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Abstract

In this paper, we introduce a control strategy for applying the Sterile Insect Technique
(SIT) to eliminate the population of Aedes mosquitoes which are vectors of various deadly
diseases like dengue, zika, chikungunya... in a wide area. We use a system of reaction-
diffusion equations to model the mosquito population and study the effect of releasing
sterile males. Without any human intervention, and due to the so-called hair-trigger effect,
the introduction of only a few individuals (eggs or fertilized females) can lead to the inva-
sion of mosquitoes in the whole region after some time. To avoid this phenomenon, our
strategy is to keep releasing a small number of sterile males in the treated zone and move
this release forward with a negative forcing speed c to push back the invasive front of wild
mosquitoes. By using traveling wave analysis, we show in the present paper that the strat-
egy succeeds in repulsing the population while consuming a finite amount of mosquitoes
in any finite time interval even though we treat a moving half-space {x > ct}. Moreover,
we succeed in constructing a ‘forced’ traveling wave for our system moving at the same
speed as the releases. We also provide some numerical illustrations for our results.

Keywords: sterile insect technique, hair-trigger effect, traveling waves

1 Introduction

1.1 The biological motivation
Pest and disease vector controls have become a global issue because of the spread of these species all
around the world causing crop losses and disease epidemics. For example, the oriental fruit fly is a
serious pest of a wide variety of fruit crops in Asia and has also invaded a number of other countries
and is a very damaging pest wherever it occurs (PMP-FFM, 2004). It was first detected in French
Polynesia in 1996 and invaded Africa in 2004. Few individuals have been detected in Italy in 2018 and
hence southern Europe is at high risk. Similarly, according to the World Health Organization, the global
incidence of dengue has grown dramatically with about half of the world’s population now at risk. It
was first identified in the 1950s during dengue epidemics in Philippines and Thailand due to the travel
and invasion of its vectors, female mosquitoes of the species Aedes aegypti and Ae. albopictus. They
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are also vectors of chikungunya, yellow fever, Zika viruses..., and, until now, there is neither effective
treatment nor vaccine for these diseases. So pest/vector controls play an important role in getting rid of
these problems. The classical control method based on insecticides induces resistance, which reduces
its own efficiency and is detrimental to the environment. Among others, the Sterile Insect Technique
(SIT) aiming at reducing the size of the insect population recently gathered much attention. The SIT is
a biological method where people release sterile individuals (modified in laboratories) of pest species
to introduce sterility into the wild population, and thus control it (see [14] for an overall presentation of
SIT). It is a promising control method against many agricultural pests and disease vectors, most notably
screw worms and fruit flies (see [14]), and recently mosquitoes of genus Aedes. This technique has been
applied successfully for Aedes mosquitoes in the field in many different countries, for instance, in Italy
[12], Cuba [16], and China [32]. In our work, we focus on applying SIT in a vast region using the idea
of the “rolling carpet”: a large number of sterile insects are released near the front of the invasion, and
as soon as this area is free from wild insects, we move the front of release and continue to release a few
sterile individuals in the already treated area (see [14]). The purpose of these small releases at the back
is to prevent reinvasion by the so-called hair-trigger effect (where the existence of just a few individuals
leads to the total invasion of the territory). The notion of ‘hair-trigger’ was first introduced in [7] to refer
to the persistence in long-time of the solution with respect to any non-trivial initial data. In our case, it
has been observed in [14] that the mosquitoes reinvade the treated territory without this small amount
of releases of sterile males. By implementing such a process, we succeed in eradicating wild insects,
preventing reinvasion, and keeping the number of released sterile insects below a threshold in a finite
time interval [0,T ]. It is in our interest to consume as few sterile males as possible since it is one of
the main costs of the strategy. We propose in the present work to study a mathematical model of such
release strategy used in the field for Aedes mosquitoes.

1.2 Our model and the spreading results
Following ideas in e.g. [4], [27], we model the mosquito population by a partially degenerate reaction-
diffusion system for time t > 0, position x ∈ R:

∂tE = βF
(

1− E
K

)
− (νE +µE)E,

∂tF−D∂xxF = rνEE
M

M+ γMs
−µFF,

∂tM−D∂xxM = (1− r)νEE−µMM,

∂tMs−D∂xxMs = Λ(t,x)−µsMs,

(E,F,M,Ms)(t = 0,x) = (E0,F0,M0,M0
s )(x).

(1)

In this system, we have:

• E, M, Ms and F denote respectively the number of mosquitoes in the aquatic phase, adult males,
sterile adult males and fertilized adult females depending on time t and position x;

• Λ(t,x) is the number of sterile mosquitoes that are released at position x and time t;

• the fraction M
M+γMs

corresponds to the probability that a female mates with a fertile male, and param-
eter γ models the competitivity of sterile males;

• β > 0 is a birth rate; µE > 0, µM > 0, and µF > 0 denote the death rates for the mosquitoes in the
aquatic phase, for adult males and for adult females, respectively;
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• K is an environmental capacity for the aquatic phase, accounting also for the intraspecific competi-
tion;

• νE > 0 is the rate of emergence;

• D > 0 is the diffusion rate;

• r ∈ (0,1) is the probability that a female emerges, then (1− r) is the probability that a male emerges;

• the initial data (E0,F0,M0,M0
s )≥ (0,0,0,0) (component by component).

We introduce the basic offspring number as follows

R0 =
β rνE

µF(νE +µE)
. (2)

When there is no regulation of sterile males, our model becomes
∂tE = βF

(
1− E

K

)
− (νE +µE)E,

∂tF−D∂xxF = rνEE−µFF,
∂tM−D∂xxM = (1− r)νEE−µMM,

(3)

It is obvious that (0,0,0) is an equilibrium of (3). When the basic offspring number R0 > 1, this system
has a second equilibrium (E∗,F∗,M∗) where

E∗ =K
β rνE −µF(νE +µE)

β rνE
> 0,

F∗ =K
β rνE −µF(νE +µE)

β µF
> 0,

M∗ =K
1− r

r
β rνE −µF(νE +µE)

β µM
> 0.

(4)

Note that, the positive equilibrium (E∗,F∗,M∗) is stable and (0,0,0) is unstable. Thus, in the case with-
out sterile males, the following result shows the spread of the population toward the positive equilibrium
and provides the existence of the spreading speed for the solution of the system (3).

Proposition 1. If the basic offspring number R0 > 1, then there exists a spreading speed c∗ > 0 such
that for any positive ε , the solution (E,F,M) of system (3) satisfies

• if the initial data (E0,F0,M0) is compactly supported and 0≤ (E0,F0,M0)< (E∗,F∗,M∗), then

lim
t→+∞

[
max

|x|≥t(c∗+ε)
max(E,F,M)(t,x)

]
= 0, (5)

• if the initial data (E0,F0,M0)< (E∗,F∗,M∗) and if there exists a set with a positive measure Ω⊂R,
such that max(min

x∈Ω
E0,min

x∈Ω
F0)> 0 then

lim
t→+∞

[
max

|x|≤t(c∗−ε)
max(E∗−E,F∗−F,M∗−M)(t,x)

]
= 0. (6)
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We present in Appendix A a proof for this result based on the result in the work of Lui [23] with
an extension for reaction-diffusion system in Weinberger et al. [31] for a monostable system. We also
underline that, with only females at the initial time (i.e. E0 ≡ 0, M0 ≡ 0, and F0 > 0 in some ball),
invasion still occurs. This is due to the fact that in our model we consider F to be the fertilized females.
Therefore, if F0 > 0 on a set with a positive measure, then the same holds for the aquatic phase at any
t > 0 in the whole domain R, and the dynamics of invasion start to occur.

The main result in the present work shows that when a release function of sterile males Λ moving
with a certain speed c < 0 is imposed in the system, we can succeed in suppressing the mosquitoes and
in avoiding reinvasion. In the present work, we consider the release function

Λ(t,x) =

{
0 for x− ct ≤ 0,

Ae−η(x−ct) for x− ct > 0,
(7)

with constants A > 0, η > 0.

Theorem 2. If the basic offspring number R0 > 1, (E0,F0,M0) ≤ (E∗,F∗,M∗), (E0,F0,M0)|R+
=

(0,0,0) and M0
s ≥ φs, where φs is the solution of

−cφ
′
s−φ

′′
s = Ae−ηx1{x>0}−µsφs and φs(±∞) = 0

then for any speed c < 0, there exist Ãc > 0, η̃c > 0 such that for any A ≥ Ãc, 0 < η ≤ η̃c, we have the
solution (E,F,M,Ms) of system (1) and (7) satisfies

lim
t→+∞

sup
x>ct

max(E,F,M)(t,x) = 0.

From this result, we can see that if the initial data is compactly supported in R− and below (E∗,F∗,M∗),
the invasion does not occur: the equilibrium (0,0,0) invades the positive equilibrium (E∗,F∗,M∗). We
also remark that the number of sterile males released in the field in a finite time interval [0,T ] is T × A

η

finite even though the space is infinite. However, if T → +∞, the total amount of released mosquitoes
also tends to +∞. Finally, we point out that in the above results, the number of sterile males released
(A, η) depends on the speed c of the rolling carpet. This can be observed more precisely in the proof
in section 4 and discussed in section 2 with some numerical illustrations. However, finding A, η that
minimizes the number of released mosquitoes each time remains a challenge.

