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We propose and analyse the optimized Schwarz waveform relaxation (OSWR) method for the unsteady incompressible Stokes equations. Well-posedness of the local subdomain problems with Robin boundary conditions is proved. Convergence of the velocity is shown through energy estimates; however, pressure converges only up to constant values in the subdomains, and an astute correction technique is proposed to recover these constants from the velocity. The convergence factor of the OSWR algorithm is obtained through a Fourier analysis, and allows to efficiently optimize the space-time Robin transmission conditions involved in the OSWR method. Then, numerical illustrations for the two-dimensional unsteady incompressible Stokes system are presented to illustrate the performance of the OSWR algorithm.

1. Introduction. The study of physical phenomena, whether natural or industrial, is frequently based on numerical simulations involving an increasing number of degrees of freedom. This growing complexity may require the use of resolution techniques which on the one hand are suitable for parallel computing architectures, and on the other hand allow local space and time stepping adapted to the physics, such as spacetime domain decomposition (DD) methods. In this article we are concerned with such methods, with Robin transmission conditions at the interfaces between subdomains, for solving applications related to incompressible fluid mechanics, that are modelled by the unsteady (Navier)-Stokes system.

The well-posedness of such systems with Robin conditions (without domain decomposition) has been the subject of several works in the steady case, see e.g. [START_REF] Tartaglione | A note on the Robin problem for the Stokes system[END_REF] for the Stokes problem (where the Robin condition is expressed with the symmetric part of the velocity gradient, instead of the gradient), references [START_REF] Russo | On the Robin problem for Stokes and Navier-Stokes systems[END_REF][START_REF] Medková | Weak solutions of the Robin problem for the Oseen system[END_REF] for the Oseen and Navier-Stokes systems, and [START_REF] Discacciati | Robin-Robin domain decomposition methods for the Stokes-Darcy coupling[END_REF] for the Stokes-Darcy Coupling. On the other hand, there are few works in the unsteady case; in [START_REF] Monniaux | The incompressible Navier-Stokes system with timedependent Robin-type boundary conditions[END_REF] existence and uniqueness of a solution with a time-dependent Robin boundary condition of the type curl u × n = β(t)u is addressed. In [START_REF] Hoang | A global-in-time domain decomposition method for the coupled nonlinear Stokes and Darcy flows[END_REF] the Stokes problem with Robin conditions is studied, in the context of a global-in-time DD method applied the coupled nonlinear Stokes and Darcy Flows.

The well-posedness is not shown.

In this article we study the well-posedness of the unsteady incompressible Stokes system with Robin boundary conditions of type α(ν∂ n u • n -p) + u • n = g(t) and βν∂ n u × n + u × n = ξ(t), in the context of space-time DD methods.

Concerning the DD approaches with Robin conditions, several studies have been carried out for the incompressible (Navier)-Stokes equations : in [START_REF] Otto | Non-overlapping domain decomposition applied to incompressible flow problems[END_REF][START_REF] Otto | A nonoverlapping domain decomposition method for the Oseen equations[END_REF][START_REF] Lube | A new non-overlapping domain decomposition method for stabilized finite element methods applied to the non-stationary Navier-Stokes equations[END_REF][START_REF] Otto | An iterative substructuring method for div-stable finite element approximations of the Oseen problem[END_REF][START_REF] Müller | A nonoverlapping DDM for the nonstationary Navier-Stokes problem[END_REF] the steady Oseen equation (and its application to the non-stationary Navier-Stokes equa-tions, using a spatial DD at each time step) is considered. More precisely, in [START_REF] Otto | A nonoverlapping domain decomposition method for the Oseen equations[END_REF][START_REF] Lube | A new non-overlapping domain decomposition method for stabilized finite element methods applied to the non-stationary Navier-Stokes equations[END_REF][START_REF] Otto | An iterative substructuring method for div-stable finite element approximations of the Oseen problem[END_REF] a stabilized finite element approximation is proposed (with non-standard Robin conditions due to the stabilization). The convergence of the DD method is proven for the velocity. For the pressure, the convergence is proven when the original monodomain problem involves Robin boundary conditions on a part of the physical boundary.

However, the authors point out that for an Oseen problem with Dirichlet conditions on the whole physical boundary, the pressure of the Robin-Robin DD algorithm will converge up to a constant which can differ for different subdomains. This important observation is also mentioned in [START_REF] Rebollo | A non-overlapping domain decomposition method for the Stokes equations via a penalty term on the interface[END_REF] for the steady Stokes problem, where the DD method is based on a penalty term on the interface (in that case the Robin conditions are not equivalent to the physical ones). The convergence is shown for a modified pressure in the two-subdomains case. This issue of pressure converging up to a constant that depends on the subdomains is also raised in [START_REF] Lissoni | DDFV method : applications to fluid mechanics and domain decomposition[END_REF][START_REF] Goudon | Non-overlapping Schwarz algorithms for the incompressible Navier-Stokes equations with DDFV discretizations[END_REF] for the discrete Schwarz algorithm with a DDFV scheme applied to the semi-discrete in time Navier-Stokes system. In [START_REF] Cherel | Décomposition de domaine pour des systèmes issus des équations de Navier-Stokes[END_REF][START_REF] Blayo | Towards optimized Schwarz methods for the Navier-Stokes equations[END_REF], an optimized Schwarz DD method is studied, and applied at each time step to the semi-discrete in time Navier-Stokes equations. Other transmission conditions (Dirichlet / Neumann) are considered e.g. in [START_REF] Strikwerda | A domain decomposition method for incompressible viscous flow[END_REF][START_REF] Gervasio | Spectral approximation of Navier-Stokes equations[END_REF][START_REF] Pavarino | Balancing Neumann-Neumann methods for incompressible Stokes equations[END_REF][START_REF] Xu | On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations[END_REF] for Stokes and Navier-Stokes equations.

In this article we consider global-in-time Schwarz methods which use waveform relaxation techniques, i.e. Schwarz waveform relaxation (SWR). Such iterative methods use computations in the subdomains over the whole time interval, exchanging space-time boundary data through transmission conditions on the space-time interfaces. The main advantage is that space-time discretizations can be chosen independently on each subdomain, and, at the end of each iteration, only a small amount of information is exchanged, which makes the parallelization (in space and time) very efficient.

The space-time boundary data play an important role in the convergence process and can be of Dirichlet [START_REF] Gander | Space-time continuous analysis of waveform relaxation for the heat equation[END_REF][START_REF] Giladi | Space-time domain decomposition for parabolic problems[END_REF], absorbing, Robin (or Ventcell) type [START_REF] Gander | Optimal Schwarz waveform relaxation for the one dimensional wave equation[END_REF][START_REF] Martin | An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions[END_REF][START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF][START_REF] Halpern | Nonlinear nonoverlapping Schwarz waveform relaxation for semilinear wave propagation[END_REF][START_REF] Halpern | Optimized Schwarz waveform relaxation and discontinuous Galerkin time stepping for heterogeneous problems[END_REF].

The value of the Robin (or Ventcell) parameters can be optimized to improve convergence rates (see [START_REF] Gander | Optimal Schwarz waveform relaxation for the one dimensional wave equation[END_REF][START_REF] Japhet | The best interface conditions for domain decomposition methods: absorbing boundary conditions, Absorbing boundaries and layers, domain decomposition methods[END_REF][START_REF] Martin | An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions[END_REF][START_REF] Lemarié | Toward an optimized global-in-time Schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients. Part 2: The variable coefficients case[END_REF]), and the corresponding method is called optimized Schwarz waveform relaxation (OSWR). This method is wildly used and analyzed for fluid dynamics, see references above, and e.g. [START_REF] Martin | An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions[END_REF][START_REF] Gander | Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems[END_REF][START_REF] Martin | Schwarz waveform relaxation algorithms for the linear viscous equatorial shallow water equations[END_REF][START_REF] Audusse | Optimized Schwarz waveform relaxation for the primitive equations of the ocean[END_REF][START_REF] Berthe | Space-time domain decomposition with finite volumes for porous media applications[END_REF][START_REF] Hoang | Space-time domain decomposition for advection-diffusion problems in mixed formulations[END_REF][START_REF] Ali Hassan | A posteriori stopping criteria for space-time domain decomposition for the heat equation in mixed formulations[END_REF][START_REF] Thery | Analysis of schwarz waveform relaxation for the coupled ekman boundary layer problem with continuously variable coefficients[END_REF].

For the application of the SWR method on the Navier-Stokes equations, we are aware of the article [START_REF] Audusse | Optimized Schwarz waveform relaxation for the primitive equations of the ocean[END_REF] where an OSWR method is proposed for the rotating 3D incompressible hydrostatic Navier-Stokes equations with free surface. However, the hydrostatic nature of the model modifies the structure of the continuity equation which now involves a transport term for the free surface (which plays the same role as the pressure in the momentum equation of the standard Navier-Stokes system), so that the results in [START_REF] Audusse | Optimized Schwarz waveform relaxation for the primitive equations of the ocean[END_REF] cannot apply to the problem considered in the present work. In [START_REF] Cherel | Décomposition de domaine pour des systèmes issus des équations de Navier-Stokes[END_REF], an SWR method for the Oseen equations is studied; optimal transparent boundary conditions are derived, and local approximations for these nonlocal conditions are proposed. No general convergence analysis of the resulting algorithm (e.g. via energy estimates) is given. A convergence factor is obtained in the idealized case of two half-space subdomains and unbounded time interval, via Laplace-Fourier transforms.

Concerning the compressible Euler and Navier-Stokes equations, in [START_REF] Ciobanu | Méthode de décomposition de domaine avec adaptation de maillage en espacetemps pour les équations d'Euler et de Navier-Stokes[END_REF][START_REF] Ciobanu | Overlapping domain decomposition applied to the Navier-Stokes equations[END_REF] an SWR method is proposed and various numerical experiments are shown. However, until now, there exists no convergence proof (for SWR or OSWR) for the incompressible Navier-Stokes equations. We contribute to the understanding of the behaviour of the OSWR method by attacking representative, though simpler, model problems. To begin with, we analyze the method on the evolutionary Stokes equations, This manuscript is for review purposes only.

a simplified version of the evolutionary Navier-Stokes system in which the convection is simply discarded. The convergence analysis of the velocity iterates involved in the OSWR method, for the Stokes equations, can be performed in a similar manner as for parabolic equations. An extension of this analysis to the evolutionary Oseen equations (a linearization of the Navier-Stokes equations in which the convective velocity field is considered as a given datum) is given in [START_REF] Bui | New space-time domain decomposition algorithms combined with the Parareal algorithm[END_REF]. However, the convergence analysis of the OSWR method has its own obstacle related to the pressure converging only up to constants in the various subdomains, as discussed above. A second purpose of this article is to propose a new technique, in the multidomain case, to recover the pressure from the velocity (at any iteration).

