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OPTIMIZED SCHWARZ WAVEFORM RELAXATION METHOD FOR
INCOMPRESSIBLE STOKES PROBLEM *

DUC-QUANG BUIf CAROLINE JAPHET! AND PASCAL OMNES##

Abstract. We propose and analyse the optimized Schwarz waveform relaxation (OSWR) method
for the unsteady incompressible Stokes equations. Well-posedness of the local subdomain problems
with Robin boundary conditions is proved. Convergence of the velocity is shown through energy
estimates; however, pressure converges only up to constant values in the subdomains, and an astute
correction technique is proposed to recover these constants from the velocity. The convergence factor
of the OSWR algorithm is obtained through a Fourier analysis, and allows to efficiently optimize
the space-time Robin transmission conditions involved in the OSWR method. Then, numerical
illustrations for the two-dimensional unsteady incompressible Stokes system are presented to illustrate
the performance of the OSWR algorithm.

Key words. Unsteady incompressible Stokes system, space-time domain decomposition, optimized
Schwarz waveform relaxation, Robin transmission conditions, correction technique for the pressure.

AMS subject classifications. 65M55, 35K45, 76D07, 656M12, 65M22, 65B99.

1. Introduction. The study of physical phenomena, whether natural or industrial,
is frequently based on numerical simulations involving an increasing number of degrees
of freedom. This growing complexity may require the use of resolution techniques
which on the one hand are suitable for parallel computing architectures, and on the
other hand allow local space and time stepping adapted to the physics, such as space-
time domain decomposition (DD) methods. In this article we are concerned with such
methods, with Robin transmission conditions at the interfaces between subdomains,
for solving applications related to incompressible fluid mechanics, that are modelled
by the unsteady (Navier)-Stokes system.

The well-posedness of such systems with Robin conditions (without domain de-
composition) has been the subject of several works in the steady case, see e.g. [47] for
the Stokes problem (where the Robin condition is expressed with the symmetric part
of the velocity gradient, instead of the gradient), references [45, 38] for the Oseen and
Navier-Stokes systems, and [16] for the Stokes-Darcy Coupling. On the other hand,
there are few works in the unsteady case; in [39] existence and uniqueness of a solution
with a time-dependent Robin boundary condition of the type curlu x n = g(t)u is
addressed. In [29] the Stokes problem with Robin conditions is studied, in the context
of a global-in-time DD method applied the coupled nonlinear Stokes and Darcy Flows.
The well-posedness is not shown.

In this article we study the well-posedness of the unsteady incompressible Stokes
system with Robin boundary conditions of type a(vdpu-n —p) +u-n = g(¢) and
Brdpu x n+u x n = £(t), in the context of space-time DD methods.

Concerning the DD approaches with Robin conditions, several studies have been
carried out for the incompressible (Navier)-Stokes equations : in [41, 42, 34, 43, 40] the
steady Oseen equation (and its application to the non-stationary Navier-Stokes equa-
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2 D.-Q. BUI, C. JAPHET, AND P. OMNES

tions, using a spatial DD at each time step) is considered. More precisely, in [42, 34, 43]
a stabilized finite element approximation is proposed (with non-standard Robin con-
ditions due to the stabilization). The convergence of the DD method is proven for the
velocity. For the pressure, the convergence is proven when the original monodomain
problem involves Robin boundary conditions on a part of the physical boundary.
However, the authors point out that for an Oseen problem with Dirichlet conditions
on the whole physical boundary, the pressure of the Robin-Robin DD algorithm will
converge up to a constant which can differ for different subdomains. This important
observation is also mentioned in [11] for the steady Stokes problem, where the DD
method is based on a penalty term on the interface (in that case the Robin conditions
are not equivalent to the physical ones). The convergence is shown for a modified
pressure in the two-subdomains case. This issue of pressure converging up to a con-
stant that depends on the subdomains is also raised in [33, 23] for the discrete Schwarz
algorithm with a DDFV scheme applied to the semi-discrete in time Navier-Stokes
system. In [12, 6], an optimized Schwarz DD method is studied, and applied at each
time step to the semi-discrete in time Navier-Stokes equations. Other transmission
conditions (Dirichlet / Neumann) are considered e.g. in [46, 21, 44, 49] for Stokes and
Navier-Stokes equations.

In this article we consider global-in-time Schwarz methods which use waveform
relaxation techniques, i.e. Schwarz waveform relaxation (SWR). Such iterative meth-
ods use computations in the subdomains over the whole time interval, exchanging
space-time boundary data through transmission conditions on the space-time inter-
faces. The main advantage is that space-time discretizations can be chosen indepen-
dently on each subdomain, and, at the end of each iteration, only a small amount of
information is exchanged, which makes the parallelization (in space and time) very
efficient.

The space-time boundary data play an important role in the convergence process
and can be of Dirichlet [20, 22], absorbing, Robin (or Ventcell) type [19, 35, 4, 25, 24].
The value of the Robin (or Ventcell) parameters can be optimized to improve conver-
gence rates (see [19, 30, 35, 32]), and the corresponding method is called optimized
Schwarz waveform relaxation (OSWR). This method is wildly used and analyzed for
fluid dynamics, see references above, and e.g. [35, 18, 36, 3, 5, 28, 1, 48].

For the application of the SWR, method on the Navier-Stokes equations, we are
aware of the article [3] where an OSWR, method is proposed for the rotating 3D
incompressible hydrostatic Navier-Stokes equations with free surface. However, the
hydrostatic nature of the model modifies the structure of the continuity equation which
now involves a transport term for the free surface (which plays the same role as the
pressure in the momentum equation of the standard Navier-Stokes system), so that
the results in [3] cannot apply to the problem considered in the present work. In [12],
an SWR method for the Oseen equations is studied; optimal transparent boundary
conditions are derived, and local approximations for these nonlocal conditions are
proposed. No general convergence analysis of the resulting algorithm (e.g. via energy
estimates) is given. A convergence factor is obtained in the idealized case of two
half-space subdomains and unbounded time interval, via Laplace-Fourier transforms.

Concerning the compressible Euler and Navier-Stokes equations, in [14, 13] an
SWR method is proposed and various numerical experiments are shown.

However, until now, there exists no convergence proof (for SWR or OSWR) for the
incompressible Navier-Stokes equations. We contribute to the understanding of the
behaviour of the OSWR method by attacking representative, though simpler, model
problems. To begin with, we analyze the method on the evolutionary Stokes equations,
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OSWR FOR INCOMPRESSIBLE STOKES PROBLEM 3

a simplified version of the evolutionary Navier-Stokes system in which the convection
is simply discarded. The convergence analysis of the velocity iterates involved in the
OSWR method, for the Stokes equations, can be performed in a similar manner as for
parabolic equations. An extension of this analysis to the evolutionary Oseen equations
(a linearization of the Navier-Stokes equations in which the convective velocity field
is considered as a given datum) is given in [9]. However, the convergence analysis of
the OSWR method has its own obstacle related to the pressure converging only up
to constants in the various subdomains, as discussed above. A second purpose of this
article is to propose a new technique, in the multidomain case, to recover the pressure
from the velocity (at any iteration).

A third purpose of this article is to discuss the choice of the Robin parameters,
which play a crucial role in the optimization of the convergence rate. Until recently,
the common practice was to derive and optimize a convergence rate in the idealized
case of two half-space subdomains and unbounded time interval, via Laplace-Fourier
transforms performed on the continuous model (i.e. without taking into account the
actual discretization method). We first follow this standard approach in this work,
but in a second step modify it to also include the effect of the discretization in the
time direction; the Robin parameters obtained with such a modification improve the
convergence rate over the standard choice in our numerical tests. Note that studying
the influence of the numerical scheme over the OSWR convergence rate is a recent
approach, pursued for example in [15, 26, 2].

The remainder of this article is organized as follows. In section 2, we present
the model problem and its multidomain form. Since the multi-domain formulation
involves local Stokes problems with Robin boundary conditions, we prove the well-
posedness of such problems in Section 3. Next, section 4 is dedicated to the algorithm.
In section 5 we show that, in general, the pressure calculated by the OSWR algorithm
will not converge to the monodomain solution. In section 6, we obtain a convergence
result on the velocity through an energy estimate, and in section 7, we propose an
astute technique to recover the pressure from the velocity. In section 8, a Fourier
analysis is done to get a formulation for the convergence factor of the OSWR, algo-
rithm. In section 9, an optimization procedure (based on the convergence factor of the
method), that allows to obtain efficient Robin parameters, is given. Then, numerical
illustrations for the unsteady Stokes system follow in section 10.

2. Presentation of the model and multidomain formulation. For a bounded do-
main  C R2, and for a given viscosity coefficient v > 0 that we suppose constant and
uniform, for given initial condition uy and source term f, we denote respectively by
u, p the velocity and pressure unknowns in the incompressible non-stationary Stokes
system:

ou—vAu+Vp =f in  Qx(0,7),
Vu =0 in Qx(0,7T),
u(,t=0) =ug in 9
u =0 on 02x(0,T).

(2.1)

This system does not have a unique solution: if (u,p) is a solution, then (u,p + ¢) is
also a solution, for any constant c. Then, for uniqueness, one needs, for example, the
zero-mean condition on the pressure
/ p=0. (2.2)
Q
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4 D.-Q. BUI, C. JAPHET, AND P. OMNES
Thus, we introduce the notation L§(€2) = {p € L*(Q2), [, p = 0}.

