 +1 H µ 1,p .
Proof. We use exactly the same method as in the proof of Theorem 2.2, using the computation of P µ (B n (x 1 , . . . , x d )) above, the different families of i.i.d random variables

Y s,t p,i : x ∈ X Ω → -log(µ(C s,t p,i (x))) i∈I s,t p whose expectations are H µ m d α 1 p ∨ α 2 p-p s,t d-1 ∨ α 3 p-p s,t d-2 ∨ • • • ∨ α d-s+1 p-p s,t
s respectively, and Theorem 2.1 and Lemma A.2 repeatedly. We then show again that the residual term D n (x 1 , . . . , x d ), which is larger than or equal to the P µ -mass of those points in X Ω which share the same symbolic coordinates as x for those indices j which do not appear in the cylinders of the forme C s,t p,i (x) with p ≤ , is P µ -almost always negligible. To this end, we use like in the proof of Theorem 2.2 Borel-Cantelli lemma and the set

S n = {(x 1 , . . . , x d ) ∈ X Ω : D n (x 1 , . . . , x d ) ≤ (2m 1 m 2 • • • m d ) -dn },
where the exponent

d n = L d • • • • • L 1 (n) - p=1 # i ∈ N ∩ L d • • • • • L 1 (n) q p , L d • • • • • L 1 (n) q p-1
: q i p can likewise easily be controlled.

We can again optimize this quantity following the method we used in the two-dimensional case, by conditioning all the entropy terms appearing in the third part of this expression for p ≥ p 1 + 2 by the finest partition appearing in the term H µ 1,p 1 +1 . We know that for all s we have

t ≤ t =⇒ ∀k, p s,t k ≤ p s,t k , t < t =⇒ ∃k, p s,t k < p s,t k , (6) 
so this partition is the one appearing in the t = 0 term, i.e.

α = α 1 p 1 +1 ∨ α 2 p 1 +1-p 1,0 d-1 ∨ α 3 p 1 +1-p 1,0 d-2 ∨ • • • ∨ α d p 1 +1-p 1,0 1 . = α 1 p 1 +1 ∨ α 2 p 1 +1-p d-1 ∨ α 3 p 1 +1-p d-2 ∨ • • • ∨ α d 1 .
If C is a cylinder of this partition in Ω, denote by Ω C , θ C and µ C the associate rooted set at C ∈ α in Ω, its µ-mass and the normalized measure induced on it respectively. Since for p ≥ p 1 + 2 and t ∈ 0, d -1 we can write

H µ m d α 1 p ∨ α 2 p-p 1,t d-1 ∨ α 3 p-p 1,t d-2 ∨ • • • ∨ α d p-p 1,t 1 = H µ m d (α) + H µ m d α 1 p ∨ α 2 p-p 1,t d-1 ∨ α 3 p-p 1,t d-2 ∨ • • • ∨ α d p-p 1,t 1 |α = H µ m d (α) + C∈C θ C H µ C m d α 1 p-1 ∨ α 2 p-p 1,t d-1 -1 ∨ α 3 p-p 1,t d-2 -1 ∨ • • • ∨ α d p-p 1,t 1 -1 (Ω C ) , we get S(Ω, µ) = j d p=1 H µ d,p + d-1 s=2 p s-1 p=ps+1 H µ s,p + d-1 t=1 δ 1,t p 1 +1 H µ m d α 1 p 1 +1 ∨ α 2 p 1 +1-p 1,t d-1 ∨ • • • ∨ α d p 1 +1-p 1,t 1 +   δ 1,0 p 1 +1 + ∞ p=p 1 +2 d-1 t=0 δ 1,t p   H µ m d (α) + 1 q C∈C θ C S(Ω C , µ C ). (7) 
Now we can obtain the unique optimal measure as in the proof of Theorem 2.7 by getting the q C with a recursive reasoning and repeating the argument for the entire suitable graphs.