A third purpose of this article is to discuss the choice of the Robin parameters, which play a crucial role in the optimization of the convergence rate. Until recently, the common practice was to derive and optimize a convergence rate in the idealized case of two half-space subdomains and unbounded time interval, via Laplace-Fourier transforms performed on the continuous model (i.e. without taking into account the actual discretization method). We first follow this standard approach in this work, but in a second step modify it to also include the effect of the discretization in the time direction; the Robin parameters obtained with such a modification improve the convergence rate over the standard choice in our numerical tests. Note that studying the influence of the numerical scheme over the OSWR convergence rate is a recent approach, pursued for example in [START_REF] Clement | Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients[END_REF][START_REF] Haynes | Fully discrete Schwarz waveform relaxation on two bounded overlapping subdomains[END_REF][START_REF] Arnoult | Discrete-time analysis of Schwarz waveform relaxation convergence[END_REF].

The remainder of this article is organized as follows. In section 2, we present the model problem and its multidomain form. Since the multi-domain formulation involves local Stokes problems with Robin boundary conditions, we prove the wellposedness of such problems in Section 3. Next, section 4 is dedicated to the algorithm.

In section 5 we show that, in general, the pressure calculated by the OSWR algorithm will not converge to the monodomain solution. In section 6, we obtain a convergence result on the velocity through an energy estimate, and in section 7, we propose an astute technique to recover the pressure from the velocity. In section 8, a Fourier analysis is done to get a formulation for the convergence factor of the OSWR algorithm. In section 9, an optimization procedure (based on the convergence factor of the method), that allows to obtain efficient Robin parameters, is given. Then, numerical illustrations for the unsteady Stokes system follow in section 10.

Presentation of the model and multidomain formulation.

For a bounded domain Ω ⊆ R 2 , and for a given viscosity coefficient ν > 0 that we suppose constant and uniform, for given initial condition u 0 and source term f , we denote respectively by u, p the velocity and pressure unknowns in the incompressible non-stationary Stokes system:

∂ t u -ν∆u + ∇p = f in Ω × (0, T ), ∇•u = 0 in Ω × (0, T ), u(., t = 0) = u 0 in Ω, u = 0 on ∂Ω × (0, T ).
(2.1)

This system does not have a unique solution: if (u, p) is a solution, then (u, p + c) is also a solution, for any constant c. Then, for uniqueness, one needs, for example, the zero-mean condition on the pressure

Ω p = 0. (2.2)
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Thus, we introduce the notation

L 2 0 (Ω) = {p ∈ L 2 (Ω), Ω p = 0}.
Next, we shall introduce the following spaces, which are the completions, in H 1 (Ω) and in L 2 (Ω), respectively, of the set of compactly supported C ∞ functions with vanishing divergence:

V = u ∈ H 1 0 (Ω) 2 , ∇•u = 0 , H = u ∈ L 2 (Ω) 2 , ∇•u = 0, u • n ∂Ω = 0 on ∂Ω ,
where n ∂Ω is the unit, outward pointing, normal vector field on ∂Ω. We denote by V ′ the dual space of V . We recall ([7, Proposition IV. 

u ∈ L 2 ((0, T ), V ) ∩ C 0 ([0, T ], H) , ∂ t u ∈ L 2 ((0, T ), V ′ ), p ∈ W -1,∞ (0, T ), L 2 0 (Ω) .
In order to apply a domain-decomposition strategy for this problem, we decompose Ω into M non-overlapping subdomains Ω i , i.e. Ω i ∩ Ω j = ∅ for i ̸ = j, and Ω = M i=1 Ω i .

For i = 1, 2, . . . , M , we denote by I i the set of indices of the neighbouring subdomain(s) of Ω i : it holds that j ∈ I i if and only if

|∂Ω i ∩ ∂Ω j | > 0, where | • | denotes
the one dimensional measure. We denote by Γ ij the interface (if it exists) between Ω i and Ω j , n ij the unit normal vector on Γ ij , directed from Ω i to Ω j . Note that this implies that n ij = -n ji .

Denoting by u i , (u 0 ) i , p i and f i the respective restrictions of u, u 0 , p and f to Ω i , the monodomain problem is equivalent to the following multidomain one

∂ t u i -ν∆u i + ∇p i = f i in Ω i × (0, T ), ∇•u i = 0 in Ω i × (0, T ), u i (., t = 0) = (u 0 ) i in Ω i , u i = 0 on (∂Ω ∩ ∂Ω i , ) × (0, T ), (2.3) 
for all i ∈ [[1, M ]],
together with the physical transmission conditions on the space-time

interfaces Γ ij × (0, T ), j ∈ I i , i ∈ [[1, M ]], u ij • n ij = -u ji • n ji , u j × n ij = -u j × n ji , ν∂ nij u i • n ij -p i = ν∂ nji u j • n ji -p j , ν∂ nij u i × n ij = ν∂ nji u j × n ji .
(2.4)

For any choice of (α ij , α ji , β ij , β ji ) ∈ (R + * ) 4 , those conditions are equivalent to the following Robin transmission conditions on Γ ij × (0, T ) = Γ ji × (0, T ):

α ij (ν∂ nij u i • n ij -p i ) + u i • n ij = α ij (ν∂ nij u j • n ij -p j ) + u j • n ij , α ji (ν∂ nji u j • n ji -p j ) + u j • n ji = α ji (ν∂ nji u i • n ji -p i ) + u i • n ji , β ij ν∂ nij u i × n ij + u i × n ij = β ij ν∂ nij u j × n ij + u j × n ij , β ji ν∂ nji u j × n ji + u j × n ji = β ji ν∂ nji u i × n ji + u i × n ji . (2.5)
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Finally, the zero-mean condition for the pressure is equivalent to

M i=1 Ωi p i = 0. (2.6)
This setting requires that we should study the Stokes system in a domain where

Robin boundary conditions are applied on a part of the boundary. This is what is done in the next section.

3. The Stokes problem with Robin boundary conditions. We now consider a domain, still denoted by Ω, for which the boundary is decomposed into two parts:

∂Ω = Γ D ∪ Γ R , with |Γ R | > 0.
Let n be the outgoing normal vector on Γ R ; we consider the following system, with α > 0 and β > 0

∂ t u -ν∆u + ∇p = f in Ω × (0, T ), ∇•u = 0 in Ω × (0, T ), u(•, t = 0) = u 0 in Ω, u = 0 on Γ D × (0, T ), α(ν∂ n u • n -p) + u • n = g on Γ R × (0, T ), βν∂ n u × n + u × n = ξ on Γ R × (0, T ), (3.1) 
where f is at least in L 2 (Ω × (0, T )) 2 , g and ξ are at least in L 2 (Γ R × (0, T )) .

In order to set this problem under an appropriate (parabolic) variational form, we multiply the first equation by a divergence-free test function v (smooth enough) that vanishes on Γ D and integrate by parts on Ω. The flux (-ν∂ n u + pn) is then decomposed into normal and tangential parts and boundary conditions of (3.1) are used.

We obtain then the following parabolic variational problem

⟨∂ t u, v⟩ V ′ D ,V D + a(t, u, v) = c(t, v), a.e. t ∈ (0, T ), ∀v ∈ V D , (3.2) 
u(0) = u 0 , (3.3) 
where the spaces are defined as

V D = u ∈ H 1 (Ω) 2 , u = 0 on Γ D , ∇•u = 0 , H D = u ∈ L 2 (Ω) 2 , u • n = 0 on Γ D , ∇•u = 0 ,
together with their linear and bilinear forms From these definitions, V D is dense in H D and the embedding V D ⊂ H D is continuous. We can identify H D with its dual space, and we are in the situation where This manuscript is for review purposes only. 

a(u, v) = ν (∇u, ∇v) Ω + 1 α (u • n, v • n) Γ R + 1 β (u × n, v × n) Γ R , (3.4) 
c(t, v) = (f (t), v) Ω + 1 α (g(t), v • n) Γ R + 1 β (ξ(t), v × n) Γ R . ( 3 
V D ⊂ H D ≡ H ′ D ⊂ V ′ D ,
u ∈ L 2 ((0, T ), V D ) ∩ C 0 ([0, T ], H D ) , with ∂ t u ∈ L 2 ((0, T ), V ′ D )
if the following properties are verified

• u 0 ∈ H D and c ∈ L 2 ((0, T ), V ′ D ), • The function t → a(t, u, v) is measurable for all (u, v) ∈ V 2 D ,
• ∃M ∈ R such that |a(t, u, v)| ≤ M ∥u∥ V D ∥v∥ V D for almost every t and for all

(u, v) ∈ V 2 D ,
• ∃m > 0 such that a(t, u, u) ≥ m∥u∥ 2 V D for almost every t and for all u ∈ V D .

We shall apply this result to our setting, with the simplification that the bilinear form defined by (3.4) does not depend on time. We obtain the following result:

Theorem 3.2. Assume that f ∈ L 2 ((0, T ), L 2 (Ω) 2 ), g, ξ ∈ L 2 ((0, T ), L 2 (Γ R )),
and u 0 ∈ H D . Let a and c be defined by (3.4) and (3.5), respectively. Then, problem

(3.2)-(3.3) admits a unique solution u ∈ L 2 ((0, T ), V D ) ∩ C 0 ([0, T ], H D ) , which is such that ∂ t u ∈ L 2 ((0, T ), V ′ D ).
Proof. We shall show that a and c verify the hypothesis of Theorem 3.1. First, it is well-known that, as soon as |Γ R | > 0, then

∥u∥ V D := ∥∇u∥ 2 Ω + ∥u∥ 2 Γ R 1 2 = ∥∇u∥ 2 Ω + ∥u • n∥ 2 Γ R + ∥u × n∥ 2 Γ R 1 2
is a norm equivalent to the H 1 norm on V D , and we shall therefore work with this norm.

Let M = max ν, 1 α , 1 β
. From the Cauchy-Schwarz inequality, we get the continuity of a(•, •):

|a(u, v)| ≤ M ∥u∥ V D ∥v∥ V D , ∀u, v ∈ V D . Let m = min ν, 1 α , 1 β > 0.
From the definition of ∥ • ∥ V D , we get the coercivity of a(•, •):

a(u, u) ≥ m∥u∥ 2 V D , ∀u ∈ V D .
Then, for a.e. t ∈ (0, T ), the continuity of c(t, •) is deduced from the Cauchy-Schwarz inequality and the equivalence between the H 1 (Ω)-norm and || • || V D :

|c(t, v)| ≤ C 1 ∥f (t)∥ Ω + 1 α ∥g(t)∥ Γ R + 1 β ∥ξ(t)∥ Γ R ∥v∥ V D .
Moreover, thanks to the hypothesis on the time dependence of f , g and ξ, the quantity

C 1 ∥f (t)∥ Ω + 1 α ∥g(t)∥ Γ R + 1 β ∥ξ(t)∥ Γ R
is square integrable on (0, T ), and we can now apply Theorem 3.1, which finishes the proof.

Remark 3.3. Since V D is continuously and densely embedded in H D , the fact that u ∈ C 0 ([0, T ], H D ) is a consequence of the fact that the space

W(V D , V ′ D ) := v : (0, T ) → V D ; v ∈ L 2 ((0, T ), V D ); ∂ t v ∈ L 2 ((0, T ), V ′ D )
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is included in C 0 ([0, T ], H D ), as stated, for example, by [START_REF] Ern | Theory and practice of finite elements[END_REF]Lemma 6.2] and [START_REF] Boyer | Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF]Theorem II.5.13].

