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DISCRETE-TIME ANALYSIS OF OPTIMIZED SCHWARZ
WAVEFORM RELAXATION CONVERGENCE

ARTHUR ARNOULT‡, CAROLINE JAPHET‡ AND PASCAL OMNES§‡

Abstract. We propose a new approach to analyze the convergence of optimized Schwarz wave-
form relaxation (OSWR) iterations for parabolic problems. Departing from traditional Fourier analy-
sis in the time direction, we explicitly solve the equations obtained using the backward Euler scheme
in time, and deduce convergence properties from this solution, in the two subdomains case. Con-
vergence is proven for any positive Robin parameter (or couple of such parameters in the two-sided
case). We also show that, for any fixed value of the number of time steps, the convergence depends
on a single parameter which is a combination of the diffusion coefficient, the time step and the Robin
parameter. A convergence result in a finite number of iterations is also proven for a well-chosen
value of the Robin parameters. This approach allows us to define efficient optimized Robin param-
eters that depend on the number of iterations one wishes to perform, and to recommend a couple
(number of iterations, Robin parameter) to reach a given accuracy. Numerical experiments illustrate
the performance of such iteration-dependent optimized Robin parameters, compared to the observed
optimal ones (which also depend on the number of iterations performed). A comparison is also given
with optimized parameters derived by classical Fourier transform analysis on the continuous problem
(which are independent of the iterations).

Key words. Optimized Schwarz waveform relaxation, Robin transmission conditions, Discrete-
time convergence analysis, Iteration-dependent Robin parameters.

1. Introduction. Schwarz Waveform Relaxation (SWR) algorithms [11, 18, 19],
and their extensions, have a long history in the parallel solution of discretized time-
dependent models driven by partial differential equations, such as those arising in
engineering, physics, porous media or geophysical applications, etc [15, 33, 9, 22, 3,
26, 7, 5, 38, 1, 36]. The success of these iterative methods is linked to their fast
convergence that can be optimized by choosing appropriate boundary conditions on
the space-time interfaces between subdomains. In this contribution, we consider Robin
boundary conditions without overlap, in which the value of the Robin parameter(s)
can be chosen identically on the two sides of the interface (the so-called one-sided
case), or differently (the two-sided case), and can be optimized to improve convergence
rates. The corresponding algorithm is called Optimized Schwarz Waveform Relaxation
(OSWR), see [15, 32, 14]. These methods are well-suited to handle nonconformities
in time and space, and can be combined with a posteriori estimates (to get efficient
stopping criteria) or time parallelization techniques [23, 2, 21, 16, 6].

Traditional convergence analysis of OSWR algorithms is mostly performed using
the continuous model, in an attempt to obtain a theory which is independent of the
actual numerical schemes used for discretization. This analysis may be performed by
energy estimates, both in the one-sided and two-sided cases [23, 25]. This technique
is quite general but does not provide a convergence rate, nor a hint on how to prop-
erly choose the Robin parameters for fast convergence. At the discrete-time level, a
convergence proof by energy estimates is performed for the one-sided case [23], but
not for the two-sided case.

On the other hand, Fourier transforms in time and space are commonly used
at the continuous level to obtain convergence rates of the OSWR method for each
Fourier mode [27, 12, 15, 32, 14]; although the supremum of this convergence factor

‡CNRS, UMR 7539, Laboratoire de Géométrie, Analyse et Applications, LAGA, Université Sor-
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over the whole Fourier space is one, it can however be used to choose efficient Robin
parameters that optimize it over the bounded range of frequencies relevant to the
discrete numerical (time and space) grids. However, actual numerical results obtained
with this choice of Robin parameters do not always perform as efficiently as expected
and it has been discussed that the Fourier transform in time may not always allow
to perform an adequate analysis of the convergence properties of the method [35, 17].
This may be due to the fact that the Fourier transform supposes an infinite time
interval, while the actual simulation is necessarily performed on a finite one; switching
to Fourier series does not solve this issue since the error does not vanish at the final
time as it does at the initial time. Another approach, based on discrete-time analysis
is proposed in [8, 24]; for simple schemes, it is based on the so-called one-sided Z
transform, which is a discrete equivalent of the Laplace transform. However, this
also requires either to consider infinite intervals in time or to neglect the error at
the final time. On the contrary, in the present contribution we do not perform any
transformation in the time direction; restricting for the sake of simplicity to the one-
dimensional heat equation in the two subdomains case, we solve directly the full
space-time semi-discrete system on any finite time interval; this is made possible by
the Jordan form of the backward Euler scheme that is used to discretize in the time
direction.

This approach is particularly rich and allows to obtain several new results: first,
we prove convergence of the discrete-time one-sided and two-sided algorithms for any
positive value of the Robin coefficients, with a convergence that, for any fixed value
of the number of time steps, depends on a single parameter in the one-sided case
(and on two parameters in the two-sided case) which is a combination of the diffusion
coefficient value, the time step and the Robin parameter; secondly, we obtain exact
convergence of the OSWR for a well-chosen value of the Robin parameters in a number
of iterations equal to the number of time steps (one-sided case) or twice this number
(two-sided case). Furthermore, numerical simulations show that the observed optimal
Robin parameter depends itself on the number of iterations performed, and we propose
a method to choose an efficient parameter as a function of this number; this allows
us to recommend a couple (number of iterations, Robin parameter) to reach a given
accuracy, e.g. the expected scheme accuracy.

This paper is organized as follows: in Section 2, we consider a model problem
and state its well-posedness, as well as that of the equivalent multi-domain problem.
Then we introduce the discrete-time multi-domain problem, using an implicit Euler
scheme. This problem involves a matrix on which our analysis depends; some of
its properties are given in Section 3. In Section 4, we first recall the continuous
OSWR method, and the usual approach to calculate optimized Robin parameters
using Fourier transform in time. Then we consider the discrete-time OSWR algorithm
and prove its convergence, as well as various related properties. The main result of this
article is an estimate of the relative convergence error at each iteration, which allows
to introduce a new strategy to define discrete-time optimized parameters that depend
on the number of iterations that will be performed. Finally, in Section 5, numerical
experiments show that the proposed error estimate is close to the relative convergence
error at each iteration. Numerical results comparing convergence with continuous or
discrete-time optimized Robin parameters show that, even if the continuous ones can
be a reasonable choice in some cases, the discrete-time ones give better performances,
as they are close to the iteration dependent numerical optimal ones, in all test cases.
Asymptotic performance with these optimized parameters shows that the convergence
depends weakly (one-sided) and is almost independent (two-sided) of the time step.
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2. Problem Setting. In order to simplify the analysis, we consider the following
monodimensional heat equation on Ω× (0, T ), with Ω = R and T > 0 the final time,

Lu := ∂tu− ν∂xxu = f in Ω× (0, T ),
u(· , t = 0) = u0 in Ω,

lim
x→±∞

u(x, · ) is bounded,
(2.1)

where f is a source term, u0 an initial condition and ν a positive diffusion coefficient.

Let Hr,s(Ω× (0, T )) = L2(0, T ;Hr(Ω)) ∩Hs(0, T ;L2(Ω)) be anisotropic Sobolev
spaces defined in [29]. Let us recall Propositions 2.1 and 2.2 below, that can be
directly deduced from [30].

Proposition 2.1. If u0 belongs to H1(Ω) and f to L2(0, T ;L2(Ω)), then prob-
lem (2.1) admits a unique solution in H2,1(Ω× (0, T )).