Next, we shall introduce the following spaces, which are the completions, in H*()
and in L?(Q2), respectively, of the set of compactly supported C* functions with
vanishing divergence:

V= {ue [H&(Q)]Z,V-uzo},

H = {ue [LQ(Q)]Z,VM:O,U'IIBQ =0 on 89},

where ngq is the unit, outward pointing, normal vector field on 9Q2. We denote by V'
the dual space of V. We recall ([7, Proposition IV.5.13]) that, if 2, f and ug regular
enough, problem (2.1)-(2.2) has a unique solution such that

€ (L*((0,T7),V)nc°([0,T), H)) , du e L*((0,T),V"),
pe W= ((0,7), L§(9)) .

In order to apply a domain-decomposition strategy for this problem, we decompose {2
into M non-overlapping subdomains €;, i.e. ; NQ; =0 for i # j, and Q= vail Q;.
For i = 1,2,..., M, we denote by Z; the set of indices of the neighbouring subdo-
main(s) of €;: it holds that j € Z; if and only if [0€2; N 0S| > 0, where | - | denotes
the one dimensional measure. We denote by I';; the interface (if it exists) between
Q; and 5, n;; the unit normal vector on I';;, directed from €; to €2;. Note that this
implies that n;; = —ny;.

Denoting by u;, (ug);, p; and f; the respective restrictions of u, ug, p and f to €,
the monodomain problem is equivalent to the following multidomain one

atlli — VAlli + sz fz in Qz X (O, T),
V-, 0 in  Q; x(0,7),
ui(.,t = 0) = (uo)i in Qi7
u; on (89 N 6(2“ ) X (0, T),

(2.3)

for all ¢ € [1, M], together with the physical transmission conditions on the space-time
interfaces I';; x (0,T), j € Z;, i € [1, M],

U;j - N5 = —UWy; - Ny,
u; X n;; = —u; X n;;, (2 4)

VOn,;W;  Nij — pi = vOn;, 45 - Ny — py,

V@ni].ui X N = V@nﬁuj X ;.

For any choice of (aj, i, Bij, Bji) € (R+*)4, those conditions are equivalent to the
following Robin transmission conditions on I';; x (0,7) =T';; x (0,T):

@i (VOn, W - M5 — pi) + W - Mij = @ (v0n, 15 - 0y — pj) + U5 -0,
ji(V0n; 05 - MG = pj) + 050G = i (VO W 0y = pi) W g, 25)
ﬁijuanijui X Ny +u; X n;; = Bijz/ani].uj X 1 + u; X nj;,

6ji1/6njiuj X Njj; + u; X nj; = ﬂjwﬁnﬁui X Njj; +u; X nj;.

This manuscript is for review purposes only.
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OSWR FOR INCOMPRESSIBLE STOKES PROBLEM 5

Finally, the zero-mean condition for the pressure is equivalent to

M
Z/Q‘p,- =0. (2.6)

This setting requires that we should study the Stokes system in a domain where
Robin boundary conditions are applied on a part of the boundary. This is what is
done in the next section.

3. The Stokes problem with Robin boundary conditions. We now consider a do-
main, still denoted by 2, for which the boundary is decomposed into two parts:
0 = I'p UTR, with [Tg| > 0. Let n be the outgoing normal vector on I'r; we
consider the following system, with a > 0 and 8 > 0

oou—vAu+Vp =f in  Qx(0,7),

Vu =0 in Qx(0,7),
u(,t=0) =ug in Q

u =0 on TI'px(0,7), (3.1)
a(vdhu-n—p)+u-n =g on I'px(0,T),
frohbuxnt+uxn =¢ on T'grx(0,7),

where f is at least in [L?(€2 x (O,T))]Q, g and € are at least in [L2(T'g x (0,7))].

In order to set this problem under an appropriate (parabolic) variational form, we
multiply the first equation by a divergence-free test function v (smooth enough) that
vanishes on I'p and integrate by parts on . The flux (—vdyu + pn) is then decom-
posed into normal and tangential parts and boundary conditions of (3.1) are used.
We obtain then the following parabolic variational problem

(Opu, V>V1§,VD +a(t,u,v) = c(t,v), a.e. t € (0,T),Vv € Vp, (3.2)
u(0) = uy, (3.3)
where the spaces are defined as
Vb = {ue [Hl(Q)}Z,uzoon FD,V-u:O},
Hp = {ue [LQ(Q)]2,u-n:Oon I‘D,V-u:O},

together with their linear and bilinear forms

a(u,v) =v(Vu,Vv), + i (u-n,v-n)p_ + % (uxn,vxn) , (3.4)
c(t,v) = (£(t),v)q + é (9(t),v-n)p_+ % @), vxn)p_ . (3.5)

Here, (-,-)p denotes, for any set D (whatever the space-dimension of D) the standard
scalar or the matrix-valued scalar L? product on D. In the same way, we shall use
the notation || - || p for the associated L?(D) norm. All terms in the definition of the
forms a and c¢ are well-defined for (u,v) € Vp x Vp.

From these definitions, Vp is dense in Hp and the embedding Vp C Hp is
continuous. We can identify Hp with its dual space, and we are in the situation
where Vp C Hp = Hp, C V[, which is the classical setting for parabolic equations
(see e.g. [17, Section 6.1], [8, Page 218]). In this context, we recall the following
theorem.

This manuscript is for review purposes only.
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6 D.-Q. BUI, C. JAPHET, AND P. OMNES

THEOREM 3.1. Problem (3.2)-(3.3) admits a unique solution
u € (LQ((Ou T)7 VD) n CO([OJ T], HD)) ’

with dyu € L2((0,T),V}) if the following properties are verified

e uy € Hp and c € L?((0,T),V}),

e The function t — a(t,u,v) is measurable for all (u,v) € V3,

e IM € R such that |a(t,u,v)| < M||ullv, ||V]vy, for almost every t and for all

(u,v) € V3,

e 3m > 0 such that a(t,u,u) > mlully,  for almost everyt and for allu € Vp.
We shall apply this result to our setting, with the simplification that the bilinear form
defined by (3.4) does not depend on time. We obtain the following result:

THEOREM 3.2. Assume that f € L2((0,T), [L2(Q)]%), g,€ € L*((0,T), L*(Tr)),
and ug € Hp. Let a and ¢ be defined by (3.4) and (3.5), respectively. Then, problem
(3.2)~(3.3) admits a unique solution u € (L*((0,T),Vp)NC°([0,T], Hp)), which is
such that Oypu € L*((0,T),V}).

Proof. We shall show that a and ¢ verify the hypothesis of Theorem 3.1. First, it
is well-known that, as soon as |[T'g| > 0, then

1 1
lallvy, == (IValg, + [[ulf,) 2 = (IVallg + - nf, + [luxn]f,)2

is a norm equivalent to the H' norm on Vp, and we shall therefore work with this
norm.

Let M = max <V, é, ;) From the Cauchy-Schwarz inequality, we get the con-
tinuity of a(-,-):
la(u,v)| < M|lullv, IVllve, Yu,v e Vp.
Let m = min <V7 é, 1 > 0. From the definition of || - ||v,, we get the coercivity
of a(-,-):
a(u,u) > m|ull},, Vue Vp.

Then, for a.e. t € (0,T), the continuity of ¢(¢,-) is deduced from the Cauchy-Schwarz
inequality and the equivalence between the H'(Q)-norm and || - ||v,,:

1 1
et V)l < | Cullf@)lle + ~llg@)lr + Bllf(t)ler Ivilvp-
Moreover, thanks to the hypothesis on the time dependence of f, g and &£, the quantity
1 1
GilliE@lle + ~llg@)llrs + BH&@)IIFR

is square integrable on (0,7'), and we can now apply Theorem 3.1, which finishes the
proof. O

Remark 3.3. Since Vp is continuously and densely embedded in Hp, the fact that
u € C°([0,T), Hp) is a consequence of the fact that the space

W(Vp,V}) == {v:(0,T) = Vp;v € L*((0,T),Vp); v € L*((0,T),V})}

This manuscript is for review purposes only.
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OSWR FOR INCOMPRESSIBLE STOKES PROBLEM 7

is included in C°([0,T],Hp), as stated, for example, by [17, Lemma 6.2] and [7,
Theorem I1.5.13].

This has the important implication that it is legitimate to consider u(t) € Hp for
all t € [0,T]. Moreover, the following integral equality holds for all ¢ € [0, T] and for
all (u,v) € W(Vp, V})]? (see [17, Lemma 6.3] and [7, Theorem 11.5.12]):

/0/ ((Bpu(s), v(s))vy v + (Dev(s),u(s))vy vp) ds = (u(t), v(t))a — (u(0), v(0))e.
(3.6)

Now, since we have obtained the velocity u from the constrained variational prob-
lem (3.2)—(3.3), we shall construct the pressure by relaxing the divergence free condi-
tion on the velocity test functions, and we shall therefore consider the space

Xp = {ve [Hl(Q)}z,v:Oon FD},

equipped with the above-defined norm || - ||y,,. Like often with the Stokes problem,
we shall rely on the surjectivity of the divergence operator, and on general properties
of surjective mappings in Hilbert spaces. More precisely, we shall use the following
results.