This has the important implication that it is legitimate to consider u(t) ∈ H D for all t ∈ [0, T ]. Moreover, the following integral equality holds for all t ∈ [0, T ] and for [START_REF] Ern | Theory and practice of finite elements[END_REF]Lemma 6.3] and [7, Theorem II.5.12]):

all (u, v) ∈ [W(V D , V ′ D )] 2 (see
t 0 ⟨∂ t u(s), v(s)⟩ V ′ D ,V D + ⟨∂ t v(s), u(s)⟩ V ′ D ,V D ds = (u(t), v(t)) Ω -(u(0), v(0)) Ω . (3.6) 
Now, since we have obtained the velocity u from the constrained variational problem (3.2)-(3.3), we shall construct the pressure by relaxing the divergence free condition on the velocity test functions, and we shall therefore consider the space Proof. This is a special case of [17, Lemma 4.9] (with, using the notations of [START_REF] Ern | Theory and practice of finite elements[END_REF],

X D = v ∈ H 1 (Ω) 2 , v = 0 on Γ D ,
∂Ω 1 = Γ D , ∂Ω 2 = ∅, ∂Ω 3 = ∅ and ∂Ω 4 = Γ R ). Lemma 3.5. Let L be in L(E; F ) and L T be its adjoint in L(F ′ ; E ′ ), then if L is surjective in F , then Im L T is closed in E ′ .
Before stating the next Lemma, we recall the following definition (see, e.g. [7, Definition IV.2.1]) and properties (see, e.g. [7, Remark IV.2.1]) Definition 3.6. Let E be a Banach space with dual space E ′ ; then for any subset A ⊂ E, we define A ⊥ ⊂ E ′ as follows:

A ⊥ := {ϕ ∈ E ′ , ∀x ∈ A, ⟨ϕ, x⟩ E ′ ,E = 0} Lemma 3.7. If A ⊂ C ⊂ E, then C ⊥ ⊂ A ⊥ . Lemma 3.8. If A is a linear subspace of E, then (A ⊥ ) ⊥ = A if and only if A is closed in E.
Moreover, we also recall the following general result

Lemma 3.9. Let L be in L(E; F ), then (Im L T ) ⊥ ⊂ Ker L Proof. If f ∈ (Im L T ) ⊥ , then ⟨L T q, f ⟩ E ′ ,E = 0, ∀q ∈ F ′ . Thus ⟨q, Lf ⟩ F ′ ,F = 0
for all q ∈ F ′ , which means that Lf = 0, and thus f ∈ Ker L.

From these results, we obtain the following Lemma, which will be useful in the construction of the pressure field:

Lemma 3.10. Let B T be the adjoint operator of B, from L 2 (Ω) into X ′ D . Then for any ℓ in X ′ D that vanishes on V D , there exists P ∈ L 2 (Ω) such that ℓ = B T P . Proof. Since B is in L(X D ; L 2 (Ω)) and is surjective (Lemma 3.4), then (Im B T ) is closed in X ′ D (Lemma 3.5), and (Im B T ) ⊥ ⊥ = Im B T (Lemma 3.

8). Now, using
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Lemmas 3.9 and 3.7, we get (Ker

B) ⊥ ⊂ (Im B T ) ⊥ ⊥ = Im B T . So if ℓ in X ′ D vanishes on V D = Ker B, then ℓ is in (Ker B) ⊥
and so in Im B T , which exactly means that there exists P ∈ L 2 (Ω) such that ℓ = B T P .

Using this result, we can now state the following theorem.

Theorem 3.11. Assume that f ∈ L 2 ((0, T ), L 2 (Ω) 2 ), ξ, g ∈ L 2 ((0, T ), L 2 (Γ R ))
and u 0 ∈ H D , then there exists unique u ∈ L 2 ((0, T ),

V D ) ∩C 0 ([0, T ], H D ) and p ∈ W -1,∞ ((0, T ), L 2 (Ω)), with ∂ t u ∈ L 2 ((0, T ), V ′ D ) such that (u, p) verifies problem (3.1) in the sense that • u verifies (3.2)-(3.3) • p = ∂ t P with P ∈ L ∞ ((0, T ), L 2 (Ω)) that satisfies t 0 c(s, v)ds -(u(t), v) Ω + (u 0 , v) Ω - t 0 a(u(s), v)ds = - Ω P (t)∇ • v , ∀v ∈ X D . (3.7) 
Proof. Let u be the solution of (3.2)-(3.3), and consider, for this u, the function t → a(u(t), v) and the function t → c(t, v) where a and c are defined by (3.4) and (3.5).

Then their definitions can be straightforwardly extended to consider v ∈ X D and, for any t ∈ (0, T ), the following element of

X ′ D is well-defined: b(t, v) := t 0 c(s, v)ds -(u(t), v) Ω + (u 0 , v) Ω - t 0 a(u(s), v)ds , ∀ v ∈ X D .
Indeed, one has that

t 0 a(u(s), v)ds ≤ t 0 M ∥u(s)∥ X D ∥v∥ X D ds ≤ M √ t t 0 ∥u(s)∥ 2 X D ds 1 2 ∥v∥ X D ≤ M √ T ∥u∥ L 2 ((0,T ),V D ) ∥v∥ X D ,
and

t 0 c(s, v)ds ≤ t 0 C 1 ∥f (s)∥ Ω + 1 α ∥g(s)∥ Γ R + 1 β ∥ξ(s)∥ Γ R ∥v∥ X D ≤ γ 1 ∥v∥ X D ,
with

γ 1 = C 1 √ T ∥f ∥ L 2 ((0,T ),[L 2 (Ω)] 2 ) + √ T α ∥g∥ L 2 ((0,T ),L 2 (Γ R )) + √ T β ∥ξ∥ L 2 ((0,T ),L 2 (Γ R )) .
In addition, since u belongs to

C 0 ([0, T ], H D ), then |-(u(t), v) Ω + (u 0 , v) Ω | ≤ 2||u|| L ∞ ([0,T ],[L 2 (Ω)] 2 ) ||v|| Ω ≤ 2C 1 ||u|| L ∞ ([0,T ],[L 2 (Ω)] 2 ) ||v|| X D .
This leads to the fact that

|b(t, v)| ≤ C 2 ||v|| X D , ∀v ∈ V D , ∀t ∈ (0, T ), (3.8) 
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with

C 2 = 2C 1 ||u|| L ∞ ([0,T ],[L 2 (Ω)] 2 ) + γ 1 + M √ T ∥u∥ L 2 (0,T,V D ) .
Moreover, from (3.2) and (3.6) (with v not depending on time), we obtain that b(t, v) = 0 for all v ∈ V D , for all t ∈ (0, T ). Thus, using Lemma 3.10, we conclude that, for all t ∈ (0, T ), there exists

P (t) ∈ L 2 (Ω) satisfying b(t, v) = ⟨B T P (t), v⟩ X ′ D ,X D = -(P (t), ∇ • v) Ω = - Ω P (t)∇ • v , ∀v ∈ X D . (3.9)
Moreover, the surjectivity of the divergence mapping leads to the following inf-sup condition: there exists

γ 2 > 0, s.t. inf q∈L 2 (Ω) sup v∈X D (Bv, q) Ω ∥v∥ X D ∥q∥ L 2 (Ω) = γ 2 > 0,
which implies, for all q ∈ L 2 (Ω)

γ 2 ∥q∥ L 2 (Ω) ≤ sup v∈X D (Bv, q) Ω ∥v∥ X D . (3.10) 
In order to use q = P (t) in (3.10), we need to evaluate (Bv, P (t)) Ω . From (3.9), we obtain that (Bv,

P (t)) Ω = ⟨B T P (t), v⟩ X ′ D ,X D = b(t, v); together with (3.8), we get ∥P (t)∥ L 2 (Ω) ≤ 1 γ 2 sup v∈X D b(t, v) ∥v∥ X D ≤ C 2 γ 2 .
We conclude that P (t) ∈ L ∞ ((0, T ), L 2 (Ω)). Then, we define the pressure p = ∂ t P

and thus p ∈ H -1,∞ ((0, T ), L 2 (Ω)).
It remains to show that p is unique. Consider the case u 0 = 0 and c = 0. Then, we have u = 0, and (3.7) leads to Ω P (t)∇•v = 0, ∀v ∈ X D . From the surjectivity of the divergence mapping, one gets that P (t) = 0 for all t, and then p = 0. 

0 ij , ξ 0 ij on Γ ij × (0, T ), j ∈ I i , i = 1, 2, . . . , M for ℓ = 1, 2, . . . do 1. Solve the local space-time Robin problems, for i = 1, 2, . . . , M ∂ t u ℓ i -ν∆u ℓ i + ∇p ℓ i = f i in Ω i × (0, T ) ∇•u ℓ i = 0 in Ω i × (0, T ) u ℓ i (., t = 0) = u 0,i in Ω i α ij (ν∂ nij u ℓ i • n ij -p ℓ i ) + u ℓ i • n ij = g ℓ-1 ij on Γ ij × (0, T ), j ∈ I i β ij ν∂ nij u ℓ i × n ij + u ℓ i × n ij = ξ ℓ-1 ij on Γ ij × (0, T ), j ∈ I i u ℓ i = 0 on (∂Ω i ∩ ∂Ω) × (0, T ) (4.1) 2. Update the Robin terms g ℓ ij , ξ ℓ ij on Γ ij × (0, T ), for j ∈ I i , i = 1, 2, . . . , M g ℓ ij = α ij (ν∂ nij u ℓ j • n ij -p ℓ j ) + u ℓ j • n ij , (4.2a) 
ξ ℓ ij = β ij ν∂ nij u ℓ j × n ij + u ℓ j × n ij . (4.2b) end for
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Remark 4.1. Let i ∈ 1, M , j ∈ I i . Formulas given by (4.2) can be rewritten as

g ℓ ij = α ij α ji α ji (ν∂ nji u ℓ j • n ji -p ℓ j ) + u ℓ j • n ji - α ij α ji u ℓ j • n ji + u ℓ j • n ij ξ ℓ ij = β ij β ji β ji ν∂ nji u ℓ j × n ji + u ℓ j × n ji - β ij β ji u ℓ j × n ji + u ℓ j × n ij ,
or equivalently, using the Robin transmission conditions in (4.1),

g ℓ ij = α ij α ji g ℓ-1 ji - α ij + α ji α ji u ℓ j • n ji , (4.3a) 
ξ ℓ ij = β ij β ji ξ ℓ-1 ji - β ij + β ji β ji u ℓ j × n ji . (4.3b) One advantage of formula (4.3) is that, if g ℓ-1 ij and ξ ℓ-1 ij have L 2 (Γ ij ) regularity,
so will g ℓ ij and ξ ℓ ij . Indeed, in (4.3) the regularities of g ℓ ij and ξ ℓ ij depend only on those of g ℓ-1 ji , ξ ℓ-1 ji and u ℓ j , whose trace is in L 2 ((0, T ), Now, we may express the iterative algorithm in the following way. We first define

H 1 2 (Γ ij )) (recall that we have u ℓ j ∈ L 2 (0, T ), H 1 (Ω j ) 2 ,
V i = {u ∈ H 1 (Ω i ) 2 , u = 0 on ∂Ω i ∩ ∂Ω , ∇ • u = 0 in Ω i }, H i = {u ∈ L 2 (Ω i ) 2 , u • n ∂Ωi = 0 on ∂Ω i ∩ ∂Ω , ∇ • u = 0 in Ω i }. X i = u ∈ H 1 (Ω i ) 2 , u = 0 on ∂Ω i ∩ ∂Ω ,
Then, we set, for all u, v ∈ X i and t ∈ (0, T ),

a i (u, v) := ν (∇u, ∇v) Ωi + j∈Ii 1 α ij (u • n ij , v • n ij ) Γij + 1 β ij (u × n ij , v × n ij ) Γij , c ℓ i (t, v) := (f (t), v) Ωi + j∈Ii 1 α ij g ℓ-1 ij (t), v • n ij Γij + 1 β ij ξ ℓ-1 ij (t), v × n ij Γij , (4.4) 
and the algorithm reads: for all ℓ ≥ 1, given

g ℓ-1 ij , ξ ℓ-1 ij on each space-time interface Γ ij × (0, T ), solve, for each i = 1 . . . M : ∂ t u ℓ i , v V ′ i ,Vi + a i (u ℓ i , v) = c ℓ i (t, v), a.e. t ∈ (0, T ), ∀v ∈ V i , u ℓ i (0) = u 0.i . (4.5) 
Then we construct p ℓ i = ∂ t P ℓ i , where P ℓ i is such that

u ℓ i (t), v Ωi -(u 0,i , v) Ωi + t 0 a i (u ℓ i (s), v)ds -(P ℓ i , ∇ • v) Ωi - t 0 c ℓ i (s, v)ds = 0, ∀ v ∈ X i . (4.6)
Finally, the data are updated by using (4.3a)-(4.3b) on the space-time interfaces.