1.3 State of the art
Based on biological knowledge, mathematical modeling and numerical simulations can be additional
and useful tools to prevent failures, improve protocols, and test assumptions before applying the SIT
strategy in the field. Many works have been done using mean-field temporal models to assess the SIT
efficiency for a long-term period (see e.g. [10], [27] and references therein).
Only a few works exist modeling explicitly the spatial component due to the lack of knowledge about
vectors in the field. Moreover, from the mathematical point of view, the studies of spatial-temporal mod-
els are more sophisticated. A reaction-diffusion equation was first used in [24] to model the spreading of
a pest in the SIT model. Then, the model was completed by considering the release of sterile females in
[22]. In this article, the author assumed that the same amount of sterile insects is released in the whole
field (i.e. Λ ≡ constant). It follows that if the number of released sterile insects is large enough, the
reaction term becomes strictly negative, and the extinction of the wild population follows. However, this
hypothesis is unrealistic in a large area since the number of sterile insects to release tends to infinity as
the size of the domain increases. The main contribution of our work is to tackle this problem by follow-
ing what has been done in the field experiment: we assume that the releases are not homogeneous. By
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considering only releases supported in R+ with exponential decay, the amount of sterile males released
in a finite time interval is constant.
In [25], the authors studied SIT control with barrier effect using a system of two reaction-diffusion equa-
tions for the wild and the sterile populations. Recently, a sex-structured system including the aquatic
phase of mosquitoes has been studied in [5]. Using the theory of traveling waves, the authors proved, for
a similar system to (1), the existence of natural invading traveling wave when {Ms = 0} and the system
is either monostable or bistable. They also provide some numerical implementation of the SIT but only
for the bistable case.

In the bistable case, one can release the mosquitoes in a compact set since the equilibrium 0 is
stable. The main result in [4] shows that if the initial wild mosquitoes distribution behaves as 1R− and
we release enough sterile males in some compact set (ct,L + ct) with a speed c < 0, then the wild
population remains close to 0 in the set {x > L+ ct} thanks to the assumed natural dynamics of the
mosquitoes. We also quote [1, 2], which was done before [4] where the authors studied the analogous
system of reaction-diffusion equations to (1) in a bistable context taking into account the strong Allee
effects. They proved that for large enough constant releases in a bounded interval, there exists a barrier
that blocks the invasion of mosquitoes. However, for the monostable case, they obtain numerically
that there is no blocking. The so-called “hair-trigger effect” makes the monostable case become more
complicated since one can not rely on the natural dynamics of the mosquitoes. So the main purpose of
the present work is to study an efficient strategy for the SIT to deal with the difficulty in this case.

The control of sterile insect techniques in a bistable context in a bounded domain is studied in
[29, 28]. We also quote [11, 3] that focus on the optimal form to stop or repulse an invading traveling
wave by spreading a killing agent (such as insecticide). In [11] the authors study the optimal shape of
spreading in order to repulse an invasion. In [3], the authors study the optimal shape of spreading in
order to block an invasion but consider more constraints on the spreading area than in [11]. The key
argument in these works is to consider that the reaction term is bistable. In the present work, we propose
a way to deal with the difficulty of the monostable case with a finite amount of control agents (such as
sterile insects or insecticides, or other kinds of control) in any finite time interval.

1.4 The traveling wave results
Another natural question that arises in the study of our model of reaction-diffusion equations is the
existence of a traveling wave solution. First, we study the traveling wave problem for the system (3) in
which there are no sterile male. Then, by imposing a control function Λ that moves with a speed c < 0,
we will construct a traveling wave for the main system (1) moving with the same speed.

Recall that a traveling wave solution of (3) with any speed c is the pair (U,c) where U = (E,F,M)T

and U(x− ct) is a nontrivial and bounded solution of (3). We say (U,c) is a wavefront if U(±∞) exist
and U(−∞) 6=U(+∞). The existence of such wavefronts for reaction-diffusion systems has been studied
widely in the literature. In our case, the nonlinearity is monostable and it is well-known that there exists
a minimal speed such that the monostable system admits traveling wave solutions with any speed larger
than this minimum value. For example, in the book [30], the authors studied the existence of minimal
speed and the stability of wavefronts for the non-degenerate system. However, our systems are partially
degenerate because the first stage E is quiescent (does not diffuse). The paper [15] studied monotone
wavefronts for partially degenerate systems and they proved that the spreading speed of the solution is
the minimal wave speed of monotone wavefronts in the monostable cooperative case. The authors of [5]
proved the same result for a similar system to (3) and for the sake of completeness, we present it in the
following

Proposition 3. Let c∗ be defined in Proposition 1, then for each c+ ≥ c∗, system (3) has a nonincreasing
wavefront U(x− c+t) connecting (E∗,F∗,M∗) and (0,0,0). While for any c+ ∈ (0,c∗), there is no
wavefront connecting (E∗,F∗,M∗) and (0,0,0).
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The general system (1) (with Ms > 0) is not cooperative at first glance. Some works in the recent
literature have tackled the lack of comparison principle for non-cooperative Fisher-KPP systems (see e.g.
[17, 18, 19]). However, due to the fact that the system (1) in the present paper is partially degenerate,
that is, it does not satisfy that min Dii > 0 where D is the diffusive matrix, we can not apply these results
in our work. Fortunately, the system (1) can be put in the setting of cooperative systems by the change
of variable (M̃s =C−Ms with C a large constant). With this change of variable, we define a new order
for the solutions (E,F,M,Ms) of (1) such that (E1,F1,M1,M1

s ) ≥ (E2,F2,M2,M2
s ) if E1 ≥ E2, F1 ≥

F2, M1 ≥M2, M1
s ≤M2

s . In section 4.1, we present more precisely the comparison principle used in our
problem.

One of the main interests of this article is the establishment of a ‘forced’ traveling wave solution
for (1) with a control function Λ as in (7). Dealing with the whole system of ODE-PDE like (1) is by
no means an easy task, so our first idea is to try to simplify the system to a single reaction-diffusion
equation by adding some assumptions and then find a general strategy to study the full model. When
we assume that the equilibrium of the aquatic phase is attained instantaneously (i.e. ∂tE = 0) then from

the first equation of (1), one has E =
βF

β
F
K +νE +µE

. Thus, if the number of females F is equal to the

number of males M, and the sterile males are assumed to be equal to Λ in the treating time interval [0,T ],
using the second equation of (1), we end up with only a single equation :

∂tF−D∂xxF =
F

F +Λ

βF
βF
K +νE +µE

−µFF. (8)

The model of a scalar reaction-diffusion equation was used widely in the literature studying SIT (see e.g.
[22], [33]) or in other contexts, for e.g. in climate change [8], [9]. In our case, the source term Λ(t,x)
moving with a certain speed c < 0, we can construct the ‘forced’ traveling wave solution of (8) moving
with the same speed. Equation (8) having the form ∂tu−∂xxu = f (x− ct,u) with f (s,u) : R×R+→ R
is asymptotic of F-KPP type as s→±∞ and was studied in the literature (see e.g. [9] and references
therein). In the present work, even if it has been already studied, we provide in Section 3 an explicit
construction of the ‘forced’ wave for (8) which can help to grasp the general idea of the proof for the
whole system.

Indeed, back to the main model of the present paper, we infer from the scalar model that the
main difficulty lies in the construction of the super-solution of (1). The forced wave has the form
(E,F,M,Ms)(t,x) = (φE ,φF ,φM,φs)(x− ct), where c < 0 is the forced speed and (φE ,φF ,φM,φs) is the
profile satisfying 

− cφ
′
E = βφF

(
1− φE

K

)
− (νE +µE)φE ,

− cφ
′
F −Dφ

′′
F = rνEφE

φM

φM + γφs
−µFφF ,

− cφ
′
M−Dφ

′′
M = (1− r)νEφE −µMφM,

− cφ
′
s−Dφ

′′
s = φ −µsφs,

(9)

where φ(x− ct) = Λ(t,x) in (7). To overcome the difficulty of the construction of the super-solution,
we use the fact that the dynamic is governed, in some sense, by F . Thanks to what was observed for the
scalar equation, we have a natural candidate to be the super-solution for F . More in detail, by denoting
φE ,φF ,φM respectively the super-solution of φE ,φF ,φM, we proceed as follows:

• Step 1. Fix φs = φs =Cse−ηx1{x>0}. We insert φF = F∗
(
1{x≤0}+1{x>0}e−λx

)
in the first equation of

(9),

• Step 2. We prove that with such a φF the associated φE satisfies φE ≤Ce−λx for x large enough,

• Step 3. We insert φE = E∗
(
1{x≤0}+1{x>0}e−λx

)
in the third equation of (9),
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• Step 4. We prove that with such a φE the associated φM satisfies φM ≤Ce−λx for x large enough

• Step 5. We define φM = M∗
(
1{x≤0}+1{x>0}e−λx

)
,

• Step 6. We prove that (φE ,φF ,φM,φs) is a super-solution of (9), where φs is the solution of the last
equation with φs(±∞) = 0.

We present precisely this construction of a super-solution in section 4.3 and we also construct a sub-
solution in section 4.4. Therefore, we obtain the main result:

Theorem 4. If the basic offspring number R0 > 1, then for any speed c < 0, there exist Ãc > 0, η̃c > 0
such that for any A≥ Ãc, 0 < η ≤ η̃c, system (9) with φ(x−ct) = Λ(t,x) defined in (7) admits a solution
(φE ,φF ,φM,φs) such that (φE ,φF ,φM) converges to (E∗,F∗,M∗) at −∞ and to (0,0,0) at +∞.

We underline that to obtain the exact limits at −∞ is technical since the sterile males diffuse, φs > 0
everywhere and the system is not heterogeneous in R− (contrary to the super-solutions). Using a per-
turbation of the equilibrium (E∗,F∗,M∗), we succeed in obtaining a sub-solution (φE ,φF ,φM,φs). How-
ever, this sub-solution satisfies lim

x→−∞
(φE ,φF ,φM,φs) = (E∗− εE ,F∗− εF ,M∗− εM,ε0) (where εE,F,M,0

are small positive constants) so we can not deduce directly the limit of (φE ,φF ,φM,φs) at −∞. We prove
that the solution of (9) satisfies the desired limit at −∞ by contradiction (see Section 4.5).

1.5 Outline of the paper
The outline of the rest of this paper is the following: section 2 is devoted to showing some numerical
illustrations to support our theoretical results. Next, in section 3 we provide the technical details for the
results stated for the simplified model. Finally, section 4 is devoted to the technical details that allow
proving Theorems 2 and 4. As mentioned in the introduction, the results for the case without any sterile
males (Propositions 1 and 3) are applications of former works. For the sake of completeness, we present
the proofs in Appendix A.