LEMMA 3.4. The mapping B from Xp into L*(Q) defined by B(v) = —V - v is
continuous and surjective.

Proof. This is a special case of [17, Lemma 4.9] (with, using the notations of [17],
891:FD,692:®, 893:(0311(1 894:FR). O

LEMMA 3.5. Let L be in L(E; F) and LT be its adjoint in L(F'; E'), then if L is
surjective in F, then Im LT is closed in E'.

Before stating the next Lemma, we recall the following definition (see, e.g. [7, Defini-
tion IV.2.1]) and properties (see, e.g. [7, Remark IV.2.1])

DEFINITION 3.6. Let E be a Banach space with dual space E'; then for any subset
A C E, we define A* C E' as follows:

At = {¢ € E/,VSU €A, <¢a$>E’7E =0}

LEMMA 3.7. If AC C C E, then C+ C A+,

LEMMA 3.8. If A is a linear subspace of E, then (A1) = A if and only if A is
closed in E.

Moreover, we also recall the following general result
LEMMA 3.9. Let L be in L(E; F), then Im LT)+ C Ker L

Proof. If f € (Im LT)*, then (LTq, f)pr. g = 0, Vg € F'. Thus (¢, Lf)r 5 = 0
for all ¢ € F’, which means that Lf = 0, and thus f € Ker L. d

From these results, we obtain the following Lemma, which will be useful in the con-
struction of the pressure field:

LEMMA 3.10. Let BT be the adjoint operator of B, from L?(Y) into X},. Then
for any € in X/, that vanishes on Vp, there exists P € L*(Q) such that { = BT P.

Proof. Since B is in £L(Xp; L%(Q)) and is surjective (Lemma 3.4), then (Im BT)
is closed in X}, (Lemma 3.5), and ((ImBT)J-)J‘ = Im BT (Lemma 3.8). Now, using
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Lemmas 3.9 and 3.7, we get (Ker B): C ((ImBT)J-)J' = ImBT. So if ¢ in X},
vanishes on Vp = Ker B, then / is in (Ker B)* and so in Im BT, which exactly means
that there exists P € L?(Q) such that ¢ = BT P. 0

Using this result, we can now state the following theorem.

THEOREM 3.11. Assume that £ € L2((0,T), [L2()]%), &, 9 € L2((0,T), L*(T'))
and ug € Hp, then there exists unique u € (L?((0,T),Vp) NC°([0,T],Hp)) and
p € W=1°((0,T), L?(2)), with dyu € L?((0,T),V},) such that (u,p) verifies problem
(3.1) in the sense that

e u verifies (3.2)—(3.3)
e p=0,P with P € L*>((0,T), L*(Q)) that satisfies

/0 c(s,v)ds — (u(t),v)q + (1o, v)q 7/0 a(u(s),v)ds = f/QP(t)V Vo, YV E(XD).
3.7

Proof. Let u be the solution of (3.2)—(3.3), and consider, for this u, the function
t — a(u(t), v) and the function t — ¢(t, v) where a and ¢ are defined by (3.4) and (3.5).
Then their definitions can be straightforwardly extended to consider v € Xp and, for
any t € (0,7T), the following element of X/, is well-defined:

b(t,v) = /0 c(s,v)ds — (u(t),v)q + (o, v)g _/0 a(u(s),v)ds , Vv e Xp.

Indeed, one has that

/ " a(u(s), v)ds| < /  Mlfa(s) o [v]Lxp ds

1
¢ 3
< MV [ / ||u<s>||?XDds} Vixs
< MVT|[ulr2¢0.7),v) IVl x5

and

< [ (Gl + Saen + el ) Vs,

< ’y1||VHXD7

/Ot c(s,v)ds

with

VT VT
1 = CoVTfll g2 0.1y, (2 ) + 7||9||L2((07T),L2(FR)) + 7||€||L2((07T)7L2(FR))-

In addition, since u belongs to C°([0,T], Hp), then

|= (u(t); v)g + (w0, V)q| < 2ul[Le 0.1 L2012 [IVle

< 2C1 [l 2o 0,11, 122 1) V]| x5 -
This leads to the fact that

b(t,v)| < Collvllx,, Vv € VD, Vte(0,T), (3.8)

This manuscript is for review purposes only.
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OSWR FOR INCOMPRESSIBLE STOKES PROBLEM 9

with
Cy = 2C1|[u| e 0,11, 22 () + 11 + MVT |l £2(07v5)-

Moreover, from (3.2) and (3.6) (with v not depending on time), we obtain that
b(t,v) = 0 for all v € Vp, for all t € (0,T). Thus, using Lemma 3.10, we conclude
that, for all ¢ € (0,T), there exists P(t) € L*(Q) satisfying

b(t,v) = (BTP(t),v) x1, xp = —(P(1),V - v)q = —/QP(t)V v, WeXp. (39)

Moreover, the surjectivity of the divergence mapping leads to the following inf-sup
condition: there exists vo > 0, s.t.

wf (Bv,q)a

T = 2>0
€L vexp [Vllxplallzz @ ’

which implies, for all ¢ € L?(Q2)

(BY, g)a
Ivllxp
In order to use ¢ = P(t) in (3.10), we need to evaluate (Bv, P(t))q. From (3.9), we

obtain that (Bv, P(t))q = (BT P(t),v)xy x, = b(t,v); together with (3.8), we get

1 b(t,v C
IP(t)]L2) < — sup (¢,v) < 22
Y2 veXp ||VHXD Y2

Yellql L2(0) < S (3.10)

We conclude that P(t) € L°°((0,7), L*(2)). Then, we define the pressure p = 9, P
and thus p € H=1°°((0,T), L*(Q)).

It remains to show that p is unique Consider the case ug = 0 and ¢ = 0. Then,
we have u = 0, and (3.7) leads to [, P(t)V-v =0, ¥v € Xp. From the surjectivity of
the divergence mapping, one gets that P( ) =0 for all ¢, and then p = 0. ]

4. Optimized Schwarz Waveform Relaxation Algorithm. The OSWR algorithm
for solving the multidomain problem (2.3)—(2.4) is as follows.

Algorithm 4.1 (OSWR)

Choose initial Robin data g”, yonlyyx(0,7),j€L;,i=12,...,.M
for /=1,2,... do
1. Solve the local space-time Robin problems, for i =1,2,..., M

ot —vAuf + Vp! =1 in  Q;x(0,7)
Vi =0 in  Q; x(0,T)
Uf(,t:O) =Uo,; in Qi 41
Oéij(l/énijuf . Ilij *pf) =+ llf . l’lij = gf_l on Fij X (O,T), ] S Iz ( ’ )
ﬁijz/an”uf X n;; + uf X1n;; = ij_l on Fij X (O,T), jeL;

u! =0 on (0 N0N) x (0,T)

2. Update the Robin terms gf;, & on Ti; x (0,T), for j € Z;, i = 1,2,..., M

gfj = am(yan” j ‘N — pj) + ue n;;, (4.2a)
ffj = Buyﬁn” G X ng+ u X ;. (4.2b)

end for
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Remark 4.1. Let i € [1, M], j € Z;. Formulas given by (4.2) can be rewritten as

‘ Xij ¢ ¢ ¢ QXij ¢
95 = Z_j' (i (V0,10 - 1y — pj) + 1 - my;) — iu ‘nj; + u ‘n;;
Qg Qji
0 _ 6ij 00, L » L B ﬂlﬂ
& = B (Bjiv0On,, 0 X ny; +uj X ny;) — B—u X nj; + u X n;j,
J J
or equivalently, using the Robin transmission conditions in (4.1),
Qij g1 Qij + Qi g
£ — - =yt on., 4.3a
gz_] aji J2 aji ] Jv ( )
l Bij -1 BU + sz
& = 5.5 5 u X 1. (4.3b)
i ji

One advantage of formula (4.3) is that, if ge ! and ffj_l have L?(T;;) regularity,
so will gf] and 54 Indeed, in (4.3) the regularities of gfj and ffj depend only on
those of gz L 52 and ug, whose trace is in L2((0,T), H%(Fij)) (recall that we have

ul e L*((0,7), [H'(2)]"), see Section 3). On the other hand, formula (4.2) will

return new Robin boundary data gfj and ffj with a lower regularity, which is not
satisfying for an iterative algorithm. Another advantage of formula (4.3) is that it is
easier to implement in practice, than formula (4.2).

Now, we may express the iterative algorithm in the following way. We first define
V= {ue [H'(2)]*,u=00n00,n0Q, V-u=0in Q},
H, = {ue [L*(2)]” ,u-ng0, =0 on 92,92, V-u=0in Q,}.
X, = {u e [HY(92:)]" ,u =0 on 09, maﬂ},

Then, we set, for all u,v € X; and t € (0,7,

a;(u,v) :=v(Vu, Vv), Z

11 . l’lij,V . nij)p,. + — (Ll X Ilij,V X nij)mj s

JEI Qij v By
1
0 o
ci(t,v) = +Z o QU V'nij)pi,+F( i 1(t)aV><nij)Fiv
jez; 4 ! iJ !