Let us consider a decomposition of Ω into two non-overlapping subdomains

Ω1 = (−∞, 0), Ω2 = (0,+∞),

and introduce the Robin interface operators as follows (see [31, 14])

B1 = ν∂x + α1, B2 = −ν∂x + α2. (2.2)

Then, problem (2.1) can be reformulated as the following equivalent multi-domain
problem, with fi = f|Ωi , ui = u|Ωi , and u0,i = u0|Ωi , i = 1, 2:

Lu1 = f1 in Ω1 × (0, T ),
B1u1 = B1u2 on {0} × (0, T ),

u1(·, 0) = u0,1 in Ω1,
lim

x→−∞
u1(x, · ) is bounded,

Lu2 = f2 in Ω2 × (0, T ),
B2u2 = B2u1 on {0} × (0, T ),

u2(·, 0) = u0,2 in Ω2,
lim

x→+∞
u2(x, · ) is bounded.

(2.3)

The Robin parameters α1, α2 involved in (2.3) (through Bi, i = 1, 2, defined in (2.2))
are freely chosen positive real numbers chosen such that : a) the Robin subdomain
problems in (2.3) are well posed (see e.g. [30, 6]), b) they lead to a fast converging
OSWR algorithm (see Section 4).

Proposition 2.2. Let i = 1 or i = 2. If u0,i ∈ H1(Ωi), fi ∈ L2(0, T ;L2(Ωi)),

and Biuj ∈ H
1
4 (0, T ), with j = 3−i, then the Robin subdomain problem in Ωi in (2.3)

has a unique solution in H2,1(Ωi × (0, T )).

In practice, a problem such as (2.3) is solved approximately through discretization
and approximation of the derivatives of u by discrete formulas. In this article, we are
concerned with the implicit Euler approximation of the time derivative (with uniform
time step ∆t). Thus, we consider the following semi-discrete approximation of (2.3):

Find Ui = (Ui,1 . . . Ui,N )
T

, for i = 1, 2, such that

LU1 = F1 in Ω1,
B1U1 = B1U2 at x = 0,
lim

x→−∞
U1(x) is bounded,

LU2 = F2 in Ω2,
B2U2 = B2U1 at x = 0,
lim

x→+∞
U2(x) is bounded,

(2.4)
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with operator L : RN → RN defined as follows

LUi :=
1

ν∆t
AUi − U ′′i , i = 1, 2,

where A ∈ RN×N is defined by

A :=




1
−1 1

. . .
. . .

−1 1


 , (2.5)

and where, for i = 1, 2, for all n ∈ J1, NK, Ui,n(x) is an approximation of ui(x, n∆t),

and Fi = (Fi,1 . . . Fi,N )
T

, with Fi,n(x) := fi(x,n∆t)
ν + u0(x)

ν∆t δ1n (where δ1n is the Kron-
ecker delta). The discrete interface operators B1 and B2 are extensions of B1 and B2

to vectors in RN .
The analysis performed in this article relies on various properties of matrix A,

which are presented in the next section.

3. Jordan decomposition. As we will see in Section 3.3, solving (2.4) will
involve a square root of matrix A. Therefore, we will prove that it exists, using
the Jordan decomposition of A. This decomposition will also be very useful for the
analysis of the OSWR algorithm in Section 4.

3.1. Definitions and general results. We recall here some definitions and
results about matrix exponential, square root of a matrix and Jordan decomposition,
from [34, 37, 20].

Definition 3.1 (Square root of a matrix). A square root of a matrix M is a
matrix whose square is M . It might not exist nor be unique.

Definition 3.2 (Matrix exponential). If M is a square matrix, the exponential
of M is the matrix defined by

exp (M) =

+∞∑

k=0

Mk

k!
.

We recall the following property about matrix exponential from [34, Page 79].

Proposition 3.3. The function ϕ : x ∈ C 7→ exp (xM), where M is a square
matrix, is differentiable with respect to x and ∂ϕ

∂x (x) = Mexp (xM) = exp (xM)M .

We recall the following results (Definition 3.4 and Theorem 3.5) about Jordan
decomposition from [37, Page 350] and [20, Page 317].

Definition 3.4 (Jordan block). The Jordan block of parameter µ and size rk is
the rk × rk matrix (rk ∈ N∗), defined by

Jµ =




µ 1 0
. . .

. . .

. . . 1
0 µ



.
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Theorem 3.5 (Jordan decomposition). If M ∈ CN×N , then there exists a non-
singular matrix X ∈ CN×N such that

XMX−1 =




Jµ1
0

. . .

0 JµK


 ,

where µ1, . . . µK are the eigenvalues of M , possibly equal. The number of Jordan blocks
associated with an eigenvalue is equal to its geometric multiplicity, i.e. the dimension
of the associated eigenspace.

Proposition 3.6 (Commuting two Jordan blocks of same size). Blocks Jλ and
Jµ commute (and thus also J−1

λ and J−1
µ ), as well as J−1

λ and Jµ.

3.2. Square root of a matrix. In this part, we prove that a Jordan matrix
admits a square root.

Proposition 3.7. Every matrix M = µIN+N with µ nonzero and N a nilpotent
matrix admits a square root under the form

√
M :=

√
µ

N∑

k=0

( 1
2

k

)
1

µk
N k, (3.1)

with generalized binomial coefficients :

( 1
2

0

)
:= 1,

( 1
2

k

)
:=

1
2 ( 1

2 − 1) . . . ( 1
2 − k + 1)

k!
, ∀k ≥ 1.

Proof. Let us start with the case where µ = 1. Let d be the index of N . If d = 1
then N = 0N,N , thus M = IN , and (3.1) gives

√
M = IN , which is indeed a square

root of M . If d > 1, let

Pd−1(X) =

d−1∑

k=0

( 1
2

k

)
Xk.

We will prove that P 2
d−1(N ) = IN + N , i.e. that the polynomial R defined by

R(X) := 1 +X − P 2
d−1(X) vanishes in matrix N . For this, we will first show that R

is factorizable as a product of Xd and a polynomial, and then use that N d = 0.
The polynomial Pd−1 has been chosen as the (d − 1)-order Taylor expansion of

t 7→
√

1 + t around 0 : √
1 + t =

t→0
Pd−1(t) + o(td−1).

By squaring the above equality, we get

1 + t =
√

1 + t
2

=
t→0

P 2
d−1(t) + 2Pd−1(t)o(td−1) + o(td−1)2 = P 2

d−1(t) + o(td−1). (3.2)

The polynomial R being of degree 2d − 2, it can be written under the form
R(X) =

∑2d−2
k=0 ηkX

k, with ηk ∈ R and η2d−2 6= 0. Then, from (3.2) and the definition
of R, one gets R(t) =

t→0
o(td−1) which is only possible if all ηk are zeros for k ∈ [[0, d−1]].

This implies that

R(X) =

2d−2∑

k=d

ηkX
k =

d−2∑

k=0

ηk+dX
k+d = Xd

d−2∑

k=0

ηk+dX
k.
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Using that N is a nilpotent matrix of index d, i.e. N d = 0, if follows that R(N ) = 0.
According to the definition of R, we obtain :

IN +N = P 2
d−1(N ).

Let us now consider the general case, with µ nonzero, arbitrary. We can rewrite M
as M = µ(IN + 1

µN ) where the 1
µN is nilpotent of index d, and then apply the above

result to define
√
M by

√
M :=

√
µPd−1

(
1

µ
N
)
,

with
√
µ a complex number whose square is µ.

Corollary 3.8. If µ is nonzero, Jµ admits a square root. In this case, N is
the matrix with 1 on the superdiagonal, and 0 elsewhere. Then the i-th superdiagonal

of
√
Jµ only contains coefficient µ

1
2−i
( 1

2
i

)
.

3.3. Application to matrix A. Let us now prove that matrix A (defined
in (2.5)) admits a square root and give the Jordan decomposition of the latter. The
following proposition is immediate.