With this formulation, we can state the following result
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Theorem 4.2. Assume that g 0 ij , ξ 0 ij ∈ L 2 ((0, T ), L 2 (Γ ij )) and u 0 | Ωi ∈ H i . Then,
the OSWR algorithm is well-defined and for all ℓ,

u ℓ i ∈ L 2 ((0, T ), V i ) ∩ C 0 ([0, T ], H i ), ∂ t u ℓ i ∈ L 2 ((0, T ), V ′ i ), p ℓ i ∈ W -1,∞ ((0, T ), L 2 (Ω i )) and g ℓ ij , ξ ℓ ij ∈ L 2 ((0, T ), L 2 (Γ ij )). Proof. By Theorem 3.11, if g ℓ-1 ij , ξ ℓ-1 ij ∈ L 2 ((0, T ), L 2 (Γ ij )), then one gets u ℓ i verifying (4.5) with u ℓ i ∈ L 2 ((0, T ), V i ) ∩ C 0 ([0, T ], H i ) and ∂ t u ℓ i ∈ L 2 ((0, T ), V ′ i ).
Additionally, Theorem 3.11 tells us that there exists P ℓ i verifying (4.6). We take

p ℓ i = ∂ t P ℓ i ∈ W -1,∞ ((0, T ), L 2 (Ω i )).
Using the trace theorem, the normal and tangent traces of

u ℓ i on Γ ij × (0, T ) belong to L 2 ((0, T ), L 2 (Γ ij ))
. Hence, using the update formula (4.3), we infer that

g ℓ ij , ξ ℓ ij ∈ L 2 ((0, T ), L 2 (Γ ij )).
The proof is then carried out by a simple induction.

Remark 4.3. The OSWR algorithm is constructed without considering the last condition (2.6), hence it may not converge to the monodomain solution. We shall show in the next section that, indeed, the pressure in each subdomain may not converge to the restriction of the monodomain pressure.

5. First observations on the two subdomains case. For the trivial case of a onedimensional problem and two subdomains, one can show that the velocity iterates converge, while the pressure iterates do not converge in general, see [START_REF] Bui | New space-time domain decomposition algorithms combined with the Parareal algorithm[END_REF].

This result generalizes to higher dimensions as follows : let us consider the twosubdomain case, i.e. M = 2. To simplify notation, we set Γ := Γ 12 = Γ 21 , and for any ϕ in (α, g, u), we write ϕ 1 and ϕ 2 instead of ϕ 12 and ϕ 21 , respectively.

The divergence-free condition of the velocity in each subdomain leads to ∂Ωi

u ℓ i • n ∂Ωi = 0 = Γ u ℓ i • n i , i = 1, 2. (5.1)
The update of Robin terms for the normal components can also be written as

g ℓ i = α i α j g ℓ-1 j - α i + α j α j u ℓ j • n j , j = 3 -i, i = 1, 2.
Integrating over Γ, and taking (5.1) into account, we get

Γ g ℓ i = α i α j Γ g ℓ-1 j = Γ g ℓ-2 i , j = 3 -i, i = 1, 2.
Therefore, a necessary condition for the convergence of the algorithm to the monodomain solution is

Γ g 0 i = Γ g i , i = 1, 2, (5.2) 
with g i = α i (ν∂ ni u • n i -p) + u • n i , i = 1, 2, in which (u, p)
is the monodomain solution of problem (2.1). Condition (5.2) cannot be achieved in practice because the quantity g i , i = 1, 2, is not known.

More precisely, whereas the convergence of the velocity iterates will be proven in Section 6 below, independently of condition (5.2), the pressure iterates will converge only if condition (5.2) is satisfied, and thus will not converge in general. A correction technique to recover the pressure from the velocity will be proposed in Section 7.
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∈ V and f ∈ L 2 ((0, T ), L 2 (Ω)) 2 ), problem (2.1)-(2.2)
has a unique solution (u, p) such that

u ∈ C 0 ([0, T ], V ) ∩ L 2 ((0, T ), (H 2 (Ω)) 2 ), ∂ t u ∈ L 2 ((0, T ), L 2 (Ω)) 2 , p ∈ L 2 ((0, T ), H 1 (Ω)).
Using Theorem 6.1, we prove that, if its hypotheses are satisfied, then the velocity iterates converge to the monodomain velocity.

Theorem 6.2. Assume that the hypotheses of Theorem 6.1 are satisfied. Let g 0 ij and ξ 0 ij belong to L 2 ((0, T ), L 2 (Γ ij )) and let u ℓ i be the velocity component of the solution of Algorithm 4.1 (OSWR). Then, if α ij = α ji and β ij = β ji , the sequence u ℓ i converges

to u i = u| Ωi in C 0 ([0, T ], H i ) ∩ L 2 (0, T, V i ).
Proof. Denote by p i = p| Ωi . Then, thanks to the extra regularity of (u, p) given by Theorem 6.1, we can define its Robin trace on any space-time interface Γ ij × (0, T )

g ℓ ij = α ij α ji g ℓ-1 ji - α ij + α ji α ji u ℓ j • n ji , (6.1a) 
ξ ℓ ij = β ij β ji ξ ℓ-1 ji - β ij + β ji β ji u ℓ j × n ji . (6.1b) 
and they both belong to L 2 ((0, T ), L 2 (Γ ij )). Then (2.5) implies

g ℓ ij = α ij α ji g ℓ-1 ji - α ij + α ji α ji u ℓ j • n ji , (6.2a 
)

ξ ℓ ij = β ij β ji ξ ℓ-1 ji - β ij + β ji β ji u ℓ j × n ji . (6.2b)
Moreover, (u i , p i ) is the strong solution of each local Robin boundary problem with source term f i , initial condition u 0,i and Robin terms g ij and ξ ij on Γ ij . We can write these local problems in variational forms similar to (4.4)-(4.5), in which we replace g ℓ ij by g ij and ξ ℓ ij by ξ ij .

We define the errors as the differences between the iterates and the restrictions (to each subdomain) of the monodomain solution and denote by

e ℓ i := u ℓ i -u i , h ℓ ij = g ℓ ij -g ij , ζ ℓ ij = ξ ℓ ij -ξ ij , j ∈ I i , i ∈ 1, M . (6.3) 
Then, the errors also verify the following variational problems similar to (4.4)-(4.5):

for a.e. t ∈ (0, T ), ∀v ∈ V i ,

⟨∂ t e ℓ i , v⟩ V ′ i ,Vi + a i (e ℓ i , v) = j∈Ii 1 α ij (h ℓ-1 ij , v • n ij ) Γij + j∈Ii 1 β ij (ζ ℓ-1 ij , v × n ij ) Γij , (6.4) 
with initial condition e ℓ i (0) = 0. All integrals on Γ ij are well defined since g ij and ξ ij are both in L 2 ((0, T ), L 2 (Γ ij )), and since we have proved that this is also the case for g ℓ ij and ξ ℓ ij as soon as it is true for ℓ = 0.
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With α ij = α ji and β ij = β ji , the update formulas (4.3) and (6.2) for the Robin terms on Γ ij × (0, T ) lead to

e ℓ i • n ij = 1 2 h ℓ-1 ij -h ℓ ji , e ℓ i × n ij = 1 2 ζ ℓ-1 ij -ζ ℓ ji . (6.5) 
Choosing e ℓ i as test function in (6.4), one gets

⟨∂ t e ℓ i , e ℓ i ⟩ V ′ i ,Vi + ν(∇e ℓ i , ∇e ℓ i ) Ωi + j∈Ii 1 α ij (e ℓ i • n ij , e ℓ i • n ij ) Γij + j∈Ii 1 β ij (e ℓ i × n ij , e ℓ i × n ij ) Γij = j∈Ii 1 α ij (h ℓ-1 ij , e ℓ i • n ij ) Γij + j∈Ii 1 β ij (ζ ℓ-1 ij , e ℓ i × n ij ) Γij . (6.6) 
On the boundary Γ ij , j ∈ I i , replacing (6.5) into (6.6), one gets

⟨∂ t e ℓ i , e ℓ i ⟩ V ′ i ,Vi + ν(∇e ℓ i , ∇e ℓ i ) Ωi + 1 4 j∈Ii 1 α ij (h ℓ-1 ij -h ℓ ji , h ℓ-1 ij -h ℓ ji ) Γij + 1 4 j∈Ii 1 β ij (ζ ℓ-1 ij -ζ ℓ ji , ζ ℓ-1 ij -ζ ℓ ji ) Γij = 1 2 j∈Ii 1 α ij (h ℓ-1 ij , h ℓ-1 ij -h ℓ ji ) Γij + 1 2 j∈Ii 1 β ij (ζ ℓ-1 ij , ζ ℓ-1 ij -ζ ℓ ji ) Γij ,
or equivalently

⟨∂ t e ℓ i , e ℓ i ⟩ V ′ i ,Vi + ν∥∇e ℓ i ∥ 2 Ωi + 1 4 j∈Ii 1 α ij ∥h ℓ ji ∥ 2 Γij + 1 4 j∈Ii 1 β ij ∥ζ ℓ ji ∥ 2 Γij = 1 4 j∈Ii 1 α ij ∥h ℓ-1 ij ∥ 2 Γij + 1 4 j∈Ii 1 β ij ∥ζ ℓ-1 ij ∥ 2 Γij , (6.7) 
(recall that notation || • || D corresponds to the L 2 (D)-norm for any set D).