2 Numerical illustrations

2.1 The numerical scheme
In this section, we present some numerical illustrations for our theoretical results using a simple finite
difference scheme. Since we study the model in one-dimensional space, we use a semi-implicit second-
order scheme for space discretization, and a first-order explicit scheme for time discretization, with the
time step following a CFL condition. We use Neumann boundary conditions on the boundary of a very
large spatial interval. It is well-known that such a spatial domain approximates correctly R, or at least
regarding spreading properties of reaction–diffusion systems.

2.2 Observations
The values of parameters are chosen following [13] for mosquitoes of species Aedes albopictus and
presented in Table 1. With these parameters, we first verify that the basic offspring number R0 ≈
30.77 > 1, thus the condition in our theorems is satisfied. The positive equilibrium is (E∗,F∗,M∗) ≈
(193.5,77.4,55.3).

In our plots, the time unit is a day, space unit is 1 km. We consider the domain [−50,50] of width
100 km discretized by 500 points, with a 60-day time interval. We show in Figure 1 the dynamics of
the female population over time and space. In this simulation, the initial data are taken as compactly
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Table 1: Parameters for the numerical illustration

Parameters β K νE µE µF µM µs γ r D
Values 10 200 0.08 0.05 0.1 0.14 0.14 1 0.5 0.5

supported functions. When there is no SIT control, the wave of mosquitoes invades the space (see Figure
1a) and approaches the steady state F∗ = 77.4. This illustrates the invasion phenomenon in Proposition
1.

To stop this invasion, we keep releasing sterile mosquitoes over time with a release function that
decays exponentially on half of the space Λ(t,x) = Ae−η(x−ct)1{x>ct}.

In practice, the number of sterile males to release is usually fixed and one can adjust the speed of
the releases to obtain the best result. To illustrate our result, first, we fix A = 600, η = 0.2 and vary
the speeds c≤ 0 to observe the dynamics of mosquitoes while applying SIT. When we do not move the
release (c = 0), we observe in Figure 1b that the wave is blocked near x = 0 and cannot pass through
the release zone. Then, by moving this release domain to the left with velocity c = −0.3, we succeed
to push back the wave to the left (see Figure 1c), and there is no mosquito behind the releases which
illustrates the main result in Theorems 4 and 2. However, we observe in Figure 1d that if we move the
releases faster to the left with velocity c =−0.7, there is a reinvasion on the right of the zone. It seems
that the faster we move the release domain, the faster we push back the mosquito waves, but we need to
release more sterile males in the treated zone to prevent reinvasion. Indeed, when the speed c =−0.7 is
fixed and the number of sterile males is increased by taking A = 800 (see 1e), and η = 0.1 (see 1f), one
can see that the reinvasion in the treated zone gets slower and disappears.

3 Study of the simplified model

3.1 The simplified model
From (8) we study in this section the following scalar equations:

∂tu−∂xxu =
u

u+Λ

βu
βu
K +δ

−µu, for x ∈ R, t > 0,

u(t = 0,x) = u0(x).

(10)

where β ,δ ,µ,K are parameters, u is the density of mosquitoes, and the function Λ(t,x) is the control
(i.e. the number of sterile males released). In order to ensure the existence of a non-trivial steady state,
we need the following assumption:

Assumptions 1. The parameters β ,δ ,µ,K are positive and β −µδ > 0.

We first treat briefly the case without any control (i.e. Λ = 0) and then we explain how to obtain a
similar result to Theorem 2.

3.1.1 The case without control

In this case, when Assumption 1 holds, the equation has two equilibria u0 = 0 and u∗ =
K(β −µδ )

β µ
> 0.

The reaction term f (u) :=
βu

βu
K +δ

−µu > 0 for any u ∈ (0,u∗), f ′(0) =
β

δ
−µ > 0, and f (u) <

βu
δ
−
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(a) Ms = 0 (b) A = 600, η = 0.2, c = 0

(c) A = 600, η = 0.2, c =−0.3 (d) A = 600, η = 0.2, c =−0.7

(e) A = 800, η = 0.2, c =−0.7 (f) A = 800, η = 0.1, c =−0.7

Figure 1: Dynamics of the female density in system (1).
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µu = f ′(0)u. Then, from the result in [21], there exists a number c∗ > 0 such that (10) possesses
“natural” traveling wave solutions u(t,x) = vN(x− c+t) for all speed c+ ≥ c∗ with vN solutions of

− c+v′N− v′′N =
βvN

βvN
K +δ

−µvN ,

vN(−∞) = u∗, vN(+∞) = 0.

Hence, when t→+∞, the positive state u = u∗ invades the extinction state u = 0 (see [6, Theorem 4.1]
for more details). We recall the following classical result

Proposition 5. [6, Theorem 4.1] For any positive initial data u0, the solution of (10) with Λ≡ 0 satisfies

∀c+ ≥ c∗, lim
t→+∞

sup
|x|<c+t

|u(t,x)−u∗|= 0, .

Remark 1. Depending on the initial data, the front can go faster and even accelerate (see [20]). But,
in any case, the steady-state u∗ invades the steady state 0 at least with a speed c∗.

3.1.2 The controlled case

In this case, function Λ is considered as in (7), and we prove the existence of a forced traveling wave
moving with the same speed as Λ satisfying−cv′− v′′ =

v
v+φ

βv
βv
K +δ

−µv,

v(−∞) = u∗, v(+∞) = 0,
(11)

with φ(x− ct) = Λ(t,x) and speed c negative. The result is the following:

Theorem 6. For any c < 0, there exists constants Ã, η̃ > 0 such that for any A≥ Ã, 0 < η ≤ η̃ , and the
release function φ(x− ct) = Λ(t,x) defined in (7), problem (11) admits a solution v.

Then, we have the following result for the space-time model (10) (which is an analog to Theorem
2):

Theorem 7. For any initial data u0 ≥ 0 with u0 ≤ u∗ and u0|R+
= 0 and c ≤ 0, there exist constants

Ã, η̃ > 0 such that for any A≥ Ã, 0 < η ≤ η̃ , and the release function φ(x− ct) = Λ(t,x), one has that
the solution u of (10) satisfies, with any ε > 0, that

lim
t→+∞

sup
x>(c+ε)t

u(t,x) = 0.

By imposing a control with exponential decay, we succeed in suppressing the insects in the region
behind the release. It is contrary to what happens naturally (when the stable steady state u∗ invades the
unstable steady state 0). Notice that the hypothesis on the initial data u0 takes into account any positive
and compactly supported initial data bounded by u∗ (up to a translation of the support in R−).

In the following section, we construct a super-solution for (11) in Proposition 8, then we can apply
this result to prove Theorem 7. The existence of a sub-solution of (11) is presented in Proposition 10
in section 3.3. Finally, by using comparison principle for a scalar reaction-diffusion equation, we prove
Theorem 6.

10



3.2 Construction of a super-solution for the simplified model
The existence of super-solution for (11) is shown in the following proposition

Proposition 8. For any fixed speed c and any fixed parameter α ∈
(

0,
δ µ

β

)
, there exists a constant

r(α)< 0 depending on α,c such that the function

w(x) =

{
u∗ when x < 0,
u∗er(α)x when x≥ 0,

(12)

is a super-solution of (11) with φ(x− ct) = Λ(t,x) for any η ∈ [0,−r(α)] and A≥ u∗
α
−u∗ > 0.

Proof of Proposition 8. For a constant c < 0, we study the following problem−cw′−w′′ =
(

αβ

δ
−µ

)
w on [0,+∞),

w > 0 on [0,+∞), w(+∞) = 0.
(13)

Consider the characteristic polynomial r2 +cr+
αβ

δ
−µ = 0, since

αβ

δ
−µ < 0 then for any c < 0, the

polynomial admits two distinct roots r± =

−c±
√

c2−4
(

αβ

δ
−µ

)
2

where r+ > 0 and r− < 0.

Since we look for a solution w of (13) with w(+∞) = 0, then the solution of (13) is

w(x) = u∗er(α)x for x > 0, (14)

with r(α) = r− =

−c−
√

c2−4
(

αβ

δ
−µ

)
2

< 0.

Now, remarking that Assumption 1 provides δ µ

β
≤ 1, it follows for any α ∈ (0, δ µ

β
) and any constant

η ∈ [0,−r(α)] and A≥ u∗
α
−u∗ > 0, one defines φ(x−ct) = Λ(t,x) as in (7), then for all x ∈ [0,∞), one

has
w(x)

w(x)+φ(x)
=

u∗er(α)x

u∗er(α)x +Ae−ηx
=

u∗
u∗+Ae−(η+r(α))x

≤ α . We deduce that

−cw′−w′′− w
w+φ

βw
βw
K +δ

+µw≥−cw′−w′′−
(

αβ

δ
−µ

)
w = 0.

For any x < 0, one has w(x) = u∗ and

−cw′−w′′− w
w+φ

βw
βw
K +δ

+µw =− βu∗
βu∗
K +δ

+µu∗ = 0.

Moreover, we have lim
x→0−

w′(x) = 0 > r(α)u∗ = lim
x→0+

w′(x). Hence, function w as in (12) is a super-

solution of (11) with any φ(x− ct) = Λ(t,x) of the form in (7).

From the existence of this super-solution we have the following proof of Theorem 7:

Proof of Theorem 7. Let u(t,x) = w(x− ct), Λ(t,x) = φ(x− ct), and w,φ provided by Proposition 8
with a certain speed c < 0. It is clear that with such a choice of Λ(t,x), we have that u is a super-
solution of (10). Thanks to the definition of w, we have u0(x) ≤ u(t = 0,x), therefore, the comparison
principle implies that for any t > 0, x ∈ R, u(t,x) ≤ u(t,x). For any ε > 0, x > (c + ε)t, one has
u(t,x)≤ u∗er(α)εt → 0 when t→+∞, then the result follows.
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3.3 Construction of a sub-solution for the simplified model

We are going to construct this sub-solution by part. In the part where φ ≡ 0, we recall f (s)=
β s

β s
K +δ

−µs

which corresponds to the reaction term of (11) with φ ≡ 0. Consider the following system−w′′ = f (w) in R−,

w(0) = 0; lim
x→0−

w′(x) =−
√

2
∫ u∗

0
f (s)ds.