To make things clearer and to highlight the fact that the structure of the optimal measure is similar to the one appearing in the two-dimensional case, we introduce now the unique sequence of coordinate functions (χ i ) i≥1 such that if we reorder the partitions of Ω appearing in the expression of dim H (P µ ) above as an increasing sequence β 1 ≤ β 2 ≤ • • • (the symbol ≤ corresponding there to the "finer than" partial order) we have

H µ (β i ) = - Ω log m d (µ ([χ 1 (x) • • • χ i (x)])) dµ(x)
for all i ≥ 1. Here we used a slight generalization of the notion of cylinders we defined at the beginning of Section 3.2, allowing ourselves to use any family A ⊂ N * × 1, d of coordinates of x and not necessarily a product. This order is exactly the following (using again facts (6)):

α 1 1 ≤ • • • ≤ α 1 p d-1 ≤ α 1 p d-1 +1 ∨ α 2 p d-1 +1-p d-1,d-1 d-1 ≤ α 1 p d-1 +1 ∨ α 2 p d-1 +1-p d-1,d-2 d-1 ≤ α 1 p d-1 +2 ∨ α 2 p d-1 +2-p d-1,d-1 d-1 ≤ α 1 p d-1 +2 ∨ α 2 p d-1 +2-p d-1,d-2 d-1 ≤ • • • ≤ α 1 p d-2 ∨ α 2 p d-2 -p d-1,d-1 d-1 ≤ α 1 p d-2 ∨ α 2 p d-2 -p d-1,d-2 d-1 ≤ • • • ≤ α 1 p 2 +1 ∨ α 2 p 2 +1-p 2,d-1 d-1 ∨ • • • ∨ α d-1 p 2 +1-p 2,d-1 2 ≤ • • • ≤ α 1 p 2 +1 ∨ α 2 p 2 +1-p 2,1 d-1 ∨ • • • ∨ α d-1 p 2 +1-p 2,1 2 ≤ • • • ≤ α 1 p 1 ∨ α 2 p 1 -p 2,d-1 d-1 ∨ • • • ∨ α d-1 p 1 -p 2,d-1 2 ≤ • • • ≤ α 1 p 1 ∨ α 2 p 1 -p 2,1 d-1 ∨ • • • ∨ α d-1 p 1 -p 2,1 2 ≤ α 1 p 1 +1 ∨ α 2 p 1 +1-p 1,d-1 d-1 ∨ • • • ∨ α d p 1 +1-p 1,d-1 1 ≤ • • • ≤ α 1 p 1 +1 ∨ α 2 p 1 +1-p 1,0 d-1 ∨ • • • ∨ α d p 1 +1-p 1,0 1 = α ≤ α 1 p 1 +2 ∨ α 2 p 1 +2-p 1,d-1 d-1 ∨ • • • ∨ α d p 1 +2-p 1,d-1 1 ≤ • • • ≤ α 1 p 1 +2 ∨ α 2 p 1 +2-p 1,0 d-1 ∨ • • • ∨ α d p 1 +2-p 1,0 1 ≤ • • •
For example, when d = 3 and dim H (P µ ) is given by ( 4), this sequence is given by (χ i ) i≥1 = x 3 1 , . . . , x 3 j 3 , x 3 j 3 +1 , x 2 1 , x 3 j 3 +2 , x 2 2 , . . . , x 3 j 2 +j 3 +2 , x 1 1 , x 2 j 2 +2 , . . . .

We also denote by (δ i ) i∈ 1,N the sequence of real factors giving weights to the N entropies in S(Ω, µ) (see [START_REF] Furstenberg | Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation[END_REF]) when being reordered that way. Let

N = p 1 + 1 + d-1 k=1 (p 1 + 1 -p k )
be the number of coordinates χ i appearing in the partition α distinguished above. Finally for (X 1 , . . . , X N ) ∈ Pref χ 1 ,...,χ N (Ω) let Γ (X 1 ,...,X N ) (Ω) be the directed graph whose set of vertices is (X 1 , . . . , X N ) ∪ ∞ =1 Pref χ 1 ,...,χ N + d (Ω), and where for all ≥ 0 there is a directed edge from such that for all ≥ 0 and (X 1 , . . . , X N + d ) ∈ Γ (X 1 ,...,X N ) (Ω) we have

u = X 1 • • • X N + d to another one v if and only if v = X 1 • • • X N + d X N + d+1 • • • X N +( +1)d for some X i , i ∈ N + d + 1, N + ( + 1)d .
t X1•••X N + d 1 ωN -d+1 ω N +1 = X N + d+1 X N + d+2 • • • X N +( +1)d t X1•••X N +( +1)d ω N • • • ω N -d+3 ω N -d+2 , θ X 1 •••X N +d θ X 1 •••X N +d-1 S Ω X 1 •••X N +d , µ X 1 •••X N +d • • •
and repeating the argument for the entire graphs. This yields the desired results.

Theorem 3.3. Let µ be the Borel probability measure on Ω defined in the last theorem, and let P µ be the corresponding probability measure on X Ω . Let x ∈ X Ω . Then

lim inf n→∞ -log m d (P µ (B n (x))) L d • • • • • L 1 (n) ≤ ω 1 log m d (t ∅ ).
Using Theorem 2.1 we deduce that dim H (X Ω ) = ω 1 log m d (t ∅ ) = q -1 q log m d (t ∅ ).