Adapting (3.6) to Ω i , integrating (6.7) on (0, T ), and using that e ℓ i (0) = 0, we get

∥e ℓ i (T )∥ 2 Ωi + 2ν T 0 ∥∇e ℓ i ∥ 2 Ωi + j∈Ii 1 2α ij T 0 ∥h ℓ ji ∥ 2 Γij + j∈Ii 1 2β ij T 0 ∥ζ ℓ ji ∥ 2 Γij = j∈Ii 1 2α ij T 0 ∥h ℓ-1 ij ∥ 2 Γij + j∈Ii T 0 1 2β ij ∥ζ ℓ-1 ij ∥ 2 Γij . (6.8) 
Then, summing with respect to i, from 1 to M , we get

M i=1 ∥e ℓ i (., T )∥ 2 Ωi + 2ν M i=1 T 0 ∥∇e ℓ i ∥ 2 Ωi + E ℓ R = E ℓ-1 R ,
where

E ℓ R = M i=1 j∈Ii 1 2βij T 0 ∥ζ ℓ ij ∥ 2 Γij + M i=1 j∈Ii 1 2αij T 0 ∥h ℓ ij ∥ 2 Γij .
Summing now with respect to ℓ, from 1 to L, we obtain

L ℓ=1 M i=1 ∥e ℓ i (., T )∥ 2 Ωi + 2ν L ℓ=1 M i=1 T 0 ∥∇e ℓ i ∥ 2 Ωi (t)dt + E L R = E 0 R .
As E L R ≥ 0 for all L, the sums

L ℓ=1 M i=1 ∥e ℓ i (., T )∥ 2 Ωi and L ℓ=1 M i=1 T 0 ∥∇e ℓ i ∥ 2
Ωi are bounded; hence ∥e ℓ i (T )∥ 2 Ωi and T 0 ∥∇e ℓ i ∥ 2 Ωi (t)dt tend to 0 when ℓ → ∞.

In addition, in (6.8), we can integrate on (0, t) instead of (0, T ), and we get for all t ∈ (0, T )

L ℓ=1 M i=1 ∥e ℓ i (t)∥ 2 Ωi ≤ E 0 R .
This first leads to the convergence of ∥e ℓ i (t)∥ Ωi to 0 for all t and thus to the convergence of e ℓ i to 0 in C 0 ([0, T ], H i ), but also to the fact that, integrating on (0, T ), it holds that

L ℓ=1 M i=1 T 0 ∥e ℓ i (t)∥ 2 Ωi dt ≤ T E 0 R .
This implies that

T 0 ∥e ℓ i (t)∥ 2
Ωi dt tends to 0 when ℓ → +∞. Then, summing with T 0 ∥∇e ℓ i ∥ 2 Ωi (t)dt that also tends to 0, we have that

T 0 ∥e ℓ i (t)∥ 2 [H 1 (Ωi)] 2 dt tends to 0,
or, in other words, that e ℓ i tends to 0 in L 2 ((0, T ), V i ), for i ∈ 1, M . Now, we prove a convergence result for the pressure. We set P (t) = t 0 p(s)ds and P i = P | Ωi and denote the error by D ℓ i (t) = (P ℓ i -P i )(t), i ∈ 1, M . Then we can state the following result.

Corollary 6.3. Let all hypotheses of Theorem 6.2 be satisfied. Then for all t ∈ [0, T ] it holds that ∥D ℓ i (t) -

1 |Ω i | Ωi D ℓ i (t)∥ Ωi → 0 when ℓ → ∞.
Proof. Let i ∈ 1, M . As (u i , p i ) is the strong solution of the Robin problem with boundary conditions g ij , ξ ij , j ∈ I i , then P i verifies a variational formulation similar to (4.6) : ∀ v ∈ X i it holds

(u i (t), v) Ωi -(u 0,i , v) Ωi + t 0 a i (u i (s), v)ds-(P i (t), ∇•v) Ωi - t 0 c i (s, v)ds = 0 (6.9)
Then, from (4.6) and (6.9), taking the test function v ∈ H 1 0 (Ω i ) 2 ⊂ X i , the boundary terms in c ℓ i (s, v) and c i (s, v) vanish and then c ℓ i (s, v)-c i (s, v) also vanishes. Then we get

(D ℓ i (t), ∇ • v) Ωi = e ℓ i (t), v Ωi + t 0 a i (e ℓ i (s), v)ds , ∀ v ∈ H 1 0 (Ω i ) 2 .
As (c, ∇ • v) Ωi = 0 for all constants c and v ∈ H 1 0 (Ω i ) 2 , the above formulation

implies that ∀ v ∈ H 1 0 (Ω i ) 2 (D ℓ i (t) - 1 |Ω i | Ωi D ℓ i (t), ∇ • v) Ωi = e ℓ i (t), v Ωi + t 0 a i (e ℓ i (s), v)ds.
Since (D ℓ i -

1 |Ω i | Ωi D ℓ i ) ∈ L 2 0 (Ω i ) = p ∈ L 2 (Ω i ), Ωi p = 0 , i ∈ 1, M , from the
inf-sup condition there exists γ 3 s.t.

∥D ℓ i - 1 |Ω i | Ωi D ℓ i ∥ Ωi ≤ 1 γ 3 sup v∈[H 1 0 (Ωi)] 2 | e ℓ i (t), v Ωi + t 0 a i (e ℓ i (s), v)ds| ∥v∥ [H 1 0 (Ωi)] 2 .
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We apply again the continuity of a i (., .)

| t 0 a i (e ℓ i (s), v)ds| ≤ M i t 0 ∥e ℓ i (s)∥ Xi ∥v∥ Xi ds ≤ M i ∥v∥ [H 1 0 (Ωi)] 2 √ T ∥e ℓ i ∥ L 2 ((0,T ),Xi)
as well as the Cauchy-Schwarz and Poincaré inequalities on e ℓ i (t), v Ωi , we get

∥D ℓ i - 1 |Ω i | Ωi D ℓ i ∥ Ωi ≤ 1 γ 3 C Pi ∥e ℓ i (t)∥ Ωi + M i √ T ∥e ℓ i ∥ L 2 ((0,T ),Xi)
with C Pi the Poincaré constant of Ω i . From the convergence of the velocity, we get the corollary.

Remark 6.4. Corollary 6.3 tells us that, when ℓ grows, the (time primitive of the) pressure converges to 0, up to constant values in space, possibly depending on the subdomain Ω i and iteration count ℓ. And, indeed, numerical results given in Section 10 show that pressure iterates do not converge to the monodomain solution, unless a correction is applied, which is the object of the next Section. We set d ℓ i := p i -p ℓ i , i ∈ 1, M , and recall that h ℓ ij is defined in (6.3).

Hypothesis 7.1. In this section, we suppose that, for a.e t ∈ (0, T )

• ∥d ℓ i -⟨d ℓ i ⟩ Ωi ∥ Ωi -→ 0 for all i when ℓ -→ +∞ • (⟨d ℓ i ⟩ Γij -⟨d ℓ i ⟩ Ωi ) tends to 0 for all j ∈ I i , for all i, when ℓ -→ +∞ • ⟨h ℓ ij ⟩ Γij + α ij ⟨d ℓ i ⟩ Γij -→ 0 for all j ∈ I i , for all i, when ℓ -→ +∞ Remark 7.2.
The above hypothesis can be implied from stronger assumptions on the regularity and convergence of the velocity. Indeed, suppose that (e ℓ i , d ℓ i ) is the strong solution of the following Robin problem

∂ t e ℓ i -ν∆e ℓ i + ∇d ℓ i = 0 in Ω i × (0, T ) ∇•e ℓ i = 0 in Ω i × (0, T ) e ℓ i (., t = 0) = 0 in Ω i e ℓ i = 0 on (∂Ω ∩ ∂Ω i ) × (0, T ) α ij (ν∂ nij e ℓ i • n ij -d ℓ i ) + e ℓ i • n ij = h ℓ ij on Γ ij × (0, T ) β ij ν∂ nij e ℓ i × n + e ℓ i × n ij = ζ ℓ ij on Γ ij × (0, T )
with the following convergence

∥e ℓ i ∥ L ∞ ((0,T ),[H 2 (Ωi)] 2 ) -→ 0, ∥∂ t e ℓ i ∥ L ∞ ((0,T ),[L 2 (Ωi)] 2 ) -→ 0.
From this, we get, for a.e. t ∈ (0, T ), ∥∇d ℓ i (t)∥ Ωi -→ 0, which implies the first and second items in Hypothesis 7.1. This also implies the convergence of trace of the velocity: for a.e. t ∈ (0, T ), we have

∥α ij ν∂ nij e ℓ i (t) • n ij + e ℓ i (t) • n ij ∥ Γij -→ 0 that
leads to the third item in Hypothesis 7.1.

One can rewrite the three items in Hypothesis 7.1 on the error as follows :

when ℓ -→ +∞, ∀i ∈ 1, M , ∥(p ℓ i -p i ) -(⟨p ℓ i ⟩ Ωi -⟨p i ⟩ Ωi )∥ Ωi -→ 0, (7.1) 
(⟨p ℓ i -p i ⟩ Γij ) -(⟨p ℓ i -p i ⟩ Ωi ) -→ 0, ∀j ∈ I i , (7.2) 
⟨g ℓ ij ⟩ Γij -⟨g ij ⟩ Γij + α ij ⟨p ℓ i -p i ⟩ Γij -→ 0, ∀j ∈ I i . (7.3)
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Expression (7.1) shows that p ℓ i (t) will tend to p i (t) if and only if the mean-value of p ℓ i (t)

on Ω i tends to the mean value of p i (t). However, no constraint was imposed on the mean-value of p ℓ i (t) in the algorithm, since, thanks to the Robin boundary conditions, such constraint is not necessary to obtain local well-posed problems at each iteration.

In Section 5, we observed cases in which p ℓ i does not converge to the monodomain solution p i . In this section, we build a modified pressure pℓ i such that pℓ i (t) tends

to p i (t) in L 2 (Ω i ), i = 1, . . . , M .
Let us denote X i (t) := ⟨p i (t)⟩ Ωi , ∀i ∈ 1, M . Then, using this notation, (7.1) reads

∥ p ℓ i (t) -⟨p ℓ i (t)⟩ Ωi + X i (t) -p i (t)∥ L 2 (Ωi) -→ 0 when ℓ → ∞. (7.4)
From ( 7.4), we see that

p ℓ i (t) -⟨p ℓ i (t)⟩ Ωi + X i (t)
is the right approximation to calculate at each iteration since it tends to p i (t). However, we do not know how to calculate it because X i is not known. A similar question was raised in the thesis of Lissoni [START_REF] Lissoni | DDFV method : applications to fluid mechanics and domain decomposition[END_REF]Theorem IV.3.9] at the discrete level, within a Schwarz algorithm applied at each time step of a time marching scheme for the numerical approximation of the incompressible Navier-Stokes equations.

We introduce below a new quantity Y ℓ i (t), fully computable at any given iteration ℓ, that tends to X i (t) when ℓ tends to infinity, from which we will define the modified pressure pℓ i .