(15)

We have the following Lemma

Lemma 9. System (15) admits a solution w≥ 0 such that for any x < 0 w′(x)< 0 and lim
x→−∞

w(x) = u∗.

Proof. By Cauchy-Lipschitz theorem, problem (15) admits a solution w ≥ 0 in [−L0,0) for some L0 ∈
(0,+∞]. Multiplying the first equation of (15) by w′ and integrating in (−L,0) for some L ∈ (0,L0], we
have

−
∫ 0

−L

[
(w′)2

2

]′
dx =

∫ 0

−L
f (w)w′dx,

then
w′(−L)2

2
− w′(0)2

2
=−

∫ w(−L)

0
f (s)ds.

From (15), we have w′(0)2 = 2
∫ u∗

0
f (s)ds then

w′(−L)2

2
=
∫ u∗

w(−L)
f (s)ds. (16)

Since f is monostable, then w′(−L) = 0 if and only if w(−L) = u∗.
Define

L := inf{x > 0 : w′(−x) = 0}= inf{x > 0 : w(−x) = u∗} ≤+∞. (17)

If L < +∞, from the definition of L one has w′(−L) = 0 and w(−L) = u∗. However, u∗ is a stable
equilibrium of equation −w′′ = f (w), so w(−L) = u∗ implies that w ≡ u∗. This is contradictory to the
fact that w(0) = 0.

Hence, L =+∞. So we have w′(x)< 0 and w(x)< u∗ for any x < 0. We can deduce from this bound
that w converges when x→−∞. Since lim

x→−∞
w(x)< w(0) = 0, then w converges to u∗.

Now, we can use the solution w of (15) to construct a sub-solution of (11).

Proposition 10. For any c < 0, problem (11) has a sub-solution w which is defined as follows

w(x) =

{
w(x) when x < 0,
0 when x≥ 0,

(18)

with φ(x− ct) = Λ(t,x).

Proof. For any c < 0, for any x < 0, one has φ(x) = 0,w(x) = w(x),w′(x)< 0, then

−cw′−w′′− w
w+φ

βw
βw
K +δ

+µw =−cw′−w′′− f (w) =−cw′ < 0.

Moreover, lim
x→0−

w(x) =−
√

2
∫ u∗

0
f (s)ds < 0 = lim

x→0+
w(x). Hence, w is a sub-solution of (11).

12



Figure 2: Control function φ and super-, sub-solutions.

3.4 Construction of a traveling wave solution for the simplified model
We construct a solution from the above sub- and super-solutions.

Proof of Theorem 6. According to Propositions 8 and 10, for the control function φ(x− ct) = Λ(t,x),
problem (11) has the super-solution w as in (12) and the sub-solution w as in (15). Moreover, the sub-
and super-solutions are well-ordered : w ≤ w (see Figures 2). By applying the classical technique of
sub- and super-solution (see e.g. [26]), there exists a classical solution of (11). Moreover, we have∫
R

φ(x)dx =Cs

∫ +∞

0
e−λxdx =

Cs

λ
<+∞.

4 Study of the whole system
In subsection 4.1, we provide some preliminary results such as a comparison principle adapted to system
(1). In subsection 4.2, we prove the main Theorem 2 by introducing a super-solution. The proof of the
result which states that it is indeed a super-solution is postponed to subsection 4.3. Subsection 4.4 is
devoted to the establishment of a sub-solution of (9). Finally, in subsection 4.5, we provide the proof of
Theorem 4.

4.1 Preliminary results
In this part, we focus on studying the existence of traveling wave solutions for system (1) and then apply
it to prove Theorem 2. In the rest of the paper, we study this system in the subset {E ≤K} of the positive
cone since we have the following property.

Lemma 11. On the positive cone {E ≥ 0,F ≥ 0,M ≥ 0,Ms ≥ 0}, the subset {E ≤ K} is time invariant,
that is, if 0≤ E0 ≤ K, then E(t, ·)≤ K for all t > 0.

Proof. Assume that there exists a time t0 > 0 such that E(t0,x)> K for some x. Since 0≤ E0 ≤ K, and
E is continuous over time, we can deduce that there exists a time t1 ∈ (0, t0) such that E(t1,x) > 0 and

∂tE(t1,x) > 0. However, we also have ∂tE(t1,x) = βF(t1,x)
(

1− E(t1,x)
K

)
− (νE + µE)E(t1,x) < 0.

This contradiction proves the result.

We recall that in the subset {E ≤ K}, system (1) is not cooperative due to the introduction of sterile
males Ms > 0. Indeed, from the second equation of (1), we have the reaction term

g(E,F,M,Ms) := rνEE
M

M+ γMs
−µFF,
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and
∂g

∂Ms
= − γrνEEM

(M+ γMs)2 < 0 on the positive cone. Hence, we introduce a new comparison principle

that can be applied to system (1) in the following part. We first define the nonlinear vector-valued
function

f(E,F,M;ψ) =

 f1(E,F,M)
f2(E,F,M)
f3(E,F,M)

=

βF
(
1− E

K

)
− (νE +µE)E

rνEE M
M+γψ

−µFF
(1− r)νEE−µMM

 , (19)

where ψ(t,x) is a fixed function. Denote U(t,x) = (E,F,M)(t,x) ∈ R3
+ then we obtain the following

system
∂tU−D∂xxU = f(U ;ψ). (20)

Next, we introduce the following theorem

Theorem 12 (Comparison principle for (1)). Consider two functions M1
s ,M

2
s ∈ L1

loc((0,+∞)×R) such
that 0≤M2

s (t,x)≤M1
s (t,x) for all t ≥ 0,x ∈ R. Suppose that

• (E1,F1,M1) is a sub-solution of system (20) with ψ ≡M1
s ,

• (E2,F2,M2) is a super-solution of system (20) with ψ ≡M2
s ,

• (E1,F1,M1)(t = 0)≤ (E2,F2,M2)(t = 0), for any x ∈ R,

then
(E1,F1,M1)(t,x)≤ (E2,F2,M2)(t,x),

for all t > 0,x ∈ R.

Proof. Recall that system (20) with ψ(t,x) fixed is a cooperative system. Indeed,

∂ f1

∂F
= β

(
1− E

K

)
> 0,

∂ f1

∂M
= 0,

∂ f2

∂E
= rνE

M
M+ γψ

> 0,
∂ f2

∂M
=

γψrνEE
(M+ γψ)2 > 0,

and
∂ f3

∂E
= (1− r)νE > 0,

∂ f3

∂F
= 0.

On the other hand, from the assumption of Theorem 12, one has 0 ≤ M2
s (t,x) ≤ M1

s (t,x) for any t >
0,x ∈ R, we deduce that f(U ;M1

s )≤ f(U ;M2
s ) for any U ∈ R3

+. Hence, recalling that U1 = (E1,F1,M1)
is a sub-solution of system (20) with ψ ≡M1

s , it follows

∂tU1−D∂xxU1− f(U1;M2
s )≤ f(U1;M1

s )− f(U1;M2
s )≤ 0.

This inequality deduces that U1 is also a sub-solution of system (20) with ψ ≡M2
s . From assumptions

in Theorem 12, we also have U2 = (E2,F2,M2) is a super-solution of this system. Moreover, U1(t =
0) ≤U2(t = 0). Therefore, by applying the comparison principle for this cooperative system (see e.g.
[30], Chapter 5, §5), we obtain that (E1,F1,M1)(t,x)≤ (E2,F2,M2)(t,x) for any t > 0,x ∈ R.

Next, we will use Theorem 12 for studying system (1) and prove the main result in Theorem 2.
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4.2 Proof of Theorem 2
Before treating the main system, we first fix the distribution of sterile males by assuming that the sterile
males neither die nor diffuse, and we assign Ms(t,x) = φs(x− ct) where

φs(x) =

{
0 for x < 0,

Cse−ηx for x≥ 0,
(21)

with constants Cs > 0, η > 0. We consider the traveling wave solution (E,F,M)(t,x) = (φE ,φF ,φM)(x−
ct) where (φE ,φF ,φM) satisfies the following system

−cφ ′E = βφF

(
1− φE

K

)
− (νE +µE)φE ,

−cφ ′F −Dφ ′′F = rνEE
φM

φM + γφs
−µFφF ,

−cφ ′M−Dφ ′′M = (1− r)νEφE −µMφM,

(φE ,φF ,φM)(−∞) = (E∗,F∗,M∗), (φE ,φF ,φM)(+∞) = (0,0,0).

(22)

with speed c < 0. Note that, system (22) is cooperative on the positive cone {E ≥ 0,F ≥ 0,M ≥ 0}, thus
we can apply directly the comparison principle for a cooperative system (see e.g. [30], Chapter 5, §5).
Our idea is to construct a super-solution for the system (22) where the sterile males’ distribution is fixed
and then deduce a super-solution for the main system (9). First, we need to show that the solution φs of
(9) is larger than φs in the whole R. It will follow that the solution Ms(t,x) of the Cauchy problem with
appropriate initial data is also larger than φs

Lemma 13. For a certain speed c < 0 and function φ(x− ct) = Λ(t,x) defined in (7), there exists a
solution φs of equation

−cφ
′
s−Dφ

′′
s = φ −µsφs, φs(±∞) = 0,

such that for A >Cs large enough and η > 0 small enough, one has φs ≤ φs in R.
Moreover, if M0

s ≥ φs then the solution Ms of{
∂tMs−D∂xxMs = Λ−µsMs,

Ms(t = 0) = M0
s

(23)

satisfies Ms(t,x)→ φs(x− ct) uniformly with respect to time and Ms(t,x)≥ φs(x− ct).