Proof. Let Λ(n) = d k=1 L k •••••L 1 (n) q r
: r ∈ N . We can reorder the elements of Λ(n) as the following increasing sequence : and similarly

N -1 k=N -d+1 φ k (n)<i≤φ k-1 (n) χ k+1 (x| J i ) • • • χ N (x| J i ) t χ1(x| J i )•••χ k (x| J i )χ k+1 (x| J i ) •••χ N (x| J i ) ω N • • • ω k+1 = d p=2 φ N -p+1 (n)<i≤φ N -p (n) q i χ N -p+2 (x| J i ) • • • χ N (x| J i ) t χ1(x| J i )•••χ N (x| J i ) ω N • • • ω N -p+2
, that we combine with

M k=0 d-1 R=1 φN+kd+R(n)<i≤φN+kd+R-1(n) q i χN+kd+R+1(x|J i ) • • • χ N +(k+1)d (x|J i ) t χ1(x|J i )•••χ N +(M +1)d (x|J i ) ωN • • • ωN-d+R+1 = M +1 r=1 d p=2 φN+rd-p+1(n)<i≤φN+rd-p(n) q i χN+rd-p+2(x|J i ) • • • χN+rd(x|J i ) t χ1(x|J i )•••χN+rd(x|J i ) ωN • • • ωN-p+2 , to get d p=2 φ N -p+1 (n)<κ=q r i≤φ N -p (n) q i χ N +rd-p+2 (x| J i ) • • • χ N +rd (x| J i ) t χ1(x| J i )•••χ N +rd (x| J i ) ω N • • • ω N -p+2
; finally we combine in a similar way all the remaining terms from the products ( 11) and ( 10) and obtain d p=2 κ=q r i≤φ N -p+1 (n) q i χ N +rd-p+2 (x| J i )

• • • χ N +rd (x| J i ) t χ 1 (x| J i )•••χ N +rd (x| J i ) ω N • • • ω N -p+2 -1 • N p=d+1 i≤φ N -p+1 (n) q i χ N -p+2 (x| J i ) • • • χ N (x| J i ) t χ 1 (x| J i )•••χ N (x| J i ) ω N • • • ω N -p+2 -1
.

Furthermore some basic recursive computations give us the values of the exponents

ω 1 = j d p=1 δ d,d-1 p + d-1 s=2 p s-1 p=ps+1 d-1 t=s-1 δ s,t p + ∞ p=p 1 +1 d-1 t=0 δ 1,t p = q -1 q = lim n→∞ # {i ≤ L d • • • • • L 1 (n) : q i} L d • • • • • L 1 (n) , ω 2 = ω 1 -δ 1 ω 1 = lim n→∞ # i ≤ L d •••••L 1 (n) q : q i # {i ≤ L d • • • • • L 1 (n) : q i} = 1 q , ω 3 = ω 1 -δ 1 -δ 2 ω 1 -δ 1 = 1 q , ω 4 = • • • = ω p d-1 +2 = 1 q , ω p d-1 +3 = γ d q p d-1 , ω p d-1 +4 = 1 γ d q p d-1 +1 , . . . , ω k = ω 1 - k-1 i=1 δ i ω 1 - k-2 i=1 δ i = lim n→∞ # {i ≤ φ k-1 (n) : q i} # {i ≤ φ k-2 (n) : q i} , . . . ω N = q p σ 1 (1) -p σ 1 (2) d i=σ 1 (1)+1 γ i d i=σ 1 (2)+1 γ i
, ω N +1 = q p 1 -p σ 1 (1) (q -1) d σ 1 (1)+1 γ i .

This yields (ω N -d+1 ω N +1 ) -1 = q p σ 1 (Ω)|.