(4.4)

and the algorithm reads: for all £ > 1, given gi; ", &/,

Ti; x (0,T), solve, for each i = 1. M:

on each space-time interface

<8tuf, > vt a;(ut,v) = c(t,v), ae. t€ (0,T),Vv eV, (45)
4.5
llf(O) = Uup.;-

Then we construct p = BtPe where Pe is such that

¢ ¢
(uf(t),v)ﬂ — (10,i,V)q, —l—/ ai(uf(s),v)ds — (Pf, V- v)q, — / cf(s,v)ds =0,
: ‘ 0 0

Vv e X;.
(4.6)

Finally, the data are updated by using (4.3a)—(4.3b) on the space-time interfaces.
With this formulation, we can state the following result
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THEOREM 4.2. Assume that g3, & € L*((0,T), L*(Ti;)) and wolo, € H;. Then,
the OSWR algorithm is well-defined and for all £, v € L?((0,T),V;) N C°([0,T], H,),
dpui € L*((0,7), V), pi € W=H2((0,T), L*(%)) and gi;, &; € L*((0,T), L*(Ly5)).

Proof. By Theorem 3.11, if gfj_l,fg._l € L%((0,T),L3(T;;)), then one gets uf

iJ 7
verifying (4.5) with uf € L2((0,T),V;) N C°([0,T], H;) and oyt € L%((0,T),V}).
Additionally, Theorem 3.11 tells us that there exists P{ verifying (4.6). We take
pf = 6tpf S W_l’m((O,T),LQ(Qi)).

Using the trace theorem, the normal and tangent traces of uf on I';; x (0,7)
belong to L?((0,T), L?(T';;)). Hence, using the update formula (4.3), we infer that
gfj?@%’ € LQ((OvT)7L2(Fij))'

The proof is then carried out by a simple induction. 0

Remark 4.3. The OSWR algorithm is constructed without considering the last
condition (2.6), hence it may not converge to the monodomain solution. We shall show
in the next section that, indeed, the pressure in each subdomain may not converge to
the restriction of the monodomain pressure.

5. First observations on the two subdomains case. For the trivial case of a one-
dimensional problem and two subdomains, one can show that the velocity iterates
converge, while the pressure iterates do not converge in general, see [9].

This result generalizes to higher dimensions as follows : let us consider the two-
subdomain case, i.e. M = 2. To simplify notation, we set I' := I'15 = I'31, and for
any ¢ in («, g,u), we write ¢; and ¢o instead of ¢15 and ¢, respectively.

The divergence-free condition of the velocity in each subdomain leads to

/ uf-nagizoz/uf-ni, i=1,2. (5.1)
09; r

The update of Robin terms for the normal components can also be written as

¢ 0o ity
9 = —9; — W~

n;, j=3—i, i=12
Qi

aj

Integrating over I', and taking (5.1) into account, we get

o
/gf=4 g‘f‘lz/gf‘? j=3—d,i=12
r @5 Jr r

Therefore, a necessary condition for the convergence of the algorithm to the mon-

odomain solution is
/g? :/gi7 1=1,2, (52)
r r

with ¢; = a;(vOn,u-n; — p) +u-n;, ¢ = 1,2, in which (u,p) is the monodomain
solution of problem (2.1). Condition (5.2) cannot be achieved in practice because the
quantity g;, ¢ = 1,2, is not known.

More precisely, whereas the convergence of the velocity iterates will be proven in
Section 6 below, independently of condition (5.2), the pressure iterates will converge
only if condition (5.2) is satisfied, and thus will not converge in general. A correction
technique to recover the pressure from the velocity will be proposed in Section 7.
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6. Convergence of the velocity via energy estimate. In this Section, we suppose
additional regularity on ug, f and €2, which leads to regularity properties of the strong
solution of problem (2.1)—(2.2). Namely, we recall [31, Theorem 1, Page 86].

THEOREM 6.1. Let Q be a bounded domain of R? with twice continuously differ-
entiable boundary. For any ug € V and £ € L%((0,T), L?(2))?), problem (2.1)-(2.2)
has a unique solution (u,p) such that

u € C%([0,T],V) N L*((0,T), (H*(Q))?), dyu € L*((0,T), L*(Q))?,
pe L2((0,T), H(Q)).

Using Theorem 6.1, we prove that, if its hypotheses are satisfied, then the velocity
iterates converge to the monodomain velocity.

THEOREM 6.2. Assume that the hypotheses of Theorem 6.1 are satisfied. Let g?j
and &; belong to L*((0,T), L*(Ti;)) and let ut be the velocity component of the solution
of Algorithm 4.1 (OSWR). Then, if c;j = aj; and B;; = Bj;, the sequence u! converges
tou; = ulq, in C°([0,T], H;) N L*(0, T, V;).

i

Proof. Denote by p; = pla,. Then, thanks to the extra regularity of (u,p) given
by Theorem 6.1, we can define its Robin trace on any space-time interface I';; x (0,T)

Qij g1 Qg+ Qi g

4
£ — > Ny, 6.1
gz_] ajing aji u_] n] ( a)
Bij se—1  Bij + Bji
€y =5 & — T g Xy, (6.1b)

Bji gt B]z
and they both belong to L?((0,T), L*(T;;)). Then (2.5) implies

Qij g1 Qg+ Qi g

gfj = i i i u; - 1y, (6.2a)
gfj = % fz_l — LU;Aﬂji u§ X l'lji. (62b)
ji i

Moreover, (u;,p;) is the strong solution of each local Robin boundary problem with
source term f;, initial condition ug; and Robin terms g;; and &;; on I';;. We can write
these local problems in variational forms similar to (4.4)—(4.5), in which we replace gfj
by gi; and &f; by ;.

We define the errors as the differences between the iterates and the restrictions
(to each subdomain) of the monodomain solution and denote by
el = uf —-u;, ht gfj — Gij ij = ffj - Eij: JjE€TL;, 1€ Hl,Mﬂ (63)

7 ij

Then, the errors also verify the following variational problems similar to (4.4)—(4.5):
for a.e. t € (0,T),Vv € V,,

1

Qi

L
Bij

<atefvv>vi/,Vi +(Li(ef,V) = Z (C@‘ejilvv X n’ij)rij’ (64)

JEL;

(hi 'vemir, + )
JEL;

with initial condition ef(0) = 0. All integrals on I';; are well defined since g;; and &;;
are both in L?((0,T), L*(T;;)), and since we have proved that this is also the case
for gfj and Sfj as soon as it is true for £ = 0.
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With o;; = a;; and 8;; = B, the update formulas (4.3) and (6.2) for the Robin
terms on I';; x (0,T) lead to

€,

1
0 {—1 4 4 .
'nij_f(hz’j _hji) , € X1y =

1 _
5 (G =)

Choosing e/ as test function in (6.4), one gets

<8tew

2
JEL;

=2

2
4 4
z>V Vi + (ve Ve)
4 4
H(e ‘1, € l “ngj)r,; + Z e X Nyj,€; X Ngj)r,;
a” jGI
L 1
(he nz] ij + Z Cf_] e X nz])r
Q5 JeTs Bzg

On the boundary I';;, j € Z;, replacing (6.5) into (6.6), one gets

<6tez7 1>V' Vi +

or equivalently

1
(et z>v;7v1- + V||Vef||?z,- + 1 Z

jez K jGI
o
4 Z 7||h‘ HF” 4 Z || i 1HF”7
JEL; jEI
(recall that notation || - ||p corresponds to the L?(D)-norm for any set D).

1 1 _
V(Vef’ Vef)ﬂqz + 4 Z s (hfj ' hﬁzv hé ! hﬁz)F”
jer; Y
4 Z 6” - Cjz’ - C_]z) iy

jEI

(6.5)

=1 pf—1 Z 1 ~0—1 4
B Z o h ij ’hij Tij +35 Z ,6 z_] vCij - Cji)ri]‘?
©J U

]EZ ]EI

1
a--” ||1“”+ Zf”(ﬁ”ru

(6.7)

Adapting (3.6) to €2, integrating (6.7) on (0,T), and using that ef(0) = 0, we get

T
ndawa+agéuv@a

o [ i, e Y

]GI Yij JET; Bij

—ZQQ/Ih LY [ o ol

JEL; JEL;

Then, summing with respect to ¢, from 1 to M, we get

Zne )3, +2u2/ Vel + EY = BS Y,

where E% = ZZ 1

Z]EI 2ﬁ” fO || Iy +Zz IZJGI 204” fO H

Summing now with respect to ¢, from 1 to L, we obtain

B3

(=1 i=1

el HQHVZZ/ IVel|l3, (t)dt + B% = EY,.

(=1 i=1
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As Bf > 0 for all L, the sums 3, 3307 llef(, 7)1, and S0y X%y Ve,
are bounded; hence [|ef(T)||3, and fOT [Vel|[3, (t)dt tend to 0 when £ — oco.

In addition, in (6.8), we can integrate on (0,t) instead of (0,7), and we get for all
€(0,7)

L M
YD lefdl?, < B
(=1 i=1

This first leads to the convergence of ||e(t)||q, to 0 for all # and thus to the convergence
of ef to 0 in C°([0,T7], H;), but also to the fact that, integrating on (0,7), it holds
that

ZZ/ et (t) 13, dt < TEY.