Proof. Denote σ± =
−c±

√
c2 +4Dµs

2D
two roots of the characteristic polynomial of equation −cφ ′s−

Dφ ′′s +µsφs = 0, then we have σ−< 0<σ+. Assume that 0<η <−σ−, and define As :=
A

−Dη2 + cη +µs
,

then we have solution

φs(x) =

{
B+eσ+x +B−eσ−x for x≤ 0,

A+eσ+x +A−eσ−x +Ase−ηx for x > 0,

for some A±, B±. Since we have φs(±∞) = 0, then B− = A+ = 0. To ensure that φs is C 1, we need
B+ = A−+As, σ+B+ = σ−A−+ηAs. Hence, we obtain that

A− =
η +σ+

σ−−σ+
As < 0, B+ =

η +σ−
σ−−σ+

As > 0,
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since 0 < η < −σ−. Now for any x ≤ 0, one has φs(x) =
η +σ−

σ−−σ+

A
−Dη2 + cη +µs

eσ+x > 0 = φs(x).

Otherwise, if x > 0, one has φs(x) =
η +σ+

σ−−σ+
Aseσ−x + Ase−ηx >

η +σ−
σ−−σ+

A
−Dη2 + cη +µs

e−ηx >

Cse−ηx if A >Cs large enough.
For the second claim, we split the solution Ms into two parts: Ms = M1

s +M2
s solutions of{

∂tM1
s −D∂xxM1

s =−µsM1
s ,

M1
s (t = 0) = M0

s −φs
and

{
∂tM2

s −D∂xxM2
s = Λ−µsM2

s ,

M2
s (t = 0) = φs

By linearity, it is clear that M1
s +M2

s is a solution of (23). Moreover, we have M1
s =

[
H ∗ (M0

s −φs)
]

e−ct

(where H stands for the heat kernel in R× [0,+∞[ and ∗ stands for the convolution) and M2
s (x− ct) =

φs(x− ct). Since (M0
s −φs) ∈C0

b(R)∩L1(R) we deduce that M1
s converges uniformly to 0 as t → +∞.

Finally, remarking that (M0
s −φs)≥ 0 we deduce that M1

s ≥ 0 and Ms ≥ φs > φs.

The next Proposition shows that we can construct a super-solution of (9) by studying system (22)

Proposition 14. Assume that the basic offspring number R0 > 1, then for any speed c < 0 and the
control function φs defined in (21) with Cs > 0 large enough and η > 0 small enough, there exists a
non-negative super-solution (φE ,φF ,φM) of system (22) such that φE ≤ E∗, φF ≤ F∗, φM ≤ M∗, and
when x→+∞, (φE ,φF ,φM) converges to (0,0,0).

Hence, we deduce that (φE ,φF ,φM,φs) is a super-solution of (9) where φs is defined in Lemma 13.

The proof of Proposition 14 is long and technical therefore, we postpone it to section 4.3. We finally
provide the details of the proof of Theorem 2.

Proof of Theorem 2. We define (E,F ,M)(t,x) = (φE ,φF ,φM)(x− c′t) where c′ < c < 0, (φE ,φF ,φM) is
defined in Proposition 14 with a speed c′. It is clear that (E,F ,M) is a super-solution of system (20)
with ψ(t,x) = φs(x− ct) and φs defined in (21). Denote (E,F,M,Ms) solution of system (1) with Λ

defined in (7). Then (E,F,M) is a sub-solution of system (20) with ψ ≡Ms. From Lemma 13, we can
choose A >Cs such that Ms(t,x)≥ φs(x− ct) for any t > 0 and x ∈ R. Moreover, by the construction of
(φE ,φF ,φM) in Proposition 14 (see Section 4.3), we have (E0,F0,M0)(x) ≤ (E,F ,M)(t = 0,x). Now,
we apply the comparison principle in Theorem 12 and we obtain that (E,F,M)(t,x)≤ (E,F ,M)(t,x) for
any time t > 0 and x ∈ R. Since (φE ,φF ,φM)(x)→ (0,0,0) when x→+∞, we conclude that

lim
t→+∞

sup
x<ct

(E,F,M)(x, t)≤ lim
t→+∞

sup
x<ct

(E,F ,M)(x, t)

= lim
t→+∞

sup
x<ct

(φE ,φF ,φM)(x− c′t)

≤ lim
t→+∞

Ce(c−c′)t(1,1,1) = (0,0,0).

In the following parts, we construct super- and sub-solutions for (9), then conclude by proving
Theorem 4.

4.3 Construction of a super-solution for (9)
We first remark that if (φE ,φM,φF) is a super-solution of (22) then (φE ,φM,φF ,φs) is a super-solution of
(9). Indeed, by applying Lemma 13, we have φs ≥ φs in R, thus, we have

−cφF
′−DφF

′′− rνEφE
φM

φM + γφs
+µFφF ≥−cφF

′−DφF
′′− rνEφE

φM

φM + γφs
+µFφF ≥ 0.
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Following the idea we used with the simplified model, we construct super-solutions for (22) estab-
lished by two parts, a constant part on (−∞,x∗] and a tail on (x∗,+∞) that decays to 0 at +∞, with some
x∗ ≥ 0. We start by considering φF as follows

φF(x) =

{
F∗ when x≤ 0,
F∗e−λx when x > 0,

(24)

with some λ > 0. Next, we construct the tails for φE and φM, and clarify the value of x∗. After that, we
provide proof of Proposition 14.
• Construction of function φE: First, on R+, we consider function φ̃E(x) such that−cφ̃E

′
= βF∗e−λx

(
1− φ̃E

K

)
− (νE +µE)φ̃E ,

φ̃E > 0, lim
x→+∞

φ̃E = 0, φ̃E(0) = E∗.
(25)

Hence, for any x≥ 0, we obtain φ̃E of the form

φ̃E(x) = eδ (x)
(
−βF∗

c

∫ x

0
e−λ s−δ (s)ds+E∗

)
> 0, (26)

where δ (x) = −βF∗

λcK
e−λx +

νE +µE

c
x+

βF∗

λcK
. One has δ (0) = 0 and lim

x→+∞
δ (x) = −∞. We have the

following lemma

Lemma 15. Assume that λ +
νE +µE

c
< 0, then there exists a constant CE > E∗ such that φ̃E(x) ≤

CEe−λx for any x≥ 0.

Proof. Since λ +
νE +µE

c
< 0 and c < 0, for any x ≥ 0, we obtain that δ (x) ≤ νE +µE

c
x ≤ −λx.

Therefore, eδ (x) ≤ e
νE+µE

c x ≤ e−λx. On the other hand, one has

eδ (x)
∫ x

0
e−λ s−δ (s)ds≤ e

νE+µE
c x

∫ x

0
e−λ s− νE+µE

c se−
βF∗
cλK (1−e−λ s)ds≤ −e−

βF∗
cλK

λ + νE+µE
c

e−λx.

Then one has CE := E∗+
βF∗

c
e−

βF∗
cλK

λ + νE+µE
c

> E∗. This induces the result of the lemma.

From Lemma 15, we can deduce that lim
x→+∞

φ̃E(x) = 0. Moreover, we define

xE := sup{x≥ 0 : φ̃E(x) = E∗}<+∞, (27)

and φ̃E(x)< E∗ for any x > xE . We define function φE as follows

φE(x) =

{
E∗ when x≤ xE

φ̃E(x) when x > xE .
(28)

Then for any x, we have φE(x) ≤ min{E∗,CEe−λx}, lim
x→+∞

φE(x) = 0, and lim
x→x−E

φE
′
(x) = 0 ≥ φ̃E

′
(xE) =

lim
x→x+E

φE
′
(x).
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• Construction of function φM: Next, on R+, we consider function φ̃M which satisfies−cφ̃M
′
−Dφ̃M

′′
= (1− r)νECEe−λx−µMφ̃M,

φ̃M(x)> 0, lim
x→+∞

φ̃M(x) = 0, φ̃M(0) = M∗.
(29)

Consider the characteristic polynomial −Dδ 2− cδ +µM = 0 with two roots δ± =
−c±

√
c2 +4DµM

2D
,

where δ+ > 0,δ−< 0. Then any solution of (29) has the form φ̃M(x) =CMe−λx+C1eδ−x+C2eδ+x, where

CM =
(1− r)νECE

−Dλ 2 + cλ +µM
. (30)

Since we look for lim
x→+∞

φ̃M(x) = 0, then C2 = 0. Moreover, M∗ = φ̃M(0) =CM +C1, thus C1 = M∗−CM.

Assume that λ +δ− < 0, so we have µM >−Dλ 2 + cλ +µM > 0 and

CM >
(1− r)νECE

µM
= M∗

CE

E∗
≥M∗.

Moreover, since δ− <−λ , then for any x > 0, we have

CMe−λx > φ̃M(x) =CMe−λx +(M∗−CM)eδ−x > M∗eδ−x > 0.

and we have lim
x→+∞

φ̃M(x) = 0, so φ̃M is a solution of problem (29). We define

xM = sup{x≥ 0 : φ̃M(x) = M∗}<+∞, (31)

and

φM(x) =

{
M∗ when x≤ xM

φ̃M(x) when x > xM.
(32)

Again we have φM(x)≤min{M∗,CMe−λx} for any x, lim
x→+∞

φM(x) = 0, and lim
x→x−M

φM
′
(x) = 0≥ φ̃M

′
(xM) =

lim
x→x+M

φM
′
(x).

Now we prove that for Cs large enough, (φE ,φF ,φM) defined as above is a super-solution of (22).

Proof of Proposition 14. Fix a positive parameter α such that α <
µFF∗

rνeCE
=

E∗

CE
< 1. Then, we choose

a positive constant λ such that

λ ≤min

−νE +µE

c
,
c+
√

c2 +4DµM

2D
,
c+
√

c2 +4DµF
(
1−α

CE
E∗
)

2D

 . (33)

Recalling CM defined respectively in (30), we take η < λ and Cs large enough such that
Cs

CM
≥ 1

γ

(
1
α
−1
)

.