Proof. The proof follows the same path as in the two-dimensional case. We leave it to the reader, along with the characterization of the equality case with the Hausdorff dimension.
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 2 Figure 2. Approximation of order 6 of the set X A for m 1 = 3, m 2 = 2, q = 2 and A a circulant matrix whose first row is (1, 0, 0, 1, 0, 0).
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 2 Results in any dimension. We get back to the general case, by first introducing some notations and making a few observations before stating the theorems. Let I ⊂ N * and K ⊂ 1, d be finite sets. If x ∈ Ω and (x k i ) i∈I k∈K is a finite set of coordinates of x (the upper index corresponding to the "geometric" coordinate and the lower one being the digit) we define the generalized cylinder (x k i ) i∈I k∈K = {y ∈ Ω : y k i = x k i ∀i ∈ I, ∀k ∈ K}.
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 334 equivalences φ N -1 (n) ∼ (ω N -d+1 ω N +1 ) -1 φ N (n) , φ k+1 (n) ∼ ω k+2 φ k (n)for all k ∈ 0, N -2 , when n → +∞. We conclude by using again lemma A.Theorem For n 1 , . . . , n d ∈ N let Pref n 1 ,...,n d (Ω) = u ∈ d i=1 ( 0, m i -1 × • • • × 0, m d -1 ) n i : Ω ∩ [u] = ∅ .

  Projection map of Σ m 1 ,m 2 on the second coordinate Ω y

∞ =0 L Map n ∈ N * → n γ µ Borel probability measure on Ω P µ Borel probability measure on X Ω , see Section 2.1 π

  If for all p ≥ 1, for all I ∈ α 2 p , the map y ∈ π(I) → µ y (I) is almost surely constant, then P µ satisfies the Ledrappier-Young formula :

	Using Lemma A.4 we get
	Corollary 2.4.

2 p |α 1 p ), using Jensen's inequality. The function x ∈ [0, 1] → -x log(x) being strictly concave, this is a strict inequality unless for all p ≥ 1, for all I ∈ α 2 p , the map y ∈ π(I) → µ y (I) is π * µ-almost surely constant.

the unique Borel probability measure maximizing S(Ω, µ) is defined for all ≥ 0 by

and its Hausdorff dimension is equal to ω 1 log m d (t ∅ ).

Proof. The existence and uniqueness of t are checked using a fixed point theorem as in Lemma 2.6. We get with these notations that

Optimizing this expression as before, we get that θ

. It remains to optimize the conditional measures on the subtrees Ω

We denote by

this sequence, which is valid for all n. Observe that φ

. We now fix n ≥ 1. Let S ≥ 0 be the unique integer such that we have [START_REF] Feng | Dimension theory of iterated function systems[END_REF]. With these notations we get that (9)

. [START_REF] Oliveira | Foundations of ergodic theory[END_REF] Observe that for k ∈ 0, d and r ∈ N we have

Now we can develop the expression (9) of P µ (B n (x)) and group together the terms with the same number of sums. We get t -1 ∅ for all 1 ≤ i ≤ φ 0 (n) such that q i; using property (12) we get

and

we gather the product of terms coming from [START_REF] Mcmullen | Hausdorff dimension of general Sierpiński carpets[END_REF] 

.

For κ = q r i with q i, let

and for p ∈ 3, d , let

.

For p ∈ 1, d and n ≥ 1 let

and for p ∈ d + 1, N let

. This gives us N bounded sequences. We can now write

Appendix A.

Lemma A.1. Let p 1 , . . . , p m ≥ 0 with m i=1 p 1 = 1, and let q 1 , . . . , q m ∈ R. Then

with equality if and only if p i = e q i m j=1 e q j for all i. Proof. See [3, Corollary 1.5].

Lemma A.2. Let (Ω, F, P) be a probability space, (m n ) ∈ (N * ) N * be a strictly increasing sequence such that ∞ n=1 1 m 2 n < +∞ and for all n ≥ 1 let (X i,n ) i∈ 1,mn be a family of independent centered random variables on (Ω, F, P). Assume that there exists K ≥ 0 such that

Proof. Fix n ≥ 1. We have For j ∈ 1, p let φ j , ψ j : N → N be such that

Then we have

Observe that for all j and n we have Lemma A.4. Let µ be a Borel probability measure on Σ m 1 ,m 2 . Suppose that µ is exact dimensional with respect to the metric

with dimension δ. Denote by δ 2 the lower Hausdorff dimension of π * µ with respect to the metric induced by d, and let δ 1 and δ 1 be the essential infimum and the essential supremum of the lower Hausdorff dimensions of the conditional measures µ y with respect to d again, where µ y is obtained from the disintegration of µ with respect to π * µ. Then, with respect to the metric d, for µ-almost every point z we have

So, if δ 1 = δ 1 and δ = δ 1 + δ 2 then µ is exact dimensional with respect to d.

Proof. The first inequality follows from the proof of a result of Marstrand (see [2, Theorem 5.8]), while the second one can be deduced from the proof of [START_REF] Feng | Dimension theory of iterated function systems[END_REF]Theorem 2.11].