To ease the presentation, we shall set

|Γ ij | = 0, α ij = 0 and g ℓ ij = 0 if j ̸ ∈ I i .
Moreover, we introduce the constant matrix 

A = (a ij ) 1≤i,j≤M , with a ii = M j=1,j̸ =i |Γ ij |α ij ,
B ℓ i = M j=1 |Γ ij | ⟨g ℓ ij ⟩ Γij + α ij ⟨p ℓ i ⟩ Ωi - M j=1 |Γ ji | ⟨g ℓ ji ⟩ Γji + α ji ⟨p ℓ j ⟩ Ωj .
Theorem 7.3. Assume that α ij = α ji , ∀(i, j). We have the following properties (i) For all ℓ, the following system

AY ℓ = B ℓ , CY ℓ = 0, (7.5) has a unique solution Y ℓ ∈ R M . (ii) Moreover, we have Y ℓ → X := (X 1 , X 2 , • • • , X M ) in R M
, and for all t

∥p ℓ i -p i ∥ L 2 (Ωi) -→ 0, when ℓ → ∞, with pℓ i (t) := p ℓ i (t) -⟨p ℓ i (t)⟩ Ωi + Y ℓ i (t). (7.6)
Proof of (i). The proof of Theorem 7.3-(i) relies on two main steps:

(a) Existence of solutions to the system AY ℓ = B ℓ , (b) Existence and uniqueness of a solution to system (7.5) thanks to the additional constraint CY ℓ = 0.
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Let us start with (a). Because α ij = α ji , it holds that A is symmetric and then existence of at least one solution to the system AY ℓ = B ℓ is equivalent to proving that B ℓ ∈ Im(A) = (Ker(A)) ⊥ . Thus, we start with the determination of Ker(A).

Let Y = (Y 1 , Y 2 , . . . , Y M ) t ∈ Ker(A). Then, we have M j=1 a ij Y j = 0, ∀i ∈ 1, M .
As

α ij = α ji , we have a ii = - M j=1,j̸ =i a ij , which implies 0 = M j=1 a ij Y j Y i =   M j=1,j̸ =i a ij Y j Y i   + a ii Y 2 i = M j=1,j̸ =i a ij (Y j Y i -Y 2 i ).
Summing the above expression in i, and using that a ij = a ji , we obtain

M i=1 M j=1,j̸ =i a ij (Y j Y i -Y 2 i ) = i<j a ij (Y i -Y j ) 2 = 0.
As a ij ≤ 0 for all (i, j) with i ̸ = j, and a ij < 0 as soon as subdomains i and j are neighbours, this implies that Y i = Y j for any pair of neighbouring subdomains i and j.

Since Ω is connected, this finally implies that all Y i are equal i.e. Ker(A) = span(e) with e = (1, 1, . . . , 1, 1). Then,

B ℓ ∈ (Ker(A)) ⊥ is equivalent to B ℓ • e = M i=1 B ℓ i = 0.
This is proved in the following way:

M i=1 B ℓ i = M i=1   M j=1 |Γ ij | ⟨g ℓ ij ⟩ Γij + α ij ⟨p ℓ i ⟩ Ωi - M j=1 |Γ ji | ⟨g ℓ ji ⟩ Γji + α ji ⟨p ℓ j ⟩ Ωj   . Denoting ∆ ij := |Γ ij | ⟨g ℓ ij ⟩ Γij + α ij ⟨p ℓ i ⟩ Ωi , we obtain M i=1 B ℓ i = M i=1 M j=1 ∆ ij - M i=1 M j=1 ∆ ji = 0.
Let us now turn to (b). From (a), we know that there exists at least a solution to AY = B; we let Y * be such a solution. All other solutions may be written as Proof of Theorem 7.3-(ii). It relies on the two main results:

Y = Y * + µe, with µ ∈ R.
(c) B ℓ → AX in R M , (d) CX = 0.
Let us prove (c): from the divergence-free property of u i , we have

0 = Ωi ∇•u i = ∂Ωi u i • n ∂Ωi = j∈Ii Γij u i • n ij . (7.7)
Moreover, from the definition of g ij in (6.1a) and the physical transmission conditions (2.4), we have

|Γ ij |⟨g ij ⟩ Γij -|Γ ji |⟨g ji ⟩ Γji = Γij (g ij -g ji ) = 2 Γij u i • n ij . (7.8)
This manuscript is for review purposes only.

Hence, from (7.7) and (7.8) we get

j∈Ii |Γ ij |⟨g ij ⟩ Γij = j∈Ii |Γ ji |⟨g ji ⟩ Γji . (7.9) Expression (7.
3) is equivalent to 

⟨g ℓ ij ⟩ Γij + α ij ⟨p ℓ i -p i ⟩ Γij -→ ⟨g ij ⟩ Γij . ( 7 
|Γ ij | ⟨g ℓ ij ⟩ Γij + α ij ⟨p ℓ i -p i ⟩ Ωi -→ j∈Ii |Γ ij |⟨g ij ⟩ Γij . (7.11)
In exactly the same way, we also obtain

j∈Ii |Γ ji | ⟨g ℓ ji ⟩ Γji + α ji ⟨p ℓ j -p j ⟩ Ωj -→ j∈Ii |Γ ji |⟨g ji ⟩ Γji . (7.12)
Using (7.11), (7.12) and (7.9), we obtain

j∈Ii |Γ ij | ⟨g ℓ ij ⟩ Γij + α ij ⟨p ℓ i ⟩ Ωi -α ij ⟨p i ⟩ Ωi - j∈Ii |Γ ji | ⟨g ℓ ji ⟩ Γji + α ji ⟨p ℓ j ⟩ Ωj -α ji ⟨p j ⟩ Ωj -→ 0, or equivalently j∈Ii |Γ ij | ⟨g ℓ ij ⟩ Γij + α ij ⟨p ℓ i ⟩ Ωi - j∈Ii |Γ ji | ⟨g ℓ ji ⟩ Γji + α ji ⟨p ℓ j ⟩ Ωj -→ j∈Ii |Γ ij |α ij ⟨p i ⟩ Ωi - j∈Ii |Γ ji |α ji ⟨p j ⟩ Ωj .
This is exactly B ℓ -→ AX.

Let us now prove (d): We have

Ω p i = M i=1 Ωi p i = M i=1 |Ω i |⟨p i ⟩ Ωi = 0, i.e. CX = 0.
We now prove Theorem 7.3-(ii): From the solution Y ℓ of (7.5) given by Theorem 7.3-(i), and from (c) and (d), we have A(Y ℓ -X) -→ 0 and C(Y ℓ -X) = 0.

Uniqueness of a solution to AZ = B and CZ = 0 as soon as B is in Im(A) and finite dimension now imply that (Y ℓ -X) -→ 0 when ℓ → ∞. Then, from (7.4), with a triangle inequality, we get (7.6).

Remark 7.4. In the general case of M subdomains, the calculation of pℓ i is done only once, at the last OSWR iteration. It involves solving the coarse problem (7.5) when M > 2, and is given by an explicit formula when M = 2 (see Corollary 7.6), thus the cost of calculating the modified pressure is negligible.
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Remark 7.5. Recovering the correct pressure could also be performed from the fact that ∇(p ℓ i -p i ) tends to zero when ℓ → ∞. Indeed, for a given Ω i , choosing first an arbitrary point x i ∈ Ω i , then one may write

p i (x) = p i (x i ) + (x -x i ) • 1 0 ∇p i (x i + t(x -x i )) dt , ∀x ∈ Ω i .
Then, one could replace ∇p i by ∇p ℓ i to obtain approximate values of the pressure at each point x. However, this formula holds on a given subdomain Ω i . In order to relate values of the pressures in Ω i to those in a neighboring subdomain Ω j through this kind of formula, one needs to choose a point on the boundary Γ ij that will serve as the point x j in the subdomain Ω j , and so on. At the discrete level, there are several drawbacks to that: this requires further communications between subdomains, the pressure gradient at the boundaries may not be easy to define (e.g. when the pressure is defined as a piecewise constant field like in the Crouzeix-Raviart finite element), and finally there are many ways to go from one cell to another in the mesh, and, due to round-off errors, this may lead to different evaluations of the pressure at a given cell in particular in very large scale computations.

In the two-subdomain case, we use the same notation as in Section 5. Then the calculation of pℓ i can be done by the following explicit formula.

Corollary 7.6. Let M = 2, α = α 1 = α 2 , and define, for i = 1, 2 and j = 3 -i,

pℓ i = p ℓ i + |Ω j | |Ω| 1 α (⟨g ℓ i ⟩ Γ -⟨g ℓ j ⟩ Γ ) - |Ω i | |Ω| ⟨p ℓ i ⟩ Ωi - |Ω j | |Ω| ⟨p ℓ j ⟩ Ωj .
Then pℓ i tends to p i when ℓ tends to infinity, for i = 1, 2.

Proof. For M = 2 we have

B ℓ 1 = -B ℓ 2 = |Γ| ⟨g ℓ 1 ⟩ Γ + α⟨p 1 ⟩ Ω1 -|Γ| ⟨g ℓ 2 ⟩ Γ + α⟨p 2 ⟩ Ω2 , A = α|Γ| -α|Γ| -α|Γ| α|Γ| , C = [|Ω 1 | |Ω 2 |].
System (7.5) for M = 2 has a unique solution given by

Y ℓ 1 = |Ω 2 | |Ω| 1 α (⟨g ℓ 1 ⟩ Γ -⟨g ℓ 2 ⟩ Γ ) + (⟨p ℓ 1 ⟩ Ω1 -⟨p ℓ 2 ⟩ Ω2 ) , Y ℓ 2 = |Ω 1 | |Ω| 1 α (⟨g ℓ 2 ⟩ Γ -⟨g ℓ 1 ⟩ Γ ) + (⟨p ℓ 2 ⟩ Ω2 -⟨p ℓ 1 ⟩ Ω1 ) .
From theorem 7.3, we have

p ℓ 1 -⟨p ℓ 1 ⟩ Ω1 + Y ℓ 1 = p ℓ 1 + |Ω 2 | |Ω| 1 α (⟨g ℓ 1 ⟩ Γ -⟨g ℓ 2 ⟩ Γ ) - |Ω 1 | |Ω| ⟨p ℓ 1 ⟩ Ω1 - |Ω 2 | |Ω| ⟨p ℓ 2 ⟩ Ω2 → p 1 p ℓ 2 -⟨p ℓ 2 ⟩ Ω2 + Y ℓ 2 = p ℓ 2 + |Ω 1 | |Ω| 1 α (⟨g ℓ 2 ⟩ Γ -⟨g ℓ 1 ⟩ Γ ) - |Ω 1 | |Ω| ⟨p ℓ 1 ⟩ Ω1 - |Ω 2 | |Ω| ⟨p ℓ 2 ⟩ Ω2 → p 2
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8. Convergence factor via Fourier transform. The aim of this section is to find a way to conveniently choose the parameters (α, β) that play an important role in the actual rate of convergence in numerical experiments.

Let Ω = R 2 . We consider two subdomains Ω 1 = (-∞, 0) × R and Ω 2 = (0, +∞) × R, as commonly done for the analysis of OSWR methods. To simplify notation, we set Γ := Γ 12 = Γ 21 = {x = 0} × R, and denote α 12 and α 21 by α 1 and α 2 , respectively.