Proposition 3.9 (Eigenvalue and eigenspace of A). The only eigenvalue of A
is 1 and the associated eigenspace is of dimension one:

S1(A) = Span
(
(0, . . . , 0, 1)T

)
. (3.3)

Proposition 3.10 (Definition and properties of
√
A). Matrix A admits a square

root with the following properties :
(i) The only eigenvalue of

√
A is 1 and the associated eigenspace is S1(A) defined

in (3.3).
(ii)
√
A admits a Jordan decomposition

√
A = Q−1J1Q, (3.4)

with Q an invertible matrix and J1 as in Definition 3.4 with µ = 1.

Proof. Since A = IN + N , where N is the strictly lower triangular matrix with
coefficient −1 on the first lower diagonal, Proposition 3.7 shows that A admits a square
root given by formula (3.1), which additionally shows that 1 is the only eigenvalue of√
A, since all powers of N are also strictly lower triangular.

Furthermore, let X be a nonzero eigenvector associated with the eigenvalue of√
A. We thus have:

√
AX = X. Then AX =

√
A
√
AX =

√
AX = X. As X

is nonzero, it is also an eigenvector of A, and, according to Proposition 3.9, X is
necessarily collinear to (0, . . . , 0, 1)T . This shows (i).

From (i) and Theorem 3.5, we obtain the Jordan decomposition (ii).

4. OSWR algorithm. In this section, after recalling some results in the con-
tinuous framework, we study the convergence of the discrete-time OSWR algorithm.
This will then suggest a methodology for calculating the Robin parameters.

4.1. Continuous case. The OSWR method for solving (2.3) consists in choos-
ing initial Robin data ξ0

1 , ξ
0
2 on (0, T ), and setting B1u

0
2(0, ·) := ξ0

1 , B2u
0
1(0, ·) := ξ0

2 .
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Then for ` = 1, 2, . . . one solves the local Robin problems

Lu`1 = f1 in Ω1 × (0, T ),

B1u
`
1 = B1u

`−1
2 on {0} × (0, T ),

u`1(·, 0) = u0,1 in Ω1,
lim

x→−∞
u`1(x, · ) is bounded,

Lu`2 = f2 in Ω2 × (0, T ),

B2u
`
2 = B2u

`−1
1 on {0} × (0, T ),

u`2(·, 0) = u0,2 in Ω2,
lim

x→+∞
u`2(x, · ) is bounded.

The usual Fourier transform in time approach (with the assumption of an infinite
time interval) provides an expression of the convergence factor of the above algorithm
(see [13, 14]) as follows

ρ(ω, α1, α2) :=

(√
iω − α1√
iω + α1

)(√
iω − α2√
iω + α2

)
,

for all Fourier time frequencies ω. While we have max
ω∈R
|ρ(ω, α1, α2)| = 1, the conver-

gence factor can be used to calculate efficient Robin parameters in the discrete setting.
Indeed, in numerical computations the time frequency is bounded, i.e. in [ πT ,

π
∆t ].

Then, one can define continuous optimized Robin parameters α1,C , α2,C such that

|ρ(ω, α1,C , α2,C)| = min
(α1,α2)∈(R+∗)2

max
ω∈[ πT ,

π
∆t ]
|ρ(ω, α1, α2)|,

see e.g. [28, 32, 12, 14]. One can also consider the one-sided case α := α1 = α2

and define αC as the solution of the above minimization problem on α ∈ R+∗. In
our numerical experiments of Section 5, the minimization is done using the GNU
Octave fminsearch function [10].

4.2. Dimensionless Robin parameters. In what follows, we will use the no-
tation below, for dimensionless Robin parameters:

ᾱi := αi

√
∆t

ν
, i = 1, 2, ᾱαα := (ᾱ1, ᾱ2). (4.1)

This notation will be useful for the convergence analysis in the discrete-time setting.
More precisely, we will observe in Section 4.4 that the convergence depends only on ᾱαα
and N .

Using this notation, the dimensionless continuous optimized Robin parameters,
for the one and two-sided cases, are respectively denoted by

ᾱC := αC

√
∆t

ν
, ᾱααC :=

√
∆t

ν
(α1,C , α2,C). (4.2)

4.3. Discrete-time algorithm. The discrete-time OSWR algorithm for solving
the coupled problem (2.4) is as follows.
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Algorithm 4.1 (Discrete-time OSWR)

Choose initial Robin data Ξ0
1,Ξ

0
2 ∈ RN at x = 0, and set B1U

0
2 := Ξ0

1, B2U
0
1 := Ξ0

2

for ` = 1, 2, . . . do
Solve the local Robin problems

LU `1 = F1 in Ω1,

B1U
`
1 = B1U

`−1
2 at x = 0,

lim
x→−∞

U `1(x) is bounded,

LU `2 = F2 in Ω2,

B2U
`
2 = B2U

`−1
1 at x = 0,

lim
x→+∞

U `2(x) is bounded.
(4.3)

end for

In what follows, an analysis of the convergence of Algorithm 4.1 is given.

4.4. Discrete-time convergence analysis. Let us denote by (U1, U2) the so-
lution of (2.4). Then, by linearity, the error E`i = U `i − Ui, i = 1, 2, at iteration ` of
Algorithm 4.1, satisfy (4.3) with Fi = 0N , i = 1, 2.

For ` ≥ 1 fixed, let us first consider the subdomain problems without the Robin
transmission conditions :

LE`1 = 0N in Ω1,
lim

x→−∞
E`1(x) is bounded.

LE`2 = 0N in Ω2,
lim

x→+∞
E`2(x) is bounded. (4.4)

Then we have the following result:

Theorem 4.1. Let ` ≥ 1. There exists β`i ∈ RN , i = 1, 2, such that the subdo-
main solutions of (4.4) are of the form

E`i (x) = e
−|x|√
ν∆t

√
A
β`i ∀x ∈ Ωi, i = 1, 2. (4.5)

The proof of Theorem 4.1 is given in Appendix 6.1.
Let us introduce the dimensionless initial Robin data for the errors

Ḡ0
i :=

√
∆t

ν

(
Ξ0
i − (BiUi)(0)

)
, i = 1, 2. (4.6)

Let us also extend (4.5) to the case ` = 0, for ᾱj 6= 1, j = 1, 2,

β0
i :=

(
ᾱjIN −

√
A
)−1

Ḡ0
j , j = 3− i, i = 1, 2, (4.7)

E0
i (x) := e

−|x|√
ν∆t

√
A
β0
i , ∀x ∈ Ωi, i = 1, 2. (4.8)

For ` ≥ 1, the dimensionless Robin data for the errors are denoted by

Ḡ`i :=

√
∆t

ν
(Bi(E

`
j))(0) =

(
ᾱiIN −

√
A
)
β`j , j = 3− i, i = 1, 2. (4.9)

Let HHH1(Ωi) := (H1(Ωi))
N and LLL∞(Ωi) := (L∞(Ωi))

N , equipped respectively with

‖U‖HHH1(Ωi) :=

√ ∑

j∈[[1,N ]]

(‖Uj‖2H1(Ωi)
), ‖U‖LLL∞(Ωi) := max

j∈[[1,N ]]
(‖Uj‖L∞(Ωi)).

With these notations and Theorem 4.1, we can now prove the convergence of Algo-
rithm 4.1.
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Theorem 4.2 (OSWR convergence). Let αi > 0, i = 1, 2. Then, Algorithm 4.1
converges in

(
HHH1(Ω1) ∩LLL∞(Ω1)

)
×
(
HHH1(Ω2) ∩LLL∞(Ω2)

)
to the solution of (2.4).