Then for any x > 0,
φs

φM
≥ Cse−ηx

CMe−λx +(M∗−CM)eδ−x ≥
Cse−ηx

CMe−λx ≥
Cs

CM
, thus we obtain that

φM

φM + γφs
=

1

1+ γ
φs
φM

≤ α.

We now check that (φE ,φF ,φM) is a super-solution of (22).
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◦ Checking for φE: For any x≤ xE , since φE(x) = E∗,φF(x)≤ F∗, then

−cφE
′−βφF

(
1− φE

K

)
+(νE +µE)φE ≥−βF∗

(
1− E∗

K

)
+(νE +µE)E∗ = 0,

and for x > xE > 0, one has

−cφE
′−βφF

(
1− φE

K

)
+(νE +µE)φE =−cφ̃E

′
−βF∗e−λx

(
1− φ̃E

K

)
+(νE +µE)φ̃E = 0.

◦ Checking for φF : For any x≤ 0, we have φF = F∗,φE ≤ E∗, then

−cφF
′−DφF

′′− rνEφE
φM

φM + γφs
+µFφF ≥−rνEE∗+µFF∗ = 0.

For any x > 0, we have φE(x)≤CEe−λx,φF(x) = F∗e−λx, φM
φM+γφ

≤ α .

From (4), we note that
µFF∗

E∗
= rνE , thus

−cφF
′−DφF

′′− rνEφE
φM

φM + γφs
+µFφF ≥ F∗e−λx

(
−Dλ

2 + cλ −µFα
CE

E∗
+µF

)
≥ 0

since 0 < λ ≤
c+
√

c2 +4DµF
(
1−α

CE
E∗
)

2D
.

◦ Checking for φM: For any x≤ xM, one has φM(x) = M∗,φE(x)≤ E∗, thus

−cφM
′−DφM

′′− (1− r)νEφE +µMφM ≥−(1− r)νEE∗+µMM∗ = 0.

On the other hand, when x > xM, one has φE(x)≤CEe−λx, φM(x) = φ̃M(x) with φ̃M defined in (29) thus

−cφM
′−DφM

′′− (1− r)νEφE +µMφM ≥−cφ̃M
′
−Dφ̃M

′′
− (1− r)νECEe−λx +µMφ̃M = 0.

In conclusion, for λ > 0 small such that (33) holds, (φE ,φF ,φM) defined as above is a super-solution
of (22) where Cs is large enough and 0<η < λ . Then, we deduce that (φE ,φF ,φM,φs) is a super-solution
of (9).

4.4 Construction of a sub-solution for (9)
First, we remark that the sub-solution is established only to prove Theorem 4. Therefore, according to
Theorem 12, we need to establish (φE ,φF ,φM,φs) such that

φs ≥ φs and


−cφE

′ ≤ βφF

(
1−

φE

K

)
− (νE +µE)φ E

,

−cφF
′−DφF

′′ ≤ rνE
φM

φM + γφs
φE −µFφF ,

−cφM
′−DφM

′′ ≤ (1− r)νEφE −µMφM.

The first difficulty is that the sterile males diffuse so φs > 0 on R. It is clear that φs(x) −→
|x|→+∞

0 uniformly.

Therefore, we deduce that

∀ε > 0, ∃xε = inf{x ∈ R : φs(x)< ε} and xε <+∞.
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Moreover, taking ε small enough, we can consider xε ≤ 0. Then, we take

φs(x) =

{
ε for x < xε ,

φs for x > xε .
(34)

The second difficulty is that (E∗,F∗,M∗) is no more an equilibrium if we impose φs(−∞) = ε . Never-
theless, thanks to the implicit function theorem, we obtain

Proposition 16. There exists ε0 > 0 such that for any ε ∈ [0,ε0), there exists a strictly positive solution
(E∗ε ,F

∗
ε ,M

∗
ε ) of 

βF∗ε
(

1− E∗ε
K

)
− (νE +µE)E∗ε = 0,

rνEE∗ε
1

1+ε
−µFF∗ε = 0,

(1− r)νEE∗ε −µMM∗ε = 0.

(35)

Moreover, one has (E∗ε ,F
∗

ε ,M
∗
ε ) is decreasing continuously with respect to ε , and (E∗0 ,F

∗
0 ,M

∗
0)= (E∗,F∗,M∗).

Proof. We define

f2(E,F,M,ε) =

βF
(

1− E
K

)
− (νE +µE)E

rνEE 1
1+ε
−µFF

(1− r)νEE−µMM

 .

According to the explicit writing of (E∗,F∗,M∗) in (4) and since R0 > 1, we have that

det(DE,F,Mf2(E∗,F∗,M∗,0)) =−µM [β rνE −µF(µE +νE)]< 0.

Then, the implicit function theorem provides the existence of ε0. Still thanks to the implicit function
theorem, there holds∂εE∗ε

∂εF∗ε
∂εM∗ε

=−(DE,F,Mf2)
−1 ·∇ε f2(E∗ε ,F

∗
ε ,M

∗
ε ,ε)

=
rνEE∗ε

(1+ ε)2(det DE,F,Mf2(E∗ε ,F∗ε ,M∗ε ,ε))


β

(
1− E∗

K

)
µM(

βF∗ε
K

+µE +νE

)
µM(

βF∗ε
K

+µE +νE

)
µF

 .

Recalling, that det(DE,F,Mf2(E∗,F∗,M∗,0)) < 0, we deduce by continuity that

∂εE∗ε
∂εF∗ε
∂εM∗ε

 <

0
0
0

 and

the conclusion follows.

Because of our choice of φs, we construct a subsolution that converges to (Eε ,Fε ,Mε) for some
positive ε . We construct a sub-solution (φE ,φF ,φM) for system (22) by two parts. The first part of
(φE ,φF ,φM) is equal to 0 on [xε ,+∞) and the second part on (−∞,xε) converges to (E∗ε ,F

∗
ε ,M

∗
ε ) when

x→ −∞. The construction of the sub-solution on (−∞,xε) is the third difficulty. To cope with this
problem, we use the fact that φE ≤ Eε . We present the result of the existence of a sub-solution as follows

Proposition 17. For a speed c < 0, there exists ε1 ∈ (0,ε0) and ε < ε1 a constant small enough such that
for the control function ψ = φs defined in (34), there exists a non-negative sub-solution (φE ,φF ,φM) of
system (22) such that φE ≤ E∗ε1

,φF ≤ F∗ε1
,φM ≤M∗ε1

. Moreover, when x→−∞, (φE ,φF ,φM)(x) converges
to (E∗ε1

,F∗ε1
,M∗ε1

).
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Proof. We fix c< 0 and ε1 ∈ (0,ε0) (where ε0 is defined in Proposition 16). Then, we consider (Ê, F̂ ,M̂)
a solution of the following linear system in R−

−cÊ ′ = β F̂
(

1− E∗ε1
K

)
− (νE +µE)Ê,

−cF̂ ′−DF̂ ′′ = rνE
1+ε1

Ê−µF F̂ ,

−cM̂′−DM̂′′ = (1− r)νE Ê−µMM̂,

(36)

with Ê(−∞) = E∗ε1
, F̂(−∞) = F∗,M̂(−∞) = M∗.

Now, we will study this linear system by denoting U =


Ê
F̂
M̂
F̂ ′

M̂′

. Then system (36) becomes U ′ = BU

where B =


νE+µE

c − µF (νE+µE )
β rνE/(1+ε1)

0 0 0
0 0 0 1 0
0 0 0 0 1

− rνE
D(1+ε1)

µF
D 0 − c

D 0

− (1−r)νE
D 0 µM

D 0 − c
D

 , since 1−
E∗ε1

K
=

µF(νE +µE)

β rνE/(1+ ε1)
. Hence, the

characteristic polynomial is

det(B−λ I) = λ

(
λ

2 +
c
D

λ − µM

D

)
︸ ︷︷ ︸

PM(λ )

[
−λ

2 +

(
νE +µE

c
− c

D

)
λ +

νE +µE

c
+

µF

D

]
︸ ︷︷ ︸

PF (λ )

.

It is clear that λ0 = 0 is an eigenvalue associated to the eigenvector U0 =


E∗ε1

F∗ε1

M∗ε1

0
0

. Denote eigenvalues

λ
+
M > 0,λ−M < 0 which are the roots of PM(λ ), λ

+
F > 0,λ−F < 0 which are the roots of PF(λ ). We aim at

building a solution U(x) that converges to U0 when x→−∞, then we construct U of the following form

U(x) =U0 + eλ
+
M xU+

M + eλ
+
F xU+

F ,

where U+
M ,U+

F the corresponding eigenvectors of λ
+
M ,λ+

F . We consider the following cases:

Case 1: λ
+
M 6= λ

+
F : Since λ

+
M is a root of PM(λ ), then U+

M =


0
0
a
0

aλ
+
M

 for some a ∈ R. Denote

U+
F =


b1
b2
b3
b4
b5

 an eigenvector associated to λ
+
F . We have BU+

F = λ
+
F U+

F , and since rank(B−λ
+
F I)= 4 then

all entries b2,b3,b4,b5 depend explicitly on b1 ∈ R. More precisely, using the formula of E∗ε1
,F∗ε1

,M∗ε1
,

we have

b2 = b1
F∗ε1

E∗ε1

(
1− cλ

+
F

νE +µE

)
, b3 = b1

M∗ε1

E∗ε1

µM

−D[(λ+
F )2 + c

D λ
+
F −

µM
D ]

, b4 = λ
+
F b2. (37)
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For any x < 0, we have

Ê(x) = E∗ε1
+b1eλ

+
F x, F̂(x) = F∗ε1

+b2eλ
+
F x, M̂(x) = M∗ε1

+aeλ
+
M x +b3eλ

+
F x.

We choose b1 = −E∗ε1
,a = −M∗ε1

−b3. Thus we obtain that Ê(0) = 0,M̂(0) = 0, F̂(0) =
cF∗ε1

λ
+
F

νE +µE
< 0.