(=1 i=1

This implies that fOT lef(t)||3,, dt tends to 0 when ¢ — +oo. Then, summing with
fOT [Vef||§, (t)dt that also tends to 0, we have that fOT llef( t) |71 (0,2 @t tends to 0,
or, in other words, that ef tends to 0 in L2((0,T), V;), for i € [1, M]] 0
Now, we prove a convergence result for the pressure. We set P(t fo s)ds and

P, = P|g, and denote the error by D!(t) = (Pf — P))(t), i € [1, M]] Then we can
state the following result.

COROLLARY 6.3. Let all hypotheses of Theorem 6.2 be satisfied. Then for all
1
€ [0,T) it holds that | D¢(t) — o Jo, Dit

Proof. Let i € [1,M]. As (u;,p;) is the strong solution of the Robin problem
with boundary conditions g;;, &j, j € Z;, then P; verifies a variational formulation
similar to (4.6) : Vv € X, it holds

t

(ui(t)v‘/)gi—(uo,uV)gﬁ/O a;(ui(s), v)ds—( i(t)N‘V)szi—/ ci(s,v)ds =0 (6.9)

0

Then, from (4.6) and (6.9), taking the test function v € [H] (Qz)]2 C X;, the bound-
ary terms in cf(s, v) and ¢;(s, v) vanish and then cf(s, v) —¢;(s, v) also vanishes. Then
we get

2

(D(t),V - v)a, = (ef(t),v)ﬂi —l—/o a;(ef(s),v)ds Vv € [H} ()]

As (¢,V - v)q, = 0 for all constants ¢ and v € [H&(Qi)}z7 the above formulation
implies that Vv € [HZ ()]

1 t
(D) =7 [ DIOT v)a, = (el0). ), + [ aslel(s) v)is
il Jo, ‘ 0
Since (Df — |Q | fQ ) € LE(%) = {p € L i)anip = 0}, i € [1, M], from the
inf-sup condition there exists 73 s.t.
) . |(ef<t>,v)9_ [ aiel(s),v)ds|
1Dt = o [, Pl ;s 1 |
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We apply again the continuity of a;(.,.)

\/al ds|<M/ lef(s

as well as the Cauchy-Schwarz and Poincaré inequalities on (ef(t), v) q, We get

1 1
D Q-S*[
|ﬂi|/g,. o <

with Cp, the Poincaré constant of €2;. From the convergence of the velocity, we get
the corollary. 0

[HE (9 )]zﬁ”ef”Lz((O,T),Xi)

1D —

e (t)

zeHL?((O,T),Xi)]

Remark 6.4. Corollary 6.3 tells us that, when ¢ grows, the (time primitive of
the) pressure converges to 0, up to constant values in space, possibly depending on
the subdomain €2; and iteration count ¢. And, indeed, numerical results given in
Section 10 show that pressure iterates do not converge to the monodomain solution,
unless a correction is applied, which is the object of the next Section.

7. Recovering the pressure. Let us introduce the notation (p)o = ﬁ /. o bdx for

the mean value of a function on a domain O (whatever the space dimension of O).
We set df := p; — pf, i € [1, M], and recall that hfj is defined in (6.3).

Hypothesis 7.1. In this section, we suppose that, for a.e t € (0,T)
e [|d} — (d%)a, |, — O for all i when £ — +o0
e ((d)r,, — (df)q,) tends to O for all j € Z;, for all i, when £ — +o00
. ((hfj>pij + a;;(d)r,,) — 0 for all j € T;, for all 4, when £ — +00
Remark 7.2. The above hypothesis can be implied from stronger assumptions on

the regularity and convergence of the velocity. Indeed, suppose that (e f ,df) is the
strong solution of the following Robin problem

el —vAef +Vd: =0 in  Q;x(0,T)
Vel =0 in  Q;x(0,7)
ef(,t=0) = in
ef =0 on (02N 9Q;) x (0,T)
@ij(VOy, €8 -ny; —df) +ef ny; = hfj on T x(0,T)
Buyamjef X n+ ef X1n;; = fj on F x (0,T)

with the following convergence
Hef||L°°((O,T),[H2(Qi)]2) — 0, ||atefHLOC((O,T),[N(Qi)]Z) —0.

From this, we get, for a.e. t € (0,T), |[Vd‘(t)|lq, — 0, which implies the first and
second items in Hypothesis 7.1. This also implies the convergence of trace of the

velocity: for a.e. ¢t € (0,T), we have [|a;;v0n,, € (t) - n;; + €f(t) - nj|r,, — 0 that
leads to the third item in Hypothesis 7.1.
One can rewrite the three items in Hypothesis 7.1 on the error as follows :
when ¢ — +oo, Vi € [[1, M],
1(0f —pi) = (e, — (Pida)lle, — 0, (7.1)
(i = pi)r,,) = (0F = pi)e,) — 0, VjeL,
(g5, — (gij)r,,] + iy (P — pi)r,, — 0, Vi€ (7.3)
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Expression (7.1) shows that pf(t) will tend to p;(t) if and only if the mean-value of pf (t)
on 2; tends to the mean value of p;(t). However, no constraint was imposed on the
mean-value of pf (t) in the algorithm, since, thanks to the Robin boundary conditions,
such constraint is not necessary to obtain local well-posed problems at each iteration.
In Section 5, we observed cases in which pf{ does not converge to the monodomain
solution p;. In this section, we build a modified pressure p¢ such that p¢(t) tends
to pl(t) in Lz(QZ), 1= 1, ceey M.

Let us denote X;(t) := (p;(t))q,, Vi € [1, M]. Then, using this notation, (7.1) reads

1(pi () = (Pf (D), + Xi(t)) = pilD)]|2(0,) — O when £ — oo, (7.4)

From (7.4), we see that (p{(t) — (p{(t))o, + X;(t)) is the right approximation to
calculate at each iteration since it tends to p;(t). However, we do not know how to
calculate it because X; is not known. A similar question was raised in the thesis of
Lissoni [33, Theorem IV.3.9] at the discrete level, within a Schwarz algorithm applied
at each time step of a time marching scheme for the numerical approximation of the
incompressible Navier-Stokes equations.
We introduce below a new quantity Yf (t), fully computable at any given iteration £,
that tends to X;(t) when ¢ tends to infinity, from which we will define the modified
pressure ﬁf .

To ease the presentation, we shall set |I';;| = 0, a;; = 0 and gfj =0if j €T,
Moreover, we introduce the constant matrix

M
A = (aij)lgi’jSM, With Qi = Z |1"ij|aij, and aij = —|Fji|0éji lfj 752
J=1,j#i
together with the constant vector C = (|Q],|Q2],...,|Qx|) and the sequence of

vectors (B*),, with B = (B{, BS, ..., B,)! defined as

M M
Bf = Z ‘F2J| |:<gfj>Fij + Oéij<pf>ﬂi} - Z |le| |:<g§i>rji + aji<p§>ﬂj:| .
j=1 j=1

THEOREM 7.3. Assume that o = o, V(i,7). We have the following properties
(i) For all ¢, the following system

Ayt = BY,

7.5
cYyt =0, (7:5)

has a unique solution Y% € RM .
(ii) Moreover, we have Y — X 1= (X1, Xo,--- , Xps) in RM, and for all t

||ﬁf — pillL2(0;) — 0, when £ — oo, with ﬁf(t) = pf(t) — (pf(t)}m + Yiz(t

Proof of (i). The proof of Theorem 7.3—(7) relies on two main steps:

(a) Existence of solutions to the system AY* = B,

(b) Existence and uniqueness of a solution to system (7.5) thanks to the additional
constraint CY* = 0.
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OSWR FOR INCOMPRESSIBLE STOKES PROBLEM 17

Let us start with (a). Because a;; = «j;, it holds that A is symmetric and then

existence of at least one solution to the system AY* = B is equivalent to proving

that B’ € Im(A) = (Ker(A))+. Thus, we start with the determination of Ker(A).
Let Y = (Y1,Ya,...,Yy)" € Ker(A). Then, we have >3 a;;Y; =0, Vi € [1, M].

As a;; = aj;, we have a;; = — Zj\il i Qi which implies
M M M
0= ayV¥i=| > ay¥i¥i|+au¥?= Y ay(V;¥i-Y7).
i=1 =1 =15

Summing the above expression in ¢, and using that a;; = a;;, we obtain

M M
ST (YY) =) ay (Y- Y;)2=0.

i=1 j=1,j#1 1<j

As a;; < 0 for all (¢,7) with ¢ # j, and a;; < 0 as soon as subdomains ¢ and j are
neighbours, this implies that Y; = Y; for any pair of neighbouring subdomains ¢ and j.
Since (2 is connected, this finally implies that all Y; are equal i.e. Ker(A) = span(e)
with e = (1,1,...,1,1). Then, B* € (Ker(A))* is equivalent to B -e = Zf\il Bf =0.
This is proved in the following way:

M M M M
ZBf = Z Z |PZ]| (<g’fj>rij + aij<pf>91‘) - Z |FJ1| (<g§i>rji + O‘ji<p§>ﬂj)
i=1 i=1 | =1 j=1

Denoting Aj; := [Ty ((95;)r,, + @ij(p)a, ), we obtain

M M M M M

DOBI=Y ) A=) ) Aji=0.

i=1 i=1j=1 i=1j=1
Let us now turn to (b). From (a), we know that there exists at least a solution
to AY = B; we let Y* be such a solution. All other solutions may be written as
Y = Y* 4 pe, with 4 € R. Existence of a solution to (7.5) follows from the fact
that Ce = |Q] # 0: Choosing p = —ﬁCY* leads to CY = CY* + uCe = 0
and then Y solves (7.5). As far as uniqueness is concerned, let Y7 and Y3 be two
solutions of (7.5); since (Y7 — Y2) € Ker(A), then (Y; — Y3) = Te, with 7 € R. Since
7| = 7Ce = C(Y1 — Y2) = 0 it follows that 7 = 0 and Y7 = Y5. This ends the proof
of Theorem 7.3—(7). 0

Proof of Theorem 7.3-(ii). It relies on the two main results:
(c) B* - AX in RM,
(d) CX =0.