We denote u = (u, v) the two components of the velocity and set f = (f x , f y ). Recall here the Stokes problem

∂ t u -ν∆u + ∂ x p = f x , in Ω × (0, T ) ∂ t v -ν∆v + ∂ y p = f y ∂ x u + ∂ y v = 0 u(., t = 0) = u 0 , in Ω v(., t = 0) = v 0 u, v → 0 , when |(x, y)| → +∞.
We write the algorithm for the errors using the same notation (u, v, p), which means that, by linearity, we set f x = f y = 0 and u 0 = v 0 = 0. To avoid additional notation for the Robin terms, we write the OSWR algorithm as follows: starting with

u 0 i , v 0 i , p 0 i , at step ℓ ≥ 1 and provided u ℓ-1 i , v ℓ-1 i , p ℓ-1 i we solve ∂ t u ℓ i -ν∆u ℓ i + ∂ x p ℓ i = 0 , in Ω i × (0, T ) ∂ t v ℓ i -ν∆v ℓ i + ∂ y p ℓ i = 0 ∂ x u ℓ i + ∂ y v ℓ i = 0 u ℓ i (., t = 0) = 0 , in Ω i v ℓ i (., t = 0) = 0 u ℓ i , v ℓ i → 0 when |(x, y)| → +∞
together with transmission condition on Γ × (0, T ), for i = 1, 2 and j = 3 -i :

α i (ν∂ x u ℓ i -p ℓ i ) + (-1) i+1 u ℓ i = α i (ν∂ x u ℓ-1 j -p ℓ-1 j ) + (-1) i+1 u ℓ-1 j νβ i ∂ x v ℓ i + (-1) i+1 v ℓ i = νβ i ∂ x v ℓ-1 j + (-1) i+1 v ℓ-1 j
Let us consider the system in Ω 1 , and let ℓ ≥ 1. Taking the Fourier transform in time and in y-direction with time frequency ω and space frequency k ̸ = 0, and, for the sake of simplicity, keeping notation u, v instead of û, v, we get

iωu ℓ 1 -ν∂ xx u ℓ 1 + νk 2 u ℓ 1 + ∂ x p ℓ 1 =0, (8.1a 
)

iωv ℓ 1 -ν∂ xx v ℓ 1 + νk 2 v ℓ 1 + ikp ℓ 1 =0, (8.1b) 
∂ x u ℓ 1 + ikv ℓ 1 =0. ( 8.1c) 
By differentiating equation (8.1b) with respect to x, multiplying (8.1a) by (-ik), and summing the resulting equations, and denoting w ℓ 1 := ∂ x v ℓ 1 -iku ℓ 1 the vorticity, we get the vorticity equation

iωw ℓ 1 -ν∂ xx w ℓ 1 + νk 2 w ℓ 1 = 0. ( 8.2) 
Denote by λ = k 2 + iω ν with positive real part. As w 1 vanishes at -∞, one gets

w ℓ 1 = E ℓ exp(λx) (8.3)
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Using the definition of w 1 and differentiating (8.1c), we get, for u 1

∂ xx u ℓ 1 -k 2 u ℓ 1 = -ikw ℓ 1 . (8.4)
The homogeneous equation associated to (8.4) has characteristic roots ±|k|. As u 1 and v 1 vanish at -∞, we only retain the root |k|. Given the form (8.3) of the righthand side of (8.4), its solution can be written under the form

u ℓ 1 = A ℓ exp(|k|x) + B ℓ exp(λx),
with A ℓ , B ℓ ∈ C. Then, using (8.1c) and (8.1b), we get

v ℓ 1 = A ℓ i|k| k exp(|k|x) + B ℓ iλ k exp(λx), p ℓ 1 = -A ℓ iω |k| exp(|k|x).
Similarly, for domain Ω 2 , there exist C ℓ , D ℓ ∈ C such that

u ℓ 2 = C ℓ exp(-|k|x) + D ℓ exp(-λx) v ℓ 2 = -C ℓ i|k| k exp(-|k|x) -D ℓ iλ k exp(-λx) p ℓ 2 = C ℓ iω |k| exp(-|k|x)
Replacing the above expressions in the transmission conditions, we obtain

α 1 (ν|k|A ℓ + νλB ℓ + iω |k| A ℓ ) + A ℓ + B ℓ = α 1 (-ν|k|C ℓ-1 -νλD ℓ-1 - iω |k| C ℓ-1 ) + C ℓ-1 + D ℓ-1 , νβ 1 (ikA ℓ + iλ 2 k B ℓ ) + i|k| k A ℓ + iλ k B ℓ = νβ 1 (ikC ℓ-1 + iλ 2 k D ℓ-1 ) - i|k| k C ℓ - iλ k D ℓ-1 and α 2 (-ν|k|C ℓ -νλD ℓ - iω |k| C ℓ ) -C ℓ -D ℓ = α 2 (ν|k|A ℓ-1 + νλB ℓ-1 + iω |k| A ℓ-1 ) -A ℓ-1 -B ℓ-1 , νβ 2 (ikC ℓ + iλ 2 k D ℓ ) + i|k| k C ℓ + iλ k D ℓ = νβ 2 (ikA ℓ-1 + iλ 2 k B ℓ-1 ) - i|k| k A ℓ - iλ k B ℓ-1 .
These transmission conditions can be written in matrix form as follows :

M(α 1 , β 1 ) A ℓ B ℓ = N (α 1 , β 1 ) C ℓ-1 D ℓ-1 and M(α 2 , β 2 ) C ℓ D ℓ = N (α 2 , β 2 ) A ℓ-1 B ℓ-1
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where

M(α, β) :=    1 + ναλ 2 |k| 1 + ανλ νβk + |k| k νβλ 2 k + λ k    , N (α, β) :=    1 - ναλ 2 |k| 1 -ανλ νβk - |k| k νβλ 2 k - λ k    . (8.5) 
This leads to the following recurrent formulation

A ℓ B ℓ = R(α 1 , α 2 , β 1 , β 2 ) A ℓ-2 B ℓ-2 , ∀ℓ ≥ 2, (8.6) 
where

R(α 1 , α 2 , β 1 , β 2 ) = M -1 (α 1 , β 1 )N (α 1 , β 1 )M -1 (α 2 , β 2 )N (α 2 , β 2 ). (8.7)
In view of (8.6), the convergence properties of the OSWR algorithm, and in particular its rate, will depend on the spectral radius of the matrix R defined in (8.7).

Remark 8.1. If one sets α := να and β := νβ, as well as ω := ω ν , then matrices M and N (defined in (8.5)), depend only on α, β, on ω and on k. Thus, when ν varies, the convergence rate remains unchanged if α and β are kept constant and if the range in which ω is considered does not change. As will be seen in Section 9, this is the case if ν∆t and νT are kept unchanged. This observation coincides with the fact that the non-dimensional form of the Stokes equation is not modified when νT is kept constant.

Remark 8.2. When k tends to 0, the spectral radius of the matrix R tends to 1. This is coherent with what was observed in Section 5 and in Remarks 4.3 and 6.4, which led us to the pressure correction described in Section 7.

Remark 8.3. When k and ω tend to +∞, the spectral radius of the matrix R tends to 1. This implies that analysing the iteration matrix does not help to prove the general convergence (for all frequencies) of the algorithm, and one always needs the energy estimate technique of Section 6 (for another example, see [START_REF] Bui | Coupling parareal with optimized Schwarz waveform relaxation for parabolic problems[END_REF]).

Remark 8.4. In practical experiments, all equations are discretized in space and time. As far as space discretization is concerned, the solution of the discrete version of (8.2) remains close to (8.3) if the space discretization parameter is small enough with respect to ν ω ; since ω is in practice bounded by π ∆t , we expect that the above Fourier analysis may remain close to practical experiments if the term √ ν∆t is large enough compared to the space discretization parameter. This has indeed recently been observed for the heat equation in [START_REF] Arnoult | Discrete-time analysis of Schwarz waveform relaxation convergence[END_REF]. As far as time discretization is concerned, the inclusion of its effect in the convergence analysis of OSWR methods is a current topic of research, and is for example addressed in [START_REF] Clement | Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients[END_REF] where a Z-transform is used and in [START_REF] Arnoult | Discrete-time analysis of Schwarz waveform relaxation convergence[END_REF], where a discrete-time analysis of the OSWR method is proposed. This issue is also addressed in Section 9.2.

9. Optimized Robin parameters. One can choose α 1 , α 2 , β 1 , β 2 to minimize the convergence factor of the continuous OSWR algorithm, defined in the above section.

Such parameters are called continuous optimized parameters. However, for the incompressible Stokes problem, we will see in the numerical experiments of Section 10 that better results can be obtained by minimizing the discrete-time counterpart of this convergence factor. The corresponding parameters are then called discrete-time optimized parameters. Both of these optimization procedures are described below.
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9.1. Continuous optimized parameters. From Section 8, the convergence factor is ϱ(R(α 1 , α 2 , β 1 , β 2 , k, ω)), where R is defined in (8.7), and ϱ(R) denotes the spectral radius of R. While we have max (k,ω)∈R 2 ϱ(R(α 1 , α 2 , β 1 , β 2 , k, ω)) = 1, we can use this convergence factor to calculate Robin parameters for numerical computations, for which the frequencies k and ω are bounded (by frequencies relevant to the global space-time domain and the ones supported by the numerical grid). Thus, we set

ρc (α 1 , α 2 , β 1 , β 2 ) := max π L ≤k≤ π h Γ , π T ≤ω≤ π ∆t ϱ R(α 1 , α 2 , β 1 , β 2 , k, ω) ,
where L is a characteristic size of the computational domain and h Γ is a measure of the mesh step size on the interface (typically the mean-value of the segment lengths).

Let us consider the one-sided Robin case α := α 1 = α 2 = β 1 = β 2 , and set ρ c (α) := ρc (α, α, α, α). Then, the continuous optimized Robin parameter α c is defined as a solution of the following minimization problem : 

ρ c (α c ) = min α>0 ρ c (α).
R ∆t (α 1 , α 2 , β 1 , β 2 , k, ω) := R(α 1 , α 2 , β 1 , β 2 , k, ω).
Then, as above, we define

ρ(α 1 , α 2 , β 1 , β 2 ) := max π L ≤k≤ π h , π T ≤ω≤ π ∆t ϱ R ∆t (α 1 , α 2 , β 1 , β 2 , k, ω) .
Let us consider the one-sided Robin case α := α 1 = α 2 = β 1 = β 2 , and define ρ(α) := ρ(α, α, α, α). Then, the Discrete-time (DT) optimized Robin parameter α * is defined as a solution of the following minimization problem :

ρ(α * ) = min α>0 ρ(α).
Remark 9.1. On could also consider optimized Robin-2p parameters (α, β) with

α := α 1 = α 2 , β := β 1 = β 2 , or 2-sided parameters (γ, δ) with γ := α 1 = β 1 , δ := α 2 = β 2
, that optimize the continuous or discrete-time convergence factors as done in [START_REF] Bui | New space-time domain decomposition algorithms combined with the Parareal algorithm[END_REF]. Given their additional complexity, these more general cases will not be considered here, and are the subject of a subsequent article.

10. Numerical results. In this section, we present numerical experiments that illustrate the performances of the OSWR method of Section 4, with Freefem++ [START_REF] Hecht | New development in freefem++[END_REF].