Then, there exists a unique constant yF < 0 such that F̂(yF) = 0.
Claim: For any x < 0, one has Ê(x)< E∗ε1

, F̂(x)< F∗ε1
,M̂(x)< M∗ε1

.
Indeed, since b1 < 0, we deduce from (37) that b2 < 0, then for any x < 0, Ê(x) < E∗ε1

, F̂(x) < F∗ε1
.

It remains to show that M̂(x)< M∗ε1
for any x < 0. One has

M̂(x) = M∗ε1
(1− eλ

+
M x)+b3(eλ

+
F x− eλ

+
M x).

We only need to show that b3(eλ
+
F x− eλ

+
M x)< 0 for any x < 0. Indeed,

◦ if λ
+
F < λ

+
M , then eλ

+
F x−eλ

+
M x > 0 for any x < 0 and (λ+

F )2+ c
D λ

+
F −

µM
D < 0. From (37), we deduce

that b3 < 0;
◦ if λ

+
F > λ

+
M , we have eλ

+
F x− eλ

+
M x < 0 for any x < 0 and b3 > 0.

Case 2: λ
+
F = λ

+
M = λ+: Now λ+ has one-dimensional eigenspace generated by U+ =


0
0
a
0

aλ+


for some constant a. The solution of U ′ = BU becomes U(x) =U0 +xeλ+xU++eλ+xV+, with V+ some
vector to be determined. Plugging this U(x) into the equation yields

eλ+xU++λ
+xeλ+xU++λ

+eλ+xV+ =U ′(x) = BU = λ
+xeλ+xU++ eλ+xBV+.

Hence, (B−λ+I)V+ =U+. Denote V+ =


b1
b2
b3
b4
b5

, one has



b2 = b1
F∗ε1

E∗ε1

(
1− cλ+

νE +µE

)
,

b4 = λ+b2,

b5 = λ+b3 +a,

a =−
M∗ε1

E∗ε1

1
1+ 2Dλ+

µM

b1.

Then, we have

Ê(x) = E∗ε1
+b1eλ+x, F̂(x) = F∗ε1

+b2eλ+x, M̂(x) = M∗ε1
+axeλ+x +b3eλ+x.

We choose b1 =−E∗ε1
,b3 =−M∗ε1

, then Ê(0) = 0,M̂(0) = 0, F̂(0) =
cF∗ε1

λ+

νE +µE
< 0. Thus, there exists a

unique constant yF < 0 such that F̂(yF) = 0.

Since we have a =
M∗ε1

1+ 2Dλ+

µM

> 0 , we obtain that for any x < 0, Ê(x)< E∗ε1
, F̂(x)< F∗ε1

,M̂(x)< M∗ε1
.

Hence, in both cases, we constructed solution (Ê(x), F̂(x),M̂(x)) of (36) such that Ê(x)<E∗ε1
, F̂(x)<

F∗ε1
,M̂(x) < M∗ε1

. Moreover, (Ê, F̂ ,M̂) converges to (E∗ε1
,F∗ε1

,M∗ε1
) at −∞. Now, we use these functions

to construct a sub-solution for (22).
Construction of a sub-solution:

Now, we construct φE ,φF ,φM a sub-solution of system (15) taking φs = φs defined in (34) with
ε ∈ (0,ε1) that will be fixed later on. Due to a translation of space, without loss of generality, we can
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assume here that x∗ε1
= 0. Next, we define

φE(x)=

{
Ê(x) when x≤ 0,
0 when x > 0,

φF(x)=

{
F̂(x) when x≤ yF ,

0 when x > yF ,
φM(x)=

{
M̂(x) when x≤ 0,
0 when x > 0.

(38)

Note that, by the definitions of φs, the fraction
φM

φM + γφs
is well-defined in R. We now check the

sub-solution inequalities for (φE ,φF ,φM). We can see that for any x > 0, the inequalities are trivial.
◦ Checking for φE(x): For any x≤ yF < 0, since φE ≤ E∗ε1

, thus

−cφE
′−βφF

(
1−

φE

K

)
+(νE +µE)φE ≤−cÊ ′−β F̂

(
1−

E∗ε1

K

)
− (νE +µE)Ê = 0,

For any x such that yF < x≤ 0, we have

−cφE
′−βφF

(
1−

φE

K

)
+(νE +µE)φE =−cÊ ′+(νE +µE)Ê = β F̂

(
1−

E∗ε1

K

)
< 0,

since F̂ < 0 on (yF ,0]. At x = 0, we also have lim
x→0−

φE
′(x) = Ê ′(0) =−λ

+E∗ε1
< 0 = lim

x→0+
φE(x).

◦ Checking for φF(x): First, we consider the case where x ≤ yF . Taking ε < min
(

ε1
2 ,

1
γ
ε1min

x≤yF
φM
)

it follows, recalling that in this case, φs = ε , one has

−cφF
′−DφF

′′− rνEφE
φM

φM + γφs
+µFφF = rνEφE

[
1

1+ ε1
− M̂

M̂+ γε

]
≤ 0,

due to the fact that (Ê, F̂ ,M̂) is a solution of (36).
For yF < x≤ 0, we have φF(x) = 0, φE(x) = Ê(x)≥ 0, φ(x) = A, φM(x) = M̂(x)> 0, thus

−cφF
′−DφF

′′− rνEφE
φM

φM + γφ
+µFφF =−rνE Ê

M̂
M̂+ γA

≤ 0.

At x = yF , we have lim
x→y−F

φF
′(x) = F̂ ′(0) =−λ

+F∗ε1

(
1− cλ+

νE +µE

)
< 0 = lim

x→y+F
φF
′(x).

◦ Checking for φM(x): For any x≤ 0, one has

−cφM
′−DφM

′′− (1− r)νEφE +µMφM =−cM̂′−DM̂′′− (1− r)νE Ê +µMM̂ = 0.

Similarly, at x = 0, in both cases lim
x→0−

φM
′(x) = M̂′(0)< 0 = lim

x→0+
φM
′(x).

It finishes the establishment of the sub-solution.

4.5 Construction of the traveling wave for (9) (Proof of Theorem 4)
As mentioned above, we prove the existence of traveling wave solutions using the sub and the super
solutions constructed before. We underline the following

Remark 2. For a certain speed c < 0 and function φ(x− ct) = Λ(t,x) defined in (7), there exists a
solution φs of equation

−cφ
′
s−Dφ

′′
s = φ −µsφs, φs(±∞) = 0,

such that for A >Cs large enough and η > 0 small enough, one has φs ≤ φs ≤ φs in R.
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Thanks to Remark 2, we are able to prove Theorem 4.

Proof of Theorem 4. First, notice that since the equation for φs is independent from the other equa-
tions, we deduce that φs exists and is provided in the proof of Lemma 2. Next, in section 4.3, we
obtained that (φE ,φF ,φM,φs) is a super-solution of the original system. In section 4.4, we obtain
that (φE ,φF ,φM,φs) is a sub-solution of the original system. Moreover, we have by construction that
(φE ,φF ,φM)≤ (φE ,φF ,φM) and according to Remark 13, we have φs ≤ φs ≤ φs.

By applying the comparison principle for the cooperative system (9), we deduce that there exists a
traveling wave solution (φE ,φF ,φM,φs) for system (9) with

(φE ,φF ,φM)≤ (φE ,φF ,φM)≤ (φE ,φF ,φM)

Thus (φE ,φF ,φM) converges to 0 at +∞, and at −∞, one has

(E∗ε1
,F∗ε1

,M∗ε1
)≤ (φE ,φF ,φM)< (E∗,F∗,M∗).

It only remains to prove by contradiction that (φE ,φF ,φM) −→
x→−∞

(E∗,F∗,M∗).

Assume it is not the case, we denote

(E∗,F∗,M∗) = ( liminf
x→−∞

φE(x), liminf
x→−∞

φF(x), liminf
x→−∞

φM(x)).

It follows
max

(
E∗−E∗ , F∗−F∗ , M∗−M∗

)
> 0.

Next, we introduce
ε2 = inf{ε > 0 : (Eε ,Fε ,Mε)≤ (E∗,F∗,M∗)}.

Notice that by assumption ε2 > 0. The end of the proof is split into three claims:

1. Prove by contradiction that F∗−F∗ε2
> δF (where δF is a small positive constant),

2. Prove by contradiction that E∗−E∗ε2
> δE (where δE is a small positive constant),

3. Prove by contradiction that M∗−M∗ε2
> δM (where δM is a small positive constant).

Then the three steps above are in contradiction with the definition of ε1. Indeed, if the claims are true
since the dependence of (Eε ,Fε ,Mε) with respect to ε is continuous, we deduce the existence of ε3 < ε2
such that

(E∗ε2
,F∗ε2

,M∗ε2
)< (E∗ε3

,F∗ε3
,M∗ε3

)≤ (E∗,F∗,M∗).

Therefore, if the claims are true, the contradiction follows and the proof is achieved.
• Claim 1. Assume by contradiction that F∗ = F∗ε2

. It follows the existence of a decreasing and
unbounded sequence xn such that φF(xn) < F∗ε2

+ 1/n, φ ′F(xn) = 0 and −φ ′′F(xn) ≤ 0. Such sequence
exists because if φ ′F does not change its sign, it follows that φF converges and this is absurd since it
can only converge to F∗. Notice that we also have by definition of ε2 that φE(xn) > E∗ε2

+ o1(n) and
φM(xn)> M∗ε2

+on(1). Inserting these inequalities in the equation that φF satisfies, we obtain

rνEφE(xn)
1

1+ γφs(xn)/φM(xn)
−µFφF(xn) = cφ

′
F(xn)−∆φF(xn)≤ 0.
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Since φM(xn)≥M∗+on(1) and φs(xn) = on(1), we deduce, thanks to (35),

rνEφE(xn)
1

1+ γφs(xn)/φM(xn)
−µFφF(xn) > rνEE∗ε2

1
1+on(1)

−µFF∗ε2
+on(1)

> rνEE∗ε2

1
1+on(1)

− rνEE∗ε2

1
1+ ε2

+on(1)

> rνEE∗ε2

ε2−on(1)
(1+ ε2)(1+on(1))

+on(1)

> 0.