Moreover, setting∗

M(ᾱαα) :=
(
ᾱiIN +

√
A
)−1 (

ᾱiIN −
√
A
)(

ᾱjIN +
√
A
)−1 (

ᾱjIN −
√
A
)
, (4.10)

we have the following relations on the Robin data for the errors, for i=1,2,

Ḡ2`
i = (M(ᾱαα))`Ḡ0

i , ∀` ≥ 0, (4.11a)

Ḡ2`+1
i = (M(ᾱαα))`Ḡ1

i , ∀` ≥ 0, (4.11b)

as well as the discrete-time relations for the errors on the interface∗∗

β2`
i = (M(ᾱαα))`β0

i ∀` ≥ 0, (4.12a)

β2`+1
i = (M(ᾱαα))`β1

i ∀` ≥ 0, (4.12b)

from which we deduce the following convergence estimates, for even and odd iterations

‖E2`
i (0)‖∞

‖E0
i (0)‖∞

≤ ‖(M(ᾱαα))`‖∞, ∀` ≥ 0, (4.13a)

‖E2`+1
i (0)‖∞
‖E1

i (0)‖∞
≤ ‖(M(ᾱαα))`‖∞, ∀` ≥ 0. (4.13b)

Thus, ‖(M(ᾱαα))`‖∞ is an estimate of the relative L∞-error at iterations 2` and 2`+1,
for all ` ≥ 0.

Proof. Let us first prove (4.11) for ` ≥ 1 (the case ` = 0 being trivial).
Replacing (4.5) in the Robin transmission conditions at x = 0 in (4.3), and using

Proposition 3.3, lead to, for i = 1, 2,
(
αiIN + ν

√
A√
ν∆t

)
β1
i = Ξ0

i − (BiUi)(0),

(
αiIN + ν

√
A√
ν∆t

)
β`i =

(
αiIN − ν

√
A√
ν∆t

)
β`−1
j , j = 3− i, ∀` ≥ 2,

or equivalently, using the dimensionless notations (4.1) and (4.6), for i = 1, 2,
(
ᾱiIN +

√
A
)
β1
i = Ḡ0

i , (4.14a)
(
ᾱiIN +

√
A
)
β`i =

(
ᾱiIN −

√
A
)
β`−1
j , j = 3− i, ∀` ≥ 2. (4.14b)

For i = 1, 2, the matrix
(
ᾱiIN +

√
A
)

is nonsingular. Indeed, using the Jordan

decomposition of
√
A given in (3.4), and that ᾱi > 0, we get

det
(
ᾱiIN +

√
A
)

= det
(
Q−1(ᾱiIN + J1)Q

)
= det (ᾱiIN + J1) = (ᾱi + 1)

N 6= 0.

∗As all matrices of type (ᾱiIN ±
√
A) and their inverses commute one with the other, matrix M

is independent of indices i and j.
∗∗Formulas (4.12a) and (4.13a) below are only well-defined for ᾱj 6= 1, j = 1, 2. If ᾱj = 1, for

j = 1 or j = 2, we have, for i = 3− j, the equality β2`
i = (M(ᾱαα))`−1β2

i and the convergence estimate
‖E2`
i (0)‖∞

‖E2
i (0)‖∞

≤ ‖(M(ᾱαα))`−1‖∞, ∀` ≥ 1.
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Thus, from (4.14a) and (4.14b) we obtain, for i = 1, 2,

β2
i =

(
ᾱiIN +

√
A
)−1 (

ᾱiIN −
√
A
)(

ᾱjIN +
√
A
)−1

Ḡ0
j , j = 3− i, (4.15a)

β`i = M(ᾱαα)β`−2
i , ∀` ≥ 3. (4.15b)

Multiplying now (4.15a) and (4.15b) by (ᾱjIN −
√
A), with j = 3− i, then using that

all matrices of type (ᾱiIN ±
√
A) and their inverses commute one with the other, and

using (4.9), we get, for j = 1, 2,

Ḡ2
j = M(ᾱαα)Ḡ0

j ,

Ḡ`j = M(ᾱαα)Ḡ`−2
j , for ` ≥ 3,

from which (4.11) is deduced by induction. From (4.15b), we also get (4.12b) by
induction. Then, taking the L∞-norm of (4.12b), and using (4.5), we deduce (4.13b).

Let us now prove (4.12a) and (4.13a). We will distinguish the following cases :

Case ᾱi 6= 1ᾱi 6= 1ᾱi 6= 1, for i = 1, 2i = 1, 2i = 1, 2. Multiplying equations (4.11) by (ᾱiIN −
√
A)−1 and

then using (4.7) and (4.9) lead to (4.12a). Then, taking the L∞-norm of (4.12a), and
using (4.5) and (4.8), we get (4.13a).

Case ᾱi = 1ᾱi = 1ᾱi = 1, for i = 1i = 1i = 1 or i = 2i = 2i = 2. In that case, relations (4.12a) and (4.13a) are

replaced by β2`
i = (M(ᾱαα))`−1β2

i and
‖E2`

i (0)‖∞
‖E2

i (0)‖∞ ≤ ‖(M(ᾱαα))`−1‖∞, ∀` ≥ 1, respectively

(see Footnote ∗∗). The first relation is obtained by induction from (4.15b). Then, tak-
ing its L∞-norm, and using (4.5), we obtain the second one.

Let us now prove that Algorithm 4.1 converges. Matrix
√
A is lower triangular

with value 1 on the diagonal. Thus, M(ᾱαα) is a lower triangular matrix with a unique
diagonal coefficient σ, that is its unique eigenvalue, given by

σ =

(
ᾱ1 − 1

ᾱ1 + 1

)(
ᾱ2 − 1

ᾱ2 + 1

)
.

Thus the spectral radius of M(ᾱαα) is equal to |σ| and strictly smaller than 1, as ᾱi > 0.
Consequently, we have lim

`→∞
(M(ᾱαα))` = 0N,N , and thus lim

`→∞
β2`
i = lim

`→∞
β2`+1
i = 0N ,

for i = 1, 2. Then lim
`→∞

‖E2`
i ‖LLL∞(Ωi) = lim

`→∞
‖E2`+1

i ‖LLL∞(Ωi) = 0, i = 1, 2, and

lim
`→∞

‖E2`
i ‖HHH1(Ωi) = lim

`→∞
‖E2`+1

i ‖HHH1(Ωi) = 0, i = 1, 2, for all positive ᾱ1, ᾱ2, which

proves the convergence of Algorithm 4.1.

From Theorem 4.2, the following finite convergence results can be derived.

Theorem 4.3 (Finite convergence of OSWR method). Let ᾱi, i = 1, 2, be the
dimensionless Robin parameters defined in (4.1).

(i) If ᾱ1 = 1 or ᾱ2 = 1 (two-sided case), then the OSWR algorithm 4.1 converges
in at most 2N + 2 iterations;

(ii) If ᾱ1 = ᾱ2 = 1 (one-sided case), then the OSWR algorithm 4.1 converges in
at most N + 1 iterations.