Let us prove (c¢): from the divergence-free property of u;, we have

0= / V'lli :/ u; - npQ, = Z / u; - Ngj. (77)
Q; o0, JET; Ty

Moreover, from the definition of g;; in (6.1a) and the physical transmission condi-
tions (2.4), we have

ITij[{gij)rs; — IT5il{gji)r;, =/ (9ij — 95i) = 2/ u; - n;j. (7.8)

Tyj Tyj
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18 D.-Q. BUI, C. JAPHET, AND P. OMNES

Hence, from (7.7) and (7.8) we get

Z L5 (gi5)r i Z ITjil(gji)r ji* (7.9)

JEL; JEL;

Expression (7.3) is equivalent to
(g9r,, + i (Pl — pi)r,, — (9ij)r,- (7.10)

From (7.2), we may replace (p{ — p;)r,, by (pf —pi)q, in (7.10), then multiply by |T';;|
and sum over j € Z; for a given ¢ to obtain

Z |F1J| gzg> Tij +azj< —pi)e.| — Z Ts51(gis) T, - (7.11)
JEL; JETL;

In exactly the same way, we also obtain

Z ‘F]Z| g]z> Tji +0‘Jz< —Dpja 7} Z ITjil{gji)r i (7.12)
JEL; JEZ;

Using (7.11), (7.12) and (7.9), we obtain

Z IDs5] [{g55)r., + i (09, — aij(pi)a]

JEL;

=Y il [ghor,, + ajipha, — ajilpia,] — 0,
JEL;

or equivalently

Z |FU| gz]> Dij +a1]<pz Z |F]Z| g]z> ﬂ+0‘]z<p]> ]

J€TL; JjEL,;

— Z ‘F23|au pz Z |Fﬂ‘aﬂ pJ

JEL; JETL;

This is exactly B¢ — AX.
Let us now prove (d): We have

M M
[r=3 [ pi= Y ua =0,
Q i=1 74 i=1
le. CX =0.

We now prove Theorem 7.3—(ii): From the solution Y of (7.5) given by Theo-
rem 7.3-(i), and from (c) and (d), we have A(Y* — X) — 0 and C(Y* — X) = 0.
Uniqueness of a solution to AZ = B and C'Z = 0 as soon as B is in Im(A) and finite
dimension now imply that (Y* — X) — 0 when ¢ — oco. Then, from (7.4), with a
triangle inequality, we get (7.6). |

Remark 7.4. In the general case of M subdomains, the calculation of p¢ is done
only once, at the last OSWR iteration. It involves solving the coarse problem (7.5)
when M > 2, and is given by an explicit formula when M = 2 (see Corollary 7.6),
thus the cost of calculating the modified pressure is negligible.
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Remark 7.5. Recovering the correct pressure could also be performed from the
fact that V(pf — p;) tends to zero when ¢ — co. Indeed, for a given €;, choosing first
an arbitrary point x; € €);, then one may write

pi(x) = pi(x;) + (x — %) - /0 Vpi (x; +t(x—x;))dt , Vx € Q.

Then, one could replace Vp; by fo to obtain approximate values of the pressure at
each point x. However, this formula holds on a given subdomain €2;. In order to relate
values of the pressures in 2; to those in a neighboring subdomain €; through this
kind of formula, one needs to choose a point on the boundary I';; that will serve as
the point x; in the subdomain 2, and so on. At the discrete level, there are several
drawbacks to that: this requires further communications between subdomains, the
pressure gradient at the boundaries may not be easy to define (e.g. when the pressure
is defined as a piecewise constant field like in the Crouzeix-Raviart finite element),
and finally there are many ways to go from one cell to another in the mesh, and, due
to round-off errors, this may lead to different evaluations of the pressure at a given
cell in particular in very large scale computations.

In the two-subdomain case, we use the same notation as in Section 5. Then the
calculation of pf can be done by the following explicit formula.

COROLLARY 7.6. Let M =2, a = a3 = ag, and define, fori=1,2 and j = 3 —1,

ot =t + S |ttt =t | = Tt = S5 e,

Then ¢ tends to p; when { tends to infinity, fori=1,2.
Proof. For M = 2 we have

By = —B; =T| [(g91)r + apr)a,] — 1| [(g5)r + alp2)es.],

[l —afT|
ALWW@M’

C =[] [9Q]].
System (7.5) for M = 2 has a unique solution given by

vi = %ﬂ(%ﬁ<@ﬂﬂﬁm%mﬂ

|24

s = ot | St = i) + (ko — o)

From theorem 7.3, we have

Qs 0 Q2
ot = e +v7 =t + 2 [ 2 athe — )] - S0, - F2l 00, -

Q Q Q
o~ hle + ¥ = s+ L [ 2 athe — i) = Sl e, - E2l0ha, - o
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8. Convergence factor via Fourier transform. The aim of this section is to find a

way to conveniently choose the parameters (a, 8) that play an important role in the
actual rate of convergence in numerical experiments.
Let = R2. We consider two subdomains €; = (—00,0) x R and Qs = (0, +0) x R,
as commonly done for the analysis of OSWR methods. To simplify notation, we set
I':=T15 =T9; = {x = 0} x R, and denote a2 and az; by a; and ag, respectively.
We denote u = (u, v) the two components of the velocity and set f = (f,, f,). Recall
here the Stokes problem

O —vAu+ Opp = fi
Ov—vAv+0yp =f, ,in Qx(0,7)
Oyu+0yv =0
u(,t=0) =wug
v(,t=0) =vy ’
u,v —0 ,when |[(z,y)] = +oc.

in Q

We write the algorithm for the errors using the same notation (u, v, p), which means
that, by linearity, we set f, = f, = 0 and ug = vg = 0. To avoid additional notation

for the Robin terms, we write the OSWR algorithm as follows: starting with u{, vY, p?,

at step £ > 1 and provided uf_l, vf_l,pf_l we solve

oyt — vAut +0,pf =0
ot — vAVE + Oypt = , in Q; x (0,7)
Opul + 0yvf =0
ué(,t=0) =0
vi(,t=0) =

ub 8 — 0  when |(z,y)| = +o0

1) 7

together with transmission condition on I' x (0,7"), for i = 1,2 and j =3 — i :
0i(vdzuf —p) + (=1 uf = 0i (WOt — ) + (1)
VBi0avf + (—1)" ) = vB;0,05 7 + (—1)" i
Let us consider the system in 21, and let £ > 1. Taking the Fourier transform in time
and in y-direction with time frequency w and space frequency k # 0, and, for the sake
of simplicity, keeping notation u, v instead of 4, v, we get

iwut — vt + vkPul 4+ 0,p8 =0, (8.1a)
iwvt — v0,,vf + vk*t + ikpl =0, (8.1b)
Dyl + ikt =0. (8.1c)

By differentiating equation (8.1b) with respect to &, multiplying (8.1a) by (—ik), and
summing the resulting equations, and denoting w! := 9,0 — iku{ the vorticity, we
get the vorticity equation

iwwt — v, w4+ vk*wt = 0. (8.2)

iw
Denote by A = 4/k? + — with positive real part. As w; vanishes at —oo, one gets
v

wt = Efexp(\z) (8.3)
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Using the definition of w; and differentiating (8.1¢), we get, for uy

The homogeneous equation associated to (8.4) has characteristic roots +|k|.

2 I
Dpautt — K2ul = —ikw?.

21

(8.4)

As

Ul

and v; vanish at —oo, we only retain the root |k|. Given the form (8.3) of the right-
hand side of (8.4), its solution can be written under the form

uf = A’ exp(|k|z) + B exp(\z),

with A%, B¢ € C. Then, using (8.1c) and (8.1b), we get

= 4t |k‘ exp(|k|z )—i—Bé%exp(Ax),

zw
i = —A" i exp(lkla).