Taking n large enough, it follows that F∗−F∗ε2
> δF for some positive constant δF .

• Claim 2. Assume by contradiction that E∗ = E∗ε2
. It follows the existence of a decreasing

and unbounded sequence xn such that φE(xn) < E∗ε2
+ 1/n, φ ′E(xn) = 0. Inserting this inequality in the

equation satisfied by φE , we obtain as above

0 = − cφ
′
E(xn)

= rνEφF(xn)

(
1− φE(xn)

K

)
− (µE +νE)φE(xn)

> rνEφF(xn)

(
1−

E∗ε2

K

)
− rνEF∗ε2

(
1−

E∗ε2

K

)
+on(1)

> rνE

(
1−

E∗ε2

K

)[
φF(xn)−F∗ε2

]
+on(1).

Recalling that E∗ε2
< E∗ < K (since R0 > 1 and by the definition of E∗) and using claim 1, it follows the

following contradiction by taking n large enough such that on(1) is small enough

rνE

(
1−

E∗ε2

K

)[
φF(xn)−F∗ε2

]
+on(1)> rνE

(
1−

E∗ε2

K

)
δF +on(1)> 0.

We conclude to the existence of a positive constant δE such that E∗−E∗ε2
> δE .

• Claim 3. Assume by contradiction that M∗ = M∗ε2
. It follows the existence of a decreasing and

unbounded sequence xn such that φM(xn) < M∗ε2
+ 1/n, φ ′M(xn) = 0 and −φ ′′M(xn) ≤ 0. Inserting these

inequalities in the equation satisfied by φM, we obtain as above

0 ≥ − cφ
′
M(xn)−φ

′′
M(xn)

= (1− r)νEφE(xn)−µMφM(xn)

> (1− r)νEφE(xn)− (1− r)νEE∗ε2
+on(1)

> (1− r)νE
(
φE(xn)−E∗ε2

)
+on(1).

Recalling claim 2, it follows the following contradiction by taking n large enough such that on(1) is
small enough:

(1− r)νE
(
φE(xn)−E∗ε2

)
+on(1)> (1− r)νEδE +on(1)> 0.

We conclude to the existence of a positive constant δM > 0 such that M∗−M∗ε1
> δM.

It concludes the proof.

A Proofs of Propositions 1 and 3
We recall [31, Theorem 4.2] which shows the estimate of the spreading speed c∗ for the monostable
system in discrete setting

un+1 = Q[un]
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where the vector-valued function un(x) = (u1
n(x),u

2
n(x), ...,u

k
n(x)) represents the population densities of

the populations of k species at the point x and the time nτ , with τ a fixed generation time. Then in section
4 of this work, the authors showed how to apply the results to a reaction-diffusion system by letting Q
be its time τ map. That is, replacing Q by Qτ where Qτ [u0] := u(x,τ). Next, we recall the result of this
work and apply it to the system (3).

Consider the system of reaction-diffusion equations ∂tui−di∂xxui = fi(u), with 1≤ i≤ k and denote
f = ( f1, f2, . . . fk). The reaction function f needs to satisfy the following assumptions.

Assumptions 2.

i. f(0) = 0 and there is a vector u� 0 such that f(u) = 0 which is minimal in the sense there are no
v other than 0 and u such that f(v) = 0 and 0� v≤ u.

ii. The system is cooperative, that is, fi(u) is nondecreasing in all components of u with the possible
exception of the ith one.

iii. f(u) is continuous and piecewise continuously differentiable at u for 0≤ u≤ u and differentiable
at 0.

iv. The Jacobian matrix f′(0) is in Frobenius form. The principal eigenvalue η1(0) of its upper left
diagonal block is positive and strictly larger than the principal eigenvalues ησ (0) of its other
diagonal blocks, and there is at least one nonzero entry to the left of each diagonal block other
than the first one.

For any positive parameter µ , if the initial data are of the form e−µxu0 then the solution of this
system has the form e−µxv, where the vector-valued function v is the solution of the system of ordinary
differential equations with constant coefficients ∂tv = Cµv, with v(0) = u0. The coefficient matrix is
given by

Cµ = diag
(

diµ
2
)
+ f′(0), (39)

and denote γσ (0) the principal eigenvalue of the σ th diagonal block of the matrix Cµ . We introduce the
constant

c := inf
µ>0

γ1(µ)

µ
. (40)

Let µ ∈ (0,∞] again denote the value of µ at which this minimum is attained, and let ζ (µ) be the
eigenvector of Cµ which correspond to the eigenvalue γ1(µ). Then, the following theorem presents the
main result

Theorem 18 (Theorem 4.2 in [31]). Suppose that f satisfies the Assumptions 2. Assume that either
(a) µ is finite,

γ1(µ)> γσ (µ) for all σ > 1, (41)

and
f(ρζ (µ))≤ ρf′(0)ζ (µ), (42)

for all positive ρ;
or

(b) There is a sequence µν ↗ µ such that for each ν the inequalities (41) and (42) with µ replaced by
µν are valid.

Then the system has a unique speed c∗ = c with c∗ defined in Proposition 1.
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Now we apply this theorem to system (3) with f(E,F,M) =

βF
(

1− E
K

)
− (νE +µE)E

rνEE−µFF
(1− r)νEE−µMM

, and we

provide the proof as follows

Proof of Propositions 1 and 3. First, we need to show that f satisfies Assumptions 2. With β rνE >
µF(νE +µE), we can deduce that f has two zeros (0,0,0), (E∗,F∗,M∗), and satisfies (i). When E ≤ K,
one has f is cooperative, thus f satisfies (ii). It is easy to see that f satisfies (iii). Now we only need to
check the assumption (iv). The Jacobian of f at (0,0,0)

f′(0) =

−νE −µE β 0
rνE −µF 0

(1− r)νE 0 −µM

 (43)

is in Frobenius form with two diagonal blocks B1 =

(
−νE −µE β

rνE −µF

)
and B2 = −µM. There is a

positive entry (1− r)νE to the left of B2.

The block B1 has two eigenvalues η± =
−(νE +µE +µF)±

√
(νE +µE −µF)2 +4β rνE

2
. Denote(

e±
f±

)
the eigenvectors corresponding to eigenvalues η± of B1. Then, one has

−(νE +µE)e±+β f± =
−(νE +µE +µF)±

√
(νE +µE −µF)2 +4β rνE

2
e±.

So

β f± =
νE +µE −µF ±

√
(νE +µE −µF)2 +4β rνE

2
e±.

Since
νE +µE −µF −

√
(νE +µE −µF)2 +4β rνE

2
< 0, then e− and f− always have different signs.

Hence, η+ is the only eigenvalue that has the corresponding positive eigenvector, and it is the principal
eigenvalue of B1. Moreover, due to the assumption β rνE > µF(νE + µE), one has η1(0) = η+ > 0 >
−µM = η2(0). This concludes that f satisfies (iv).

Now, one has the matrix

Cµ =

−νE −µE β 0
rνE Dµ2−µF 0

(1− r)νE 0 Dµ2−µM

 .

Similarly to the matrix f′(0), the principal eigenvalue of the first block of Cµ is

γ1(µ) =
Dµ2−νE −µE −µF +

√
(Dµ2 +νE +µE −µF)2 +4β rνE

2

By the assumption β rνE > µF(νE +µE) and D > 0, we have γ1(µ)> 0. It is easy to see that
γ1(µ)

µ
∼ 1

µ

when µ → 0+, and
γ1(µ)

µ
∼ µ when µ →+∞. Hence, one can deduce that there exists a finite constant

µ ∈ (0,+∞) such that
γ1(µ)

µ
= inf

µ>0

γ1(µ)

µ
.
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Consider ζ (µ) =

 e
f
m

 the eigenvector corresponding to the eigenvalue γ1(µ) of Cµ , where
(

e
f

)
is the positive eigenvector associated to the principal eigenvalue γ1(µ) of the first diagonal block. So
m > 0 if and only if γ1(µ)> γ2(µ) = Dµ

2−µM, that is

2µM−Dµ
2−νE −µE −µF +

√
(Dµ

2 +νE +µE −µF)2 +4β rνE > 0. (44)

Hence, whenever the parameters satisfy condition (44), the inequality (41) holds, the eigenvector ζ (µ)= e
f
m

 is positive, and for any positive ρ , f(ρζ (µ))−ρf′(0)ζ (µ) = ρ

− β

K e f ρ

0
0

< 0, then (42) holds.

Now, applying the result of Theorem 18, we obtain the spreading speed c∗ = c. By applying Theorem
4.1 in [31], the solution of (3) satisfies

lim
t→+∞

[
max

|x|≥t(c∗+ε)
max(E,F,M)(t,x)

]
= 0,

if the initial data (E0,F0,M0) is compactly supported and 0 ≤ (E0,F0,M0)� (E∗,F∗,M∗). Further-
more, for any strictly positive constant ω , there is a positive Rω with the property that if min(E0,F0,M0)≥
ω on an interval of length 2Rω , then

lim
t→+∞

[
max

|x|≤t(c∗−ε)
max(E∗−E,F∗−F,M∗−M)(t,x)

]
= 0.

Moreover, Proposition 3.3 in the work of Lui [23] provides, in a discrete setting, some conditions in
which the constant Rω can be chosen to be arbitrarily small and independent of ω . This result can be
transposed to the continuous case like what has been done in section 4 of [31] and it is simple to verify
that, when minE0 > 0 or minF0 > 0, our system satisfies those conditions so we leave it to the readers.
Hence, by applying this result, we deduce that if the initial data E0 or F0 are strictly positive on a set
with a positive measure, then the result in Proposition 1 holds.

Now, to prove Proposition 3, the paper [15] provides some conditions in which the spreading speed
estimated in [31] of the monostable system is the minimum speed of the traveling wave. The authors in
[5] have checked all the conditions for the same system as (3), hence we obtain the same result for our
system.
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