Proof. Let us prove (i). Using in (4.11a) the Jordan decomposition of
√
A (given

in (3.4)), we get, for ` ≥ 0, for i = 1, 2

Ḡ2`
i = Q−1

(
(ᾱiIN + J1)

−1
(−ᾱiIN + J1) (ᾱjIN + J1)

−1
(−ᾱjIN + J1)

)`
QḠ0

i .
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Using Property 3.6, the four matrices commute one with the other (as each matrix is
a Jordan matrix, e.g. ᾱiIN + J1 = J1+ᾱi). Then, we have :

Ḡ2`
i = Q−1 (ᾱiIN + J1)

−`
(−ᾱiIN + J1)

`
(ᾱjIN + J1)

−`
(−ᾱjIN + J1)

`
QḠ0

i . (4.16)

Let i = 1 or i = 2, and j = 3 − i. Let ᾱi = 1 (and ᾱj arbitrary). Then the
matrix −ᾱiIN + J1 has all its coefficients zero, except the superdiagonal ones. Thus,
−ᾱiIN +J1 is an N ×N nilpotent matrix of index N . Consequently, from (4.16) with
` = N , we have Ḡ2N

i = 0N . Using now relation (4.14b), which is written

β`+1
i =

(
ᾱiIN +

√
A
)−1 (

ᾱiIN −
√
A
)
β`j =

(
ᾱjIN +

√
A
)−1

Ḡ`i ,

we obtain β2N+1
i = 0N , and with (4.14b) we also have

β`+2
j =

(
ᾱjIN +

√
A
)−1 (

ᾱjIN −
√
A
)
β`+1
i ,

thus β2N+2
j = 0N . Finally, from (4.5), we get E2N+2

i = 0N , i = 1, 2.
Let us now prove (ii). Taking ᾱ1 = ᾱ2 = 1 and multiplying both equations

of (4.14) by (IN −
√
A), one gets :

Ḡ1
j =

(
IN +

√
A
)−1 (

IN −
√
A
)
Ḡ0
i ,

Ḡ`j =
(
IN +

√
A
)−1 (

IN −
√
A
)
Ḡ`−1
i , j = 3− i, ∀` ≥ 2.

Thus, by induction, we obtain

Ḡ`j =
(
IN +

√
A
)−` (

IN −
√
A
)`
Ḡ0
i/j ,

where Ḡ0
i/j is Ḡ0

j if ` is even, Ḡ0
i is ` is odd.

Using the Jordan decomposition of
√
A in the above equality (as in (i)), we get

Ḡ`j = Q−1(IN + J1)−`(IN − J1)`QḠ0
i/j .

Then, if ` = N , one gets that ḠNj = 0, j = 1, 2, and thus, using (4.14b) and (4.9), we

get βN+1
j = (IN +

√
A)−1(IN −

√
A)βNi = (IN +

√
A)−1ḠNj = 0N , j = 1, 2. Finally,

from (4.5), we have EN+1
j = 0N , for j = 1, 2.

From Theorem 4.2, the following result can be obtained.

Theorem 4.4 (Convergence depending only on ᾱαα). For a given N ≥ 1, the
L∞-norm convergence of Algorithm 4.1 depends only on ᾱαα.

Proof. This result directly comes from (4.12) where M depends only on ᾱαα and
on N through its dimension. Indeed, the convergence of the sequence (β`i )`∈N, i = 1, 2,
depends only on ᾱαα and N . Then, using (4.5) and that ‖E`i ‖LLL∞(Ωi) = ‖β`i ‖∞ i = 1, 2,
the theorem is proven.

Remark 4.5. For a given N ≥ 1 (and thus for a given ∆t), once the choice of
ᾱαα = (ᾱ1, ᾱ2) has been performed as recommended in Section 4.5 below, one simply
has to choose αi = ᾱi

√
ν

∆t , i = 1, 2, to obtain an efficient convergence which will not
depend on ν (as follows from Theorem 4.4).
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Remark 4.6 (Notation for matrix M). Throughout the sequel of this paper, the
matrix defined in (4.10) will be denoted by M(ᾱ) in the one-sided case ᾱαα = (ᾱ, ᾱ),
and by M(ᾱαα) in the two-sided case ᾱαα = (ᾱ1, ᾱ2).

Remark 4.7. Note that in (4.13), one could use the upper bound

‖(M(ᾱαα))`‖∞ ≤ ‖M(ᾱαα)‖`∞, (4.17)

and then define Robin parameters, for the one-sided and two-sided cases, respectively
denoted by ᾱM and ᾱααM , as follows‡

‖M(ᾱM )‖∞ = min
ᾱ∈]0,1]

‖M(ᾱ)‖∞, ‖M(ᾱααM )‖∞ = min
ᾱαα∈]0,1]2

‖M(ᾱαα)‖∞. (4.18)

However, for a given N ≥ 1, ‖M(ᾱααM )‖`∞ is larger and closer to 1 than ‖(M(ᾱααM ))`‖∞,
and differs more and more from ‖(M(ᾱααM ))`‖∞ when ` increases. Thus one loses in-
formation in the use of the upper bound (4.17). This will be observed numerically
in Section 5.6, where the convergence with ᾱααM is much slower (except for the very
first iterations) than that with the parameter ᾱαα that minimizes ‖(M(ᾱαα))`‖∞. Con-
sequently, one main objective of this article is to search for discrete-time optimized
Robin parameters ᾱαα = ᾱαα(`), that depend on iteration `, and minimize ‖(M(ᾱαα))`‖∞.
Such parameters will be defined in Section 4.5.

Remark 4.8 (Equivalent writing of discrete-time estimate and notation). From
relations (4.13), the discrete-time estimates at iteration ` read

‖E`i (0)‖∞
‖E0

i (0)‖∞
≤ ‖(M(ᾱαα))q(`)‖∞, ∀` ≥ 0 even, (4.19a)

‖E`i (0)‖∞
‖E1

i (0)‖∞
≤ ‖(M(ᾱαα))q(`)‖∞, ∀` ≥ 1 odd, (4.19b)

with q(`) :=

{
`
2 if ` is even
`−1

2 if ` is odd
, ∀` ≥ 0. (4.20)

Thus, ‖(M(ᾱαα))q(`)‖∞ is an estimate of the relative L∞-error at iteration `, for ` ≥ 0.

4.5. Choice of the Robin parameters. Let us first consider the one-sided
case, i.e. ᾱ := ᾱ1 = ᾱ2. The convergence matrix defined in (4.10) then reads

M(ᾱ) =

((
ᾱIN +

√
A
)−1 (

ᾱIN −
√
A
))2

, i = 1, 2.

Remarks 4.7 and 4.8 lead us to define a discrete-time optimized Robin parameter,
denoted by ᾱD[`], depending on iteration ` ≥ 2, as follows‡

‖(M(ᾱD[`]))
q(`)‖∞ = min

ᾱ∈]0,1]
‖(M(ᾱ))q(`)‖∞, (4.21)

where q(`) is defined in (4.20).
For example, if one wants to optimize the convergence at iteration ` = 7, then one
can use the Robin parameter ᾱD[7] such that ‖M(ᾱD[7])‖∞ = min

ᾱ∈]0,1]
‖(M(ᾱ))3‖∞.

‡The choice of the interval ]0, 1] in the minimization problem comes from the fact that the Robin
parameters are positive, and from our numerical observations in Section 5.3.
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Remark 4.9. In practice, for the minimization problem in (4.21), we calculate
‖(M(γj))

q(`)‖∞, with γj := j
100 for j ∈ J1, 100K, then take the index j0 that gives the

minimum value, and set ᾱD[`] = γj0 .
Note that, although this process requires the repeated inversion of matrices, its

cost remains low for the following reasons :
• the matrices are of size N and thus remain of moderate size, since for long

time computations a splitting of the time interval into windows is necessary,
and one uses the OSWR method in each time window [4, 23];

• the matrices involved at iteration ` will be recycled for iteration ` + 1, so
that the marginal cost of computing the norms of the matrices for an extra
iteration remains cheap;

• the calculation of the terms ‖(M(γj))
q(`)‖∞, j ∈ J1, 100K, can be completely

parallelized (with respect to j);
• the method provides a dimensionless optimized parameter ᾱD[`] whose de-

pendency is only in ` and N , and thus independent of the other parameters
ν, f , u0 and of space discretization. It can therefore be calculated only once,
at fixed N , whatever the other data of the problem. The (dimensional) opti-
mized Robin parameter is then given by αD[`] :=

√
ν

∆t ᾱD[`].

This process can be extended to the two-sided case with corresponding two-sided
discrete-time optimized parameters denoted by ᾱααD[`] = (ᾱ1,D[`], ᾱ2,D[`]), as follows :

‖(M(ᾱααD[`]))
q(`)‖∞ = min

ᾱαα∈]0,1]2
‖(M(ᾱαα))q(`)‖∞, (4.22)

where M(ᾱαα) is defined in (4.10).