Similarly, for domain Q,, there exist C*, D* € C such that

= C*exp(—|k|z) + D’ exp(—\z)

N|k|

vh = 0" W oxp(—[kla) — D2 exp(- )

cfm exp(—|klz)

Replacing the above expressions in the transmission conditions, we obtain

a1 (v|k|A* + vAB® + —Ae) + A4+ B =

||
ar(—v|k|C*= — pAD ! — %CH) +C01 4D
£\ 2
VB (ikA” + %B )+ Z'“M + Zk)\B‘
22 |k i\
VB (kO + %Deq) _ Mce _ %Dé_l

and

oo (—v|k|C* — vAD* —

VB (ikC* + %D )+

l—1

Cf) ct - Dt =
Ikl
as(v|k|A + UAB! 4 %AH) _ At gL
I\ Z|k| 0 Dt
ctq 2 k =
AT 4 iIN M 5_@ —1
vBa(ikA BT - A= B

These transmission conditions can be written in matrix form as follows :

M(az, B1) (A

¢
B@

> = N(ay, 1) (gii) and M(az, B2) (gi) = N(az, 52) <
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22 D.-Q. BUI, C. JAPHET, AND P. OMNES

where
2 2
1+V°]‘:|‘ 1+ avh 1—”3:" 1— avh
M(a, B) = i [k vBN? L . N(a,B) = . [k vBA2 A
g E k& g E kK
(8.5)
This leads to the following recurrent formulation
AZ A£72
<BZ> = R(a1, az, 1, B2) <Bzz> ) vl > 2, (8.6)

where

R, a2, B1, B2) = M aw, BN (a1, BL)M ™ az, B2)N (az, B2). (8.7)

In view of (8.6), the convergence properties of the OSWR algorithm, and in particular
its rate, will depend on the spectral radius of the matrix R defined in (8.7).

Remark 8.1. If one sets & := v and 8 := vf3, as well as @ := ¥, then matrices M
and A (defined in (8.5)), depend only on &, 3, on @ and on k. Thus, when v varies,
the convergence rate remains unchanged if & and j are kept constant and if the range
in which @ is considered does not change. As will be seen in Section 9, this is the
case if vAt and vT are kept unchanged. This observation coincides with the fact
that the non-dimensional form of the Stokes equation is not modified when vT is kept
constant.

Remark 8.2. When k tends to 0, the spectral radius of the matrix R tends to 1.
This is coherent with what was observed in Section 5 and in Remarks 4.3 and 6.4,
which led us to the pressure correction described in Section 7.

Remark 8.3. When k and w tend to +oo, the spectral radius of the matrix R
tends to 1. This implies that analysing the iteration matrix does not help to prove
the general convergence (for all frequencies) of the algorithm, and one always needs
the energy estimate technique of Section 6 (for another example, see [10]).

Remark 8.4. In practical experiments, all equations are discretized in space and
time. As far as space discretization is concerned, the solution of the discrete version
of (8.2) remains close to (8.3) if the space discretization parameter is small enough
with respect to \/g ; since w is in practice bounded by X3, we expect that the above
Fourier analysis may remain close to practical experiments if the term v/vAt is large
enough compared to the space discretization parameter. This has indeed recently
been observed for the heat equation in [2]. As far as time discretization is concerned,
the inclusion of its effect in the convergence analysis of OSWR methods is a current
topic of research, and is for example addressed in [15] where a Z— transform is used
and in [2], where a discrete-time analysis of the OSWR method is proposed. This
issue is also addressed in Section 9.2.

9. Optimized Robin parameters. One can choose oy, s, 81, 82 to minimize the
convergence factor of the continuous OSWR algorithm, defined in the above section.
Such parameters are called continuous optimized parameters. However, for the in-
compressible Stokes problem, we will see in the numerical experiments of Section 10
that better results can be obtained by minimizing the discrete-time counterpart of
this convergence factor. The corresponding parameters are then called discrete-time
optimized parameters. Both of these optimization procedures are described below.
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9.1. Continuous optimized parameters. From Section 8, the convergence factor is
o(R(ay, aa, B1, B2, k,w)), where R is defined in (8.7), and o(R) denotes the spectral
radius of R. While we have (km?ux]R2 o(R(a1, @z, B1, B2, k,w)) = 1, we can use this

,Ww)Ee

convergence factor to calculate Robin parameters for numerical computations, for
which the frequencies k and w are bounded (by frequencies relevant to the global
space-time domain and the ones supported by the numerical grid). Thus, we set
Q(R(ala a2, 617 ﬁ27 ka w))a

<w< A

a;

)

pelon, az, Br, f2) =

=
s EI

<k<

Bl
>

T

where L is a characteristic size of the computational domain and hr is a measure of
the mesh step size on the interface (typically the mean-value of the segment lengths).

Let us consider the one-sided Robin case a := a; = as = p1 = (2, and set
pe(@) = pe(a, ay a, @) Then, the continuous optimized Robin parameter «. is defined
as a solution of the following minimization problem :

peac) = min pe(a).

9.2. Discrete-time optimized parameters. One can also consider the semi-discrete
in time counterpart of the continuous convergence factor to better capture the discrete-
time frequencies, i.e. replace in the expression of R the term iw by its discrete counter-

part using the implicit Euler scheme, that is we replace iw by 1‘%?“. Equivalently,
we replace in the expression of R (in (8.7)) the term w by @ := —i (#), and

set RAt(ah a2, 617 ﬁ?a k,W) = R(ala a2, 617 62, kaw)
Then, as above, we define

o(a, as, B, = ma Ra(ar, as, b1, B2, k,w)).
plar, az, B, B2) S o(Rat(on, oz, Br, Ba )
Let us consider the one-sided Robin case o := a3 = as = 1 = 2, and define

pla) == p(a, o, v, ). Then, the Discrete-time (DT) optimized Robin parameter o is
defined as a solution of the following minimization problem :
p(a”) = min p(a).

Remark 9.1. On could also consider optimized Robin-2p parameters («, 8) with
a = o = ag, B := B = P, or 2-sided parameters (v,d) with v 1= a; = i,
0 := ag = 2, that optimize the continuous or discrete-time convergence factors as
done in [9]. Given their additional complexity, these more general cases will not be
considered here, and are the subject of a subsequent article.

10. Numerical results. In this section, we present numerical experiments that il-
lustrate the performances of the OSWR method of Section 4, with Freefem++ [27].
For the space discretization we use the nonconforming Crouzeix-Raviart Finite Ele-
ment method in 2D (i.e. piecewise linear elements continuous only at the midpoints
of the edges of the mesh for the velocity u = (ug,u,), and piecewise constant Py
elements for the pressure p), and consider the backward Euler method for the time
discretization.

In what follows, the term "monodomain solution” will refer to the fully discrete
solution obtained on the global mesh without domain decomposition.

We set Q2 =]0,1[x]0, 1[, T = 1, and consider the Stokes problem (2.1), where the
value of the diffusion coefficient v will be specified in each of the examples below.
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From Remark 9.1, only one-sided Robin parameter a := a3 = ay = 1 = [y will
be considered. In particular, we will use the theoretical optimized values a. and o*
defined in Section 9, which are calculated using the function fminsearch of MAT-
LAB [37]. Random initial Robin data on the space-time interfaces will be used, unless
specified.

In Section 10.1 some results are shown on the convergence of the OSWR algorithm,
without and with modification of the pressure as in Section 7. In Section 10.2 we
illustrate the influence of the Robin parameter on the convergence of the algorithm,

D.-Q. BUI, C. JAPHET, AND P. OMNES

and then in Section 10.3 we present results on a more realistic test case.

10.1. Recovering the pressure: a rotating velocity example. The diffusion coef-
ficient is ¥ = 1 and we choose the right-hand side f and the values of the boundary

and initial conditions so that the exact solution is given by

On Figure 1 we show the velocity field u (on the left), and the pressure p (on the

u(x,t) = (— cos(my) sin(wx) cos(2nt), sin(my) cos(mx) cos(27t)),
p(x,t) = cos(t)(z? — y?), Vx e Q, Vt € (0,T).

right) at final time ¢t = 1.

The domain 2 is decomposed into nine subdomains as in Figure 2, and two meshes
will be considered (as shown on Figure 2), with mesh sizes h = 0.0625 and h = 0.0312

05
: 04
- 03
- 02
. 01
. 0
. -0.1
) 0.2
) -0.3

0.4
l 0.5

0 0.2 0.4 0.6 0.8 1

Fic. 1. Ezample 1: rotating velocity field (left), and pressure (right)

respectively. To each mesh, the associated time step is At = h.

S——
IR

avave

.u
70
e
5

R

o
5
R
K

0
N
o
=

o
X4
S

iy

e

o,
R

X

Fic. 2. Ezample 1: mesh 1 (left) and mesh 2 (right)
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We choose a; = ag = 1 = P2 = o, where o* is the DT-Optimized Robin
parameter defined in Section 9.1, whose value here is o* ~ 3.0832 x 10~! for mesh 1
and a* ~ 2.2719 x 10~! for mesh 2.

On Figure 3 we show the evolution of the relative errors, of p, u, and u,, in the
L>(0,T; L?(£2))-norm, between the OSWR and monodomain solutions, as functions
of the number OSWR iterations, for mesh 1 (left) and mesh 2 (right). The top
figures are with non-modified pressure, and the bottom figures are with the modified
pressure pi, i = 1,2, at each iteration ¢ (defined in Section 7). We observe that,
with the non-modified pressure, the method converges for the velocity but not for the
pressure, as expected from the observations of Section 5 and Theorem 6.2. On the
other hand, with the modified pressure, we see that the method now converges both
for the velocity and the pressure, accordingly to Theorem 7.3.