For the space discretization we use the nonconforming Crouzeix-Raviart Finite Element method in 2D (i.e. piecewise linear elements continuous only at the midpoints of the edges of the mesh for the velocity u = (u x , u y ), and piecewise constant P 0 elements for the pressure p), and consider the backward Euler method for the time discretization.

In what follows, the term "monodomain solution" will refer to the fully discrete solution obtained on the global mesh without domain decomposition.

We set Ω =]0, 1[×]0, 1[, T = 1, and consider the Stokes problem (2.1), where the value of the diffusion coefficient ν will be specified in each of the examples below.
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From Remark 9.1, only one-sided Robin parameter α := α 1 = α 2 = β 1 = β 2 will be considered. In particular, we will use the theoretical optimized values α c and α * defined in Section 9, which are calculated using the function fminsearch of MAT-LAB [37]. Random initial Robin data on the space-time interfaces will be used, unless specified.

In Section 10.1 some results are shown on the convergence of the OSWR algorithm, without and with modification of the pressure as in Section 7. In Section 10.2 we illustrate the influence of the Robin parameter on the convergence of the algorithm, and then in Section 10.3 we present results on a more realistic test case.

10.1. Recovering the pressure: a rotating velocity example. The diffusion coefficient is ν = 1 and we choose the right-hand side f and the values of the boundary and initial conditions so that the exact solution is given by u(x, t) = (-cos(πy) sin(πx) cos(2πt), sin(πy) cos(πx) cos(2πt)), p(x, t) = cos(t)(x 2 -y 2 ), ∀x ∈ Ω, ∀t ∈ (0, T ).

On Figure 1 we show the velocity field u (on the left), and the pressure p (on the right) at final time t = 1. The domain Ω is decomposed into nine subdomains as in Figure 2, and two meshes will be considered (as shown on Figure 2), with mesh sizes h = 0.0625 and h = 0.0312 respectively. To each mesh, the associated time step is ∆t = h. This manuscript is for review purposes only.

We choose α 1 = α 2 = β 1 = β 2 = α * , where α * is the DT-Optimized Robin parameter defined in Section 9.1, whose value here is α * ≈ 3.0832 × 10 -1 for mesh 1 and α * ≈ 2.2719 × 10 -1 for mesh 2.

On Figure 3 we show the evolution of the relative errors, of p, u x and u y , in the L ∞ (0, T ; L 2 (Ω))-norm, between the OSWR and monodomain solutions, as functions of the number OSWR iterations, for mesh 1 (left) and mesh 2 (right). The top figures are with non-modified pressure, and the bottom figures are with the modified pressure pℓ i , i = 1, 2, at each iteration ℓ (defined in Section 7). We observe that, with the non-modified pressure, the method converges for the velocity but not for the pressure, as expected from the observations of Section 5 and Theorem 6.2. On the other hand, with the modified pressure, we see that the method now converges both for the velocity and the pressure, accordingly to Theorem 7.3. mesh sizes on the interface and associated time steps equal to h Γ = ∆t = 1/12, h Γ = ∆t = 1/24, and h Γ = ∆t = 1/48, respectively. In order to analyze the convergence behavior of the method, we simulate the error equations (i.e. we take homogeneous initial and boundary conditions, and f = 0). Thus, the OSWR solution converges to zero. The theoretical optimized values α c (blue circle) and α * (red star) are also shown. We observe that both α c and α * decrease when the space-time mesh is refined. However, the values of α c and α * are again very different.

In Figure 8, we plot the relative errors, of p, u x and u y , in the L ∞ (0, T ; L 2 (Ω))norm, after twenty OSWR iterations, versus Robin parameter α, for mesh 1 (top left), mesh 2 (top right), and mesh 3 (bottom). We also show the values of the errors obtained with α = α c (blue circle) and α = α * (red star). We observe that α * is close to the numerial Robin value giving the smallest error after the same number of iterations, while α c gives a larger error, for all space-time meshes considered. 10.3. A more realistic test case. In this example we take ν = 1

Re with Re = 200, and T = 5. The mesh is given on Figure 9, with 22232 mesh elements. The domain is decomposed into two subdomains, with the interface at y = -0.9, see Figure 9, where This manuscript is for review purposes only. with α = α * . This illustrates the importance of the effect of the numerical scheme used in the time direction.

. 5 )

 5 Here, (•, •) D denotes, for any set D (whatever the space-dimension of D) the standard scalar or the matrix-valued scalar L 2 product on D. In the same way, we shall use the notation || • || D for the associated L 2 (D) norm. All terms in the definition of the forms a and c are well-defined for (u, v) ∈ V D × V D .

Theorem 3 . 1 .

 31 Problem (3.2)-(3.3) admits a unique solution

Lemma 3 . 4 .

 34 equipped with the above-defined norm || • || V D . Like often with the Stokes problem, we shall rely on the surjectivity of the divergence operator, and on general properties of surjective mappings in Hilbert spaces. More precisely, we shall use the following results. The mapping B from X D into L 2 (Ω) defined by B(v) = -∇ • v is continuous and surjective.

7 .

 7 Recovering the pressure. Let us introduce the notation ⟨p⟩ O = 1 |O| O p dx for the mean value of a function on a domain O (whatever the space dimension of O).

  and a ij = -|Γ ji |α ji if j ̸ = i together with the constant vector C = (|Ω 1 |, |Ω 2 |, . . . , |Ω M |) and the sequence of vectors (B ℓ ) ℓ , with B ℓ = (B ℓ 1 , B ℓ 2 , . . . , B ℓ M ) t defined as

  Existence of a solution to (7.5) follows from the fact that Ce = |Ω| ̸ = 0: Choosing µ = -1 |Ω| CY * leads to CY = CY * + µCe = 0 and then Y solves (7.5). As far as uniqueness is concerned, let Y 1 and Y 2 be two solutions of (7.5); since (Y 1 -Y 2 ) ∈ Ker(A), then (Y 1 -Y 2 ) = τ e, with τ ∈ R. Since τ |Ω| = τ Ce = C(Y 1 -Y 2 ) = 0 it follows that τ = 0 and Y 1 = Y 2 . This ends the proof of Theorem 7.3-(i).

9. 2 .

 2 Discrete-time optimized parameters. One can also consider the semi-discrete in time counterpart of the continuous convergence factor to better capture the discretetime frequencies, i.e. replace in the expression of R the term iω by its discrete counterpart using the implicit Euler scheme, that is we replace iω by 1-e -iω∆t ∆t . Equivalently, we replace in the expression of R (in (8.7)) the term ω by ω := -i 1-e -iω∆t ∆t , and set

Fig. 1 .

 1 Fig. 1. Example 1: rotating velocity field (left), and pressure (right)

Fig. 2 .

 2 Fig. 2. Example 1: mesh 1 (left) and mesh 2 (right)

Fig. 3 .

 3 Fig. 3. Example 1: relative errors (for ux, uy and p) versus iterations with non-modified pressure (top), and modified pressure (bottom), for mesh 1 (left) and mesh 2 (right)

Fig. 4 .

 4 Fig. 4. Example 2: mesh 1 (left), mesh 2 (middle), and mesh 3 (right)

Fig. 5 .

 5 Fig. 5. Example 2: continuous (left) and discrete-time (right) convergence factors versus α, with αc (blue circle) and α * (red star), with h Γ = ∆t = 1/24; for ν = 1 (solid line), ν = 0.5 (dashed line), ν = 0.1 (dash-dotted line), ν = 0.05 (dotted line)

(

  red star). The figures correspond to ν = 1 (top left), ν = 0.5 (top right), ν = 0.1 (bottom left), ν = 0.05 (bottom right). We see that α * is close to the numerical Robin value giving the smallest error after the same number of iterations, while α c gives a larger error.

Fig. 6 .

 6 Fig. 6. Example 2: Relative errors after 20 iterations (for ux, uy and p) versus α, with their values at αc (blue circles) and at α * (red stars), with h Γ = ∆t = 1/24; for ν = 1 (top left), ν = 0.5 (top right), ν = 0.1 (bottom left), ν = 0.05 (bottom right)

Fig. 7 .Fig. 8 .

 78 Fig. 7. Example 2: continuous (left) and discrete-time (right) convergence factors versus α, with αc (blue circle) and α * (red star), with ν = 0.1; for h Γ = ∆t = 1/12 (solid line), h Γ = ∆t = 1/24 (dashed line), h Γ = ∆t = 1/48 (dash-dotted line)

Fig. 12 .

 12 Fig. 12. Example 3 (f constant): Velocity field at t = 1 (left) and at final time t = 5 (right)

  6. Convergence of the velocity via energy estimate. In this Section, we suppose additional regularity on u 0 , f and Ω, which leads to regularity properties of the strong solution of problem (2.1)-(2.2). Namely, we recall [31, Theorem 1, Page 86]. Theorem 6.1. Let Ω be a bounded domain of R 2 with twice continuously differentiable boundary. For any u 0

  .10) From (7.2), we may replace ⟨p ℓ i -p i ⟩ Γij by ⟨p ℓ i -p i ⟩ Ωi in (7.10), then multiply by |Γ ij | and sum over j ∈ I i for a given i to obtain

	j∈Ii

  Fig. 11. Example 3 (f constant): Pressure at t = 1 (left) and at final time t = 5 (right)

	IsoValue	IsoValue
	-1.6	-1.6
	-1.435	-1.435
	-1.27	-1.27
	-1.105	-1.105
	-0.94	-0.94
	-0.775	-0.775
	-0.61	-0.61
	-0.445	-0.445
	-0.28	-0.28
	-0.115	-0.115
	0.05	0.05
	0.215	0.215
	0.38	0.38
	0.545	0.545
	0.71	0.71
	0.875	0.875
	1.04	1.04
	1.205	1.205
	1.37	1.37
	1.535	1.535
	Vec Value	Vec Value
	0	0
	0.0919864	0.343433
	0.183973	0.686866
	0.275959	1.0303
	0.367946	1.37373
	0.459932	1.71717
	0.551918	2.0606
	0.643905	2.40403
	0.735891	2.74746
	0.827878	3.0909
	0.919864	3.43433
	1.01185	3.77776
	1.10384	4.1212
	1.19582	4.46463
	1.28781	4.80806
	1.3798	5.1515
	1.47178	5.49493
	1.56377	5.83836
	1.65576	6.18179
	1.74774	6.52523
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be used in the numerical tests that follow. In Figures 11 and12, we plot the pressure p and the velocity field (u x , u y ) respectively, at times t = 1 and t = T = 5 (with a fixed color bar for p), for the case f constant. We observe that the stationary state is not reached yet.

In Figure 13, we show the evolution of the relative errors, between the OSWR and monodomain solutions, of u x , u y , and p, in the L ∞ (0, T ; L 2 (Ω))-norm, as functions of OSWR iterations, for α = α c (cyan, green and blue curves) and α = α * (magenta, red, and black curves), with zero initial Robin data, with f constant (left), and f variable (right). For α = α * , the curves of u x and p are quite close, with a faster convergence for u y . For α = α c , the curves of u x and u y have almost the same speed of convergence, with a slower (resp. faster) convergence for p for the first iterations, for f constant (resp. variable). Moreover, the convergence is much slower with α = α c than This manuscript is for review purposes only.