Remark 4.10. Note that, by definition of ᾱM and ᾱααM in (4.18), and of ᾱD[`] and
ᾱααD[`], ` ≥ 2, in (4.21) and (4.22) respectively, we have the following relations :

ᾱM = ᾱD[2] = ᾱD[3], ᾱααM = ᾱααD[2] = ᾱααD[3].

5. Numerical results. In this section, some numerical experiments are pre-
sented to illustrate the theoretical results of Section 4.

The domain Ω = [0, 1] is of length L = 1. The resolution is done using a fi-
nite element code developed in the GNU Octave [10] language, whose mesh size is
∆x = 10−3 (except in Section 5.5 where ∆x = 5×10−5). The final time is T = 1, and
the time step is ∆t = T

N , where N will vary, depending on the numerical examples.
In our test cases we simulate the error equations, i.e. we take u0 = 0 and f = 0.

As the domain is now bounded, we add homogeneous Dirichlet conditions at x = 0
and x = 1.

We use the OSWR algorithm with the interface at x = 1
2 , and with random

initial Robin data on the interface so that all the frequency components are present.
The algorithm is stopped when the L∞-norm of the jump of the Robin transmission
conditions on the interface is smaller than 10−10, unless specified.

In Section 4.4 we have proved that the convergence of the discrete-time OSWR
algorithm depends only on dimensionless Robin parameters ᾱαα = (ᾱ1, ᾱ2) and on N .
Thus, in what follows, we will consider only dimensionless Robin parameters ᾱ1, ᾱ2.§

The solution of the fully discrete error equations at iteration ` is denoted E`i,∆x,

and is measured, on the interface†, either in the L∞-norm, or in the L∞-norm scaled

§This means that in the OSWR algorithm we take αi = ᾱi
√

ν
∆t
, i = 1, 2.

†Similar results will be obtained if one takes the maximum of the L∞-errors in the subdomains.
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by the initial error, as in our theoretical result (4.19b).¶

In what follows, we will use the following terms, that are associated to the OSWR
iteration ` (excepted for the first item in the list bellow)

• continuous optimized Robin parameter(s) : ᾱC or ᾱααC given in (4.2)

• fully discrete numerical solution : E`i,∆x (as defined above)

• L∞-error : error term ‖E`i,∆x(0)‖∞
• relative L∞-error : error term

‖E`i,∆x(0)‖∞
‖E1

i,∆x(0)‖∞

• discrete-time convergence estimate : upper bound ‖(M(ᾱαα))q(`)‖∞ in (4.19)

• discrete-time optimized Robin parameter(s) : ᾱD[`] or ᾱααD[`], see Section 4.5
Since the problem is symmetrical for the two domains, the results presented here

are only for the left domain (similar results will be obtained for the right domain, up
to a permutation of α1 and α2 in the two-sided case).

Remark 5.1. While our analysis has been carried out on an infinite domain, in
practice, the fully discrete numerical solution is necessarily calculated on a bounded
domain. However, we can show that the theory is not very much affected by the
bounded domain, as long as

√
ν∆t� L. Indeed, on a bounded domain, the solution

is not exactly (4.5) but will involve matrices e
−|x|√
ν∆t

√
A

and e
|x|√
ν∆t

√
A

(as shown below
in (6.2)), and the norm of the vector coefficient associated to the latter will become
very small if

√
ν∆t � L. Thus, in our fully discrete numerical experiments, ν, ∆t

and L have been chosen so that they verify this condition.

Remark 5.2. As our analysis has been carried out in the semi-discrete in time case,
we will take ∆x small enough in the numerical experiments, to approach the discrete-
time problem, i.e. we take ∆x �

√
ν∆t. However, when the previous condition is

not satisfied, e.g. when ∆x = ∆t, we get similar numerical results.

Section 5.1 illustrates that, for a given N ≥ 1, the convergence depends only on ᾱαα.
Then, in Section 5.2, we verify that, at each OSWR iteration, the discrete-time con-
vergence estimate is an accurate evaluation of the relative L∞-error. Sections 5.3
and 5.4 illustrate the importance of choosing Robin parameters that are optimized
for a targeted iteration count. In Section 5.5, asymptotic behaviors as a function of N
are shown. Finally in Section 5.6, a comparison with ᾱM and ᾱααM (defined in (4.18))
is given.

In Sections 5.1 to 5.3 we consider one-sided Robin parameters ᾱ := ᾱ1 = ᾱ2.
The case of two-sided parameters (ᾱ1 and ᾱ2 possibly different) will be treated in
Section 5.4, and both cases will be considered in Sections 5.5 and 5.6.

5.1. Convergence depending only on ᾱαα, for a given NNN . In this part we take
N = 100. From Theorem 4.4 and Remark 4.5, we expect, for a fixed ᾱ, a convergence
almost independent of ν when α is chosen as α = ᾱ

√
ν

∆t .
In Figure 1, we plot the evolution of the L∞-error as a function of the number of

iterations, for three values of ν (0.1, 0.05, 0.01). The four graphs correspond to four
values of ᾱ (0.1, 0.5, 1 and 3). We observe that the convergence is not influenced by
the diffusion coefficient ν, as expected. As a consequence, in what follows, we only
consider the case ν = 0.05.

¶One could also consider a scaling by ‖E0
i (0)‖∞ = ‖β0

i ‖∞ as in (4.19a), which will lead to similar

results, if one takes random values for β0
i , and then set Ḡ0

i := (ᾱiIN −
√
A)β0

j , j = 3− i, i = 1, 2.
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Fig. 1. Illustration of convergence, which only depends on ᾱ, for a fixed N : L∞-error, with
N = 100 and different values of ν, for ᾱ = 0.1 (top left), ᾱ = 0.5 (top right), ᾱ = 1 (bottom left),
ᾱ = 3 (bottom right).

5.2. Comparison between discrete-time estimate and relative L∞-error.
In this part, we show that the discrete-time convergence estimate ‖(M(ᾱ))q(`)‖∞
in (4.19) approaches well the relative L∞-error, at each OSWR iteration `, which
confirms the interest of the theoretical analysis.

In Figure 2, we plot the relative L∞-error (solid line) and the discrete-time es-
timate (dashed line), as functions of the number of iterations, for N = 100, and for
different values of ᾱ (0.1, 0.5, 1 and 3).

We observe that the discrete-time estimate is an upper bound of the relative
L∞-error, as expected from (4.19). Thus, we could not expect both curves to ex-
actly overlay. However, the discrete-time estimates closely follow the actual relative
L∞-error curves, and even closer when ᾱ is larger. A possible explanation for the
differences is that the theoretical analysis of this paper is done on an infinite domain,
while the numerical results are performed on the bounded domain [0, 1]. Another
possible explanation is the loss of information when going from equalities (4.12) to
inequalities (4.13).

Consequently, this observation makes it relevant to find optimized dimensionless
Robin parameters that minimize the discrete-time estimate, as done in Section 4.5.
In the following subsections, we show numerical results on the influence of such Robin
parameters.
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Fig. 2. Comparison of relative L∞-error (solid line) and discrete-time estimate (dashed line),
for N = 100, with ᾱ = 0.1 (top left), ᾱ = 0.5 (top right), ᾱ = 1 (bottom left), ᾱ = 3 (bottom right).

5.3. One-sided optimization. In this part, we consider one-sided Robin pa-
rameters (ᾱ1 = ᾱ2). We compute ᾱD[`] using the method described in Remark 4.9.

Figure 3 shows, for different values of N , the values of ᾱD[`] as a function of
the targeted iteration count ` (left figure), and the associated discrete-time estimate
‖(M(ᾱD[`]))

q(`)‖∞ versus iteration ` (right figure).