0 J 0 % J
| error on LIX error on LIX
—— erroron u, —— erroron u
error on p error on p
_5 F _5 L
-10 -10
-15 - : 15 . .
0 50 100 150 200 0 50 100 150 200
iterations iterations
04 0
error on u, § error on u,
—_+— erroron uy o \\\ —+— error on uy
|—— erroronp \\ |—— erroron p
5 F 5 o
N
\\\\
\\\
-10 ¢ -10 ¢ \\\\,
N
N
-15 e -15
0 50 100 150 200 0 50 100 150 200
iterations iterations

Fic. 3. Ezample 1: relative errors (for ug, uy and p) versus iterations with non-modified
pressure (top), and modified pressure (bottom), for mesh 1 (left) and mesh 2 (right)

Remark 10.1. Even if we calculate a modified pressure at each iteration, we do
not use it in the transmission conditions of Algorithm 4.1, thus this does not change
the velocity convergence, as shown on Figure 3.

Remark 10.2. Here and in what follows, the pressure is modified at each iteration
to illustrate the convergence of the multidomain solution to the monodomain one. A
consequence of Remark 7.4 is that in practice one needs only to modify the pressure
at the last OSWR iteration, which makes the cost of the modification negligible.

10.2. Optimized Robin parameters. The domain {2 is decomposed into two sub-
domains as in Figure 4, and we consider the three uniform meshes of Figure 4, with
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mesh sizes on the interface and associated time steps equal to hr = At = 1/12,
hr = At = 1/24, and hy = At = 1/48, respectively. In order to analyze the con-
vergence behavior of the method, we simulate the error equations (i.e. we take ho-
mogeneous initial and boundary conditions, and f = 0). Thus, the OSWR solution
converges to zero.

SR
SRR
PORKK

F1G. 4. Ezample 2: mesh 1 (left), mesh 2 (middle), and mesh 8 (right)

10.2.1. Case with a fixed mesh and different values of v. We consider mesh 2 (i.e.
hr = At = 1/24). In Figure 5, we plot the evolution of the continuous convergence
factor p. (on the left) and of the discrete-time convergence factor p (on the right),
as functions of the Robin parameter «, for different values of v: v = 1 (solid line),

= 0.5 (dashed line), v = 0.1 (dash-dotted line), v = 0.05 (dotted line). The
theoretical optimized values a, (blue circle) and a* (red star), are also shown. We
observe that both a. and a* increase when v decreases. However, the values of a.
and o™ are very different, and when v decreases, a* increases faster than ., with an
associated p(a*) that increases slower than p.(a.).

0.75 = 1
07 =05 ||
oest| /T v=0.1 1]
""" v=0.05
0.6 o play)
0.55 0.3
0.1 0.2 0.3 0.4 0.5 1] 0.1 0.2 0.3 0.4 0.5

Fi1G. 5. Ezample 2: continuous (left) and discrete-time (right) convergence factors versus .,
with ae (blue circle) and a* (red star), with hr = At = 1/24; for v =1 (solid line), v = 0.5 (dashed
line), v = 0.1 (dash-dotted line), v = 0.05 (dotted line)

In Figure 6, we plot the evolution of the relative errors, of p, u, and u,, in
the L>°(0,T; L*(Q))-norm, in logarithmic scale, after twenty OSWR iterations, as
functions of the Robin parameter . We also show the values of the errors obtained
with optimized parameter o« = o, (blue circle) and DT-optimized parameter o« = o*
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(red star). The figures correspond to v = 1 (top left), v = 0.5 (top right), v = 0.1
(bottom left), v = 0.05 (bottom right). We see that o* is close to the numerical Robin
value giving the smallest error after the same number of iterations, while o, gives a
larger error.

erroron u erroron u

———error on Uy ———error on Uy

———erroron p
*

® errors at o
o errors at o]

error on p

*
® errors at o
o errors at acl

L>-L2 error at iteration 20
IS

L-L2 error at iteration 20
IS

“o 0.1 0.2 0.3 0.4 0.5 0.6 “o 0.1 0.2 0.3 0.4 0.5 0.6

error on u error on u
x 0.5 X1
S ——erroronu, S ——erroronu,
P error on p c -1f o error on p
S . *| 4 S N . *
E=] errors at « E=] errors at o
il C st q
5 o errorsata |. 5 o errorsatag
= - =
® ® -2
. .
o o
= T 25
() CU
N - ~ P
' T -3 4
8 4 8
- -
asl 3.5
5 -4
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
« «

FIG. 6. Ezample 2: Relatiwe errors after 20 iterations (for uz, uy and p) versus o, with their
values at o (blue circles) and at o* (red stars), with hp = At = 1/24; for v =1 (top left), v =0.5
(top right), v = 0.1 (bottom left), v = 0.05 (bottom right)

10.2.2. Case with v fixed and different space-time meshes. Let us take v = 0.1.
In Figure 7, we plot the evolution of the continuous (left) and discrete-time (right)
convergence factors, versus «, for different space-time meshes with hp = At = 1/12
(solid line), hyr = At = 1/24 (dashed line), and hr = At = 1/48 (dash-dotted line).
The theoretical optimized values o, (blue circle) and a* (red star) are also shown. We
observe that both a, and a* decrease when the space-time mesh is refined. However,
the values of o, and a* are again very different.

In Figure 8, we plot the relative errors, of p, u, and u,, in the L>°(0,T; L%(Q2))-
norm, after twenty OSWR, iterations, versus Robin parameter «, for mesh 1 (top
left), mesh 2 (top right), and mesh 3 (bottom). We also show the values of the errors
obtained with a@ = « (blue circle) and a@ = o* (red star). We observe that o* is
close to the numerial Robin value giving the smallest error after the same number of
iterations, while o, gives a larger error, for all space-time meshes considered.

10.3. A more realistic test case. In this example we take v = % with Re = 200,
and T'= 5. The mesh is given on Figure 9, with 22232 mesh elements. The domain is
decomposed into two subdomains, with the interface at y = —0.9, see Figure 9, where
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Fic. 7. Ezample 2: continuous (left) and discrete-time (right) convergence factors versus «,
with ac (blue circle) and o (red star), with v = 0.1; for hp = At = 1/12 (solid line), hr = At =
1/24 (dashed line), hp = At = 1/48 (dash-dotted line)

erroronu, | |
———error on LIy
———erroron p

|
® errors at o
o errorsata |

0.2 0.3 0.4 0.5 0.6
&%

L>-L2 error at iteration 20

erroronu | |

———error on uy

———error on p
® errors ata’ |

o errors at a4

—

L>-L2 error at iteration 20

error on UX
———error on Uy
————error on p

*
® errorsata |
o errors at ac

0.4 0.5 0.6

0.4 0.5 0.6

F1G. 8. Ezample 2: Relative errors after 20 iterations (for ug, uy and p) versus a, with their
values at a. (blue circles) and at o* (red stars), with v = 0.1; for hp = At = 1/12 (top left),
hr = At = 1/24 (top right), hp = At = 1/48 (bottom)

domain 1 corresponds to the green and yellow parts, and domain 2 to the black part.
The time step is At = 0.05.
We set Q; = [—2.625,1.625] x [—0.9, —0.6], represented by the yellow part of the
mesh on Figure 9, and which corresponds to the location where the source term f in
the Stokes equations does not vanish. Two different values for this source term will
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be used in the numerical tests that follow.

TP ATATAT S IATA S
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D

Fic. 9. Example 3: mesh and domain decomposition

In Figure 10, we plot the evolution of the continuous convergence factor p. (left)
and discrete-time convergence factor p (right), as functions of the Robin parameter «.
The theoretical optimized values a. (blue circle) and a* (red star) are also shown,
and their numerical values are . =~ 3.2283 x 1072 and o* ~ 6.6063 x 10~!, and differ
from about a factor 20.

1 1
\
— P \
0.999 0.98
o pla) \
0.998 0.96 1
-
\ _—
0.99 \ 7
1997 0.94 /
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F1G. 10. Ezample 3: continuous (left) and discrete-time (right) convergence factors versus o,
with corresponding theoretical optimized values o (blue circle) and o* (red star)

In this example we consider two different source terms in Q x (0,7'): a constant
one: f = —2, and then a variable in time one: f = —2 (sin(nt) + cos(4nt)).

In Figures 11 and 12, we plot the pressure p and the velocity field (uy,u,) re-
spectively, at times t = 1 and t =T = 5 (with a fixed color bar for p), for the case f
constant. We observe that the stationary state is not reached yet.

In Figure 13, we show the evolution of the relative errors, between the OSWR and
monodomain solutions, of ug, u,, and p, in the L>(0,T; L?(£2))-norm, as functions
of OSWR iterations, for & = a,. (cyan, green and blue curves) and o = o* (magenta,
red, and black curves), with zero initial Robin data, with f constant (left), and f
variable (right). For o = «*, the curves of u, and p are quite close, with a faster
convergence for u,. For a = a,, the curves of u, and u, have almost the same speed of
convergence, with a slower (resp. faster) convergence for p for the first iterations, for £
constant (resp. variable). Moreover, the convergence is much slower with oo = a. than
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IsoValue

IsoValue

Fic. 11. Example 3 (f constant): Pressure att =1 (left) and at final time t = 5 (right)

Vec Value

Fi1c. 12. Ezample 3 (f constant): Velocity field at t =1 (left) and at final time t =5 (right)

with a = «o*. This illustrates the importance of the effect of the numerical scheme
used in the time direction.
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