Abacus 5.3 (How to choose ` and ᾱ to reach a given accuracy). Figure 3 allows
to find an optimized pair (ᾱD[`], `) to reach a given accuracy, e.g. the expected accuracy
of the numerical scheme, or a fraction thereof. More precisely, the right figure enables,
for a given N , to find the minimum number ` of iterations one has to perform in order
to reach a given error. Then, the left figure gives the associated Robin parameter ᾱD[`].

For example, in the case N = 20, if one wants to guarantee a relative L∞-
error smaller than 10−2, then from Figure 3 (right) one only needs to perform seven
iterations (` = 7). Then Figure 3 (left) gives the discrete-time optimized Robin
parameter ᾱD[7] = 0.68.

With the cases N = 20 and N = 50, we see that for ` ≥ N iterations, the
discrete-time optimized Robin parameter is 1, as expected from Theorem 4.3. These
numerical results also show that, after a few iterations, ᾱD[`] is a globally increasing
function of `, that tends to 1, and a decreasing function of N .

Let us now compare the convergence obtained with the discrete-time optimized
parameter ᾱD[`] to that obtained with the continuous optimized parameter ᾱC defined
in (4.2). For this, we will consider ᾱD[`] at two different iterations : ` = 7 and ` = 21.



DISCRETE-TIME ANALYSIS OF OSWR CONVERGENCE 17

10 20 30 40 50
Domain decomposition iteration `

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
p

ti
m

iz
ed

ᾱ
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Fig. 3. Discrete-time optimized Robin parameter ᾱD[`] (left) and associated discrete-time con-

vergence estimate ‖(M(ᾱD[`]))
q(`)‖∞ (right), versus OSWR iterations.

The values of ᾱC (rounded to the nearest hundredth), ᾱD[7], and ᾱD[21], versus N ,
are reported in Table 1.

N ᾱC ᾱD[7] ᾱD[21]

20 0.84 0.68 1.00
50 0.67 0.50 0.69
100 0.56 0.40 0.56
200 0.47 0.32 0.45

Table 1
Dimensionless one-sided Robin parameter optimized with continuous and discrete-time analysis.

Recall that ᾱC is independent of the iterations, while ᾱD[7] and ᾱD[21] optimize
iterations 7 and 21, respectively. On Figure 4, we plot the L∞-error as a function of
OSWR iterations (note the scale change for the top left figure), for different values
of N , and with ᾱC , ᾱD[7], and ᾱD[21]. A horizontal line representing the scheme
error (between the fully discrete monodomain solution and the continuous solution
of (2.1), when the latter is u(x, t) = (t2 + 1) sin(πx)) in L∞-norm is also drawn, and
is the objective to be reached in order to add no significant error through domain
decomposition. The scheme error values εsch are given in Table 2.

N 20 50 100 200

εsch 6× 10−2 2.5× 10−2 1.2× 10−2 6× 10−3

Table 2
L∞-error of the fully discrete numerical scheme on the interface, as a function of N .

We observe that, for each N , the scheme error is reached sooner with ᾱD[7] than
with ᾱC (e.g. for N = 200, reaching εsch = 6 × 10−3 needs 9 iterations with ᾱD[7]

and 13 with ᾱC). We also see that at iteration 7 (resp. 21), the L∞-error with ᾱD[7]

(resp. ᾱD[21]) is smaller than the ones obtained with ᾱC and ᾱD[21] (resp. ᾱD[7]).
This confirms the relevance of choosing an optimized parameter that depends on the
targeted iteration, as pointed out by the analysis.

While the usual approach based on Fourier transform on continuous equations
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Fig. 4. L∞-error computed with one-sided continuous and discrete-time (optimized at iteration
` = 7 and 21) Robin parameter, for N = 20 (top left), N = 50 (top right), N = 100 (bottom left),
N = 200 (bottom right). Note the scale change for the top left figure (in that case convergence with
ᾱD[21] = 1 is almost exact at the 21st iteration, as expected from Theorem 4.3).

gives optimized continuous Robin parameters that are independent of domain decom-
position iterations, numerical results show that there is no single optimal coefficient,
but rather an optimal ᾱ(`) for each iteration `. In particular, we observe that a
Robin coefficient can be optimal at one iteration, but perform poorly at another.
Optimization should then be carried out more accurately, iteration by iteration.

Let us now compare the continuous and discrete-time optimized Robin parameters
to the actual numerical optimal ones. On Figure 5, we plot the relative L∞-error at
iteration 7 (left) and at iteration 21 (right) versus the Robin parameter ᾱ. On these
graphs, stars stand for continuous optimized Robin parameters ᾱC , and triangles
are discrete-time optimized Robin parameters ᾱD[7] (left) and ᾱD[21] (right). We see
that, for all values of N , at iteration 7 (left figure) the parameter ᾱD[7] is close to
the numerical optimal ᾱ, and at iteration 21 (right figure) the parameter ᾱD[21] is
extremely close to the numerical optimal ᾱ. On Figure 5, we also observe that at
iteration 21, the parameter ᾱC , obtained by the continuous framework, is also very
close to the numerical optimal ᾱ, for N = 50 and N = 100. However, at iteration 21
for N = 20 and N = 200, and at iteration 7, for all N , the parameter ᾱC is a worse
approximation of the numerical optimal parameter than parameters obtained with the
discrete-time method. This observation is crucial when one wants to perform a small
number of iterations: in that case, the continuous optimization provides only a poor
Robin coefficient and thus does not allow the OSWR algorithm to work efficiently.
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Fig. 5. Relative L∞-error on the interface as a function of ᾱ, at iteration 7 (left) and 21 (right).
In each case, the triangles show ᾱD[7] (left) and ᾱD[21] (right), and the stars show ᾱC .

One of the main results of this article is that there is not a single Robin coefficient,
independent of the iterations, that optimizes each iteration. Figure 5 is an example
that illustrates this point : the numerical optimum varies according to `; the parame-
ter αC , that minimizes the continuous convergence factor (which is independent of the
iteration), cannot optimize all iterations, whereas the method presented here allows
to find a quite accurate approximation of the numerical optimum parameter, for each
iteration `.

5.4. Two-sided optimization. We now consider two-sided Robin parameters
(i.e. ᾱ1 and ᾱ2 are possibly different). On Figure 6 we plot the L∞-error as a function
of OSWR iterations (note the scale change for the top left figure), obtained with the
following optimized Robin parameters :

• continuous ᾱααC = (ᾱ1,C , ᾱ1,C), defined in (4.2) (independent of the iterations)
• discrete-time ᾱααD[7] that optimizes iteration 7, defined in (4.22) with ` = 7
• discrete-time ᾱααD[21] that optimize iteration 21, defined in (4.22) with ` = 21

Table 3 shows these values versus N (rounded to the nearest hundredth for ᾱααC).

N ᾱααC ᾱααD[7] ᾱααD[21]

20 (0.56,1.26) (0.55,0.86) (1.00,1.00)
50 (0.30,1.49) (0.33,0.80) (0.68,0.70)
100 (0.21,1.46) (0.23,0.74) (0.48,0.66)
200 (0.17,1.33) (0.16,0.77) (0.30,0.69)

Table 3
Dimensionless two-sided Robin parameters optimized with continuous and discrete-time analysis.

As in the one-sided case, we observe that, for all values of N , the smallest L∞-error is
the one associated with the coefficient ᾱααD[7] (resp. ᾱααD[21]) at iteration 7 (resp. 21). At
iteration 7, the parameter ᾱααC is a little less efficient than the discrete-time optimized
parameter ᾱααD[7]. However, for a larger number of iterations (e.g. ` = 21), ᾱααC appears
to be significantly less efficient than the discrete-time optimized parameter ᾱααD[21].
Again, we observe that the discrete-time optimized Robin coefficients proposed in
this article allow to optimize efficiently the L∞-error at a targeted iteration.
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Fig. 6. L∞-error computed with two-sided continuous and discrete-time (optimized at iteration
` = 7 and 21) Robin parameters, for N = 20 (top left), N = 50 (top right), N = 100 (bottom left),
N = 200 (bottom right). Note the scale change for the top left figure, as explained in Figure 4.
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Fig. 7. Level curves for the relative L∞-error (in logarithmic scale) after 7 iterations (left),
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star shows ᾱααC , and the orange triangle shows ᾱααD[7] (left) and ᾱααD[21] (right).

On Figure 7, we plot the level curves for the relative L∞-error (in logarithmic
scale) after 7 iterations (left), and 21 iterations (right), for various values of the
two-sided Robin parameters ᾱαα = (ᾱ1, ᾱ2), for N = 100. The blue star shows the
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continuous optimized parameter ᾱααC , and the orange triangle shows the discrete-time
optimized parameter ᾱααD[7] (left figure) and ᾱααD[21] (right figure). We observe that, at
iteration 7 (resp. 21), the discrete-time optimized parameter ᾱααD[7] (resp. ᾱααD[21]) is
close to the numerical optimal ᾱαα, and much closer to this optimal value than ᾱααC .

Moreover, we notice that, the higher the number ` of domain decomposition
iterations, the less ᾱ1,D[`] and ᾱ2,D[`] differ, as shown on Figure 8.

3 6 9 12 15
Domain decomposition iteration `

0.0

0.2

0.4

0.6

0.8

1.0

ᾱ
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Fig. 8. Ratio between discrete-time optimized two-sided Robin coefficients.

5.5. Asymptotic behavior as a function of N . In this part, we present the
asymptotic performance, with continuous and discrete-time optimized parameters.
In Figure 9 we take ∆x = 5×10−5, and plot the number `? of iterations that it takes
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Fig. 9. Asymptotic behavior : number of iterations `? to obtain a relative L∞-error smaller
than 10−3 (left figures) and 10−6 (right figures), as a function of N , with ∆x = 5 × 10−5, with
continuous and discrete-time optimized parameters, in one-sided (top) and two-sided (bottom) cases.

to reduce the relative L∞-error by a factor 10−3 (left figures) and 10−6 (right figures),
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as a function of N , on a log-log plot, in the one-sided case (top figures) and in the two-
sided case (bottom figures). On top figures, the blue star curves are obtained with ᾱC ,
and the brown circle curves with ᾱD[`A], where (ᾱD[`A], `A) is obtained by Abacus 5.3
to reach 10−3 (top left) and 10−6 (top right); e.g. for N = 200, Abacus 5.3 gives
`A = 23 to reach 10−6, then, choosing ᾱ = ᾱD[23](= ᾱD[22] from Definition (4.21))
in the actual simulation, one needs `? = 22 iterations to actually reach the relative
accuracy 10−6. We proceed in a similar way in the two-sided case (bottom figures).
Using that ∆t = T

N , the numerical results show the following asymptotic behaviors :

• `? = O(N
1
4 ) = O(∆t−

1
4 ) in the one-sided case, both for discrete-time and

continuous optimized parameters (as predicted in [14] for the latter).

• `? = O(N
1
8 ) = O(∆t−

1
8 ) in the two-sided case, both for discrete-time and

continuous optimized parameters, i.e. `? is virtually independent of N (or ∆t)
in that case.

These results show that discrete-time and continuous optimized parameters give
similar asymptotic behaviors versus N (or ∆t), very little dependent on N for one-
sided, and almost independent of N (or ∆t) for two-sided parameters.

5.6. Comparison with ᾱααM . In this test, we take N = 100. Figure 10 shows
the relative L∞-errors as a function of OSWR iterations, obtained with ᾱM and ᾱααM
defined in (4.18), compared to those obtained with continuous and discrete-time op-
timized parameters. Using Remark 4.10, we find ᾱM = 1 and ᾱααM = (0.02, 1). We
observe that, except for the very first iterations, the convergence with ᾱM (left) or ᾱααM
(right) is much slower than with the other parameters.
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Fig. 10. Comparison with parameters ᾱM and ᾱααM : relative L∞-errors computed with one-
sided optimized parameters ᾱC , ᾱM , ᾱD[7], ᾱD[21] (left), and two-sided optimized parameters
ᾱααC , ᾱααM , ᾱααD[7], ᾱααD[21] (right), for ν = 0.05 and N = 100.

6. Appendix.

6.1. Proof of Theorem 4.1.

Proof. Let us first consider the problem in Ω1 in (4.4) : find U such that

LU = 0 in Ω1,
lim

x→−∞
U(x) is bounded. (6.1)

From Proposition 3.10, the matrix C := 1√
ν∆t

√
A is lower triangular, invertible,

with all its diagonal coefficients equal to 1√
ν∆t

> 0.
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Setting Z :=

(
U ′

U

)
, χ := U ′(x = 0), Ψ := U(x = 0), and M :=

(
0 C2

I 0

)
,

then problem (6.1) can be written into the equivalent first order differential system

Z ′ = MZ in (−∞, 0)
Z(x = 0) = (χ,Ψ)T

Z is bounded in (−∞, 0)

The solution of the above problem is given by

Z(x) = exM
(

χ
Ψ

)
, ∀x ∈ (−∞, 0).

Using that M2 =

(
C2 0
0 C2

)
, by induction we have M2k =

(
C2k 0

0 C2k

)

and M2k+1 =

(
0 C2k+2

C2k 0

)
, ∀k ∈ N, and thus

exM =

+∞∑

k=0

x2k

2k!
M2k +

+∞∑

k=0

x2k+1

(2k + 1)!
M2k+1

=

+∞∑

k=0

x2k

2k!

(
C2k 0

0 C2k

)
+

+∞∑

k=0

x2k+1

(2k + 1)!

(
0 C2k+1C

C2k+1C−1 0

)

=

(
ch (xC) 0

0 ch (xC)

)
+

(
0 sh (xC)C

sh (xC) C−1 0

)

=

(
ch (xC) sh (xC)C
sh (xC)C−1 ch (xC)

)
.

Then we have, ∀x ∈ (−∞, 0),

(
U ′(x)
U(x)

)
=

(
ch (xC) sh (xC)C
sh (xC)C−1 ch (xC)

)(
χ
Ψ

)
,

from which we obtain, ∀x ∈ (−∞, 0),

U(x) = sh (xC)C−1χ+ ch (xC) Ψ.

The solutions of the system can therefore be written as follows

U(x) = exCβ+ + e−xCβ−, (6.2)

where β+ ∈ RN and β− ∈ RN will be determined using the boundary conditions.
More precisely, let us show that the condition U is bounded in (−∞, 0) implies

that β− = 0N . We set
E(x) := exp (−xC)β−. (6.3)

Since C is lower triangular, so are the sums and multiples of C. Coming back to
the definition of the exponential of a matrix (with power series), we deduce that
exp (−xC) is a lower triangular matrix whose diagonal is only composed of the ex-

ponential of − x√
ν∆t

. Thus, the first line of (6.3) gives (E(x))1 = e
−x√
ν∆t (β−)1, with

1√
ν∆t

> 0. Since U (and thus E) is bounded as x tends to −∞, we deduce that
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(β−)1 = 0. Then, the second line of (6.3) gives (β−)2 = 0, and by induction we
obtain β− = 0N . Thus, the solutions of (6.1) are of the form U(x) = exCβ+, with
β+ ∈ RN . The problem in Ω2 is treated similarly to that in Ω1, by using a change of
variables, which end the proof of Theorem 4.1.
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