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En fait, c’est cela la chose remarquable, quand
on pose la question : « A quot sert socialement
la science ? », pratiquement personne n’est
capable de répondre. Les activités scientifiques
que nous faisons ne servent d remplir
directement aucun de nos besoins, aucun des
besoins de nos proches, de gens que nous
puissions connaitre. Il y a aliénation parfaite
entre nous-meéme et notre travail.
Ce n’est pas un phénoméne qui soit propre a
lactivité scientifique, je pense que c’est une
situation propre a presque toutes les activités
professionnelles a lintérieur de la civilisation
industrielle. C’est un des trés grands vices de
cette civilisation industrielle.
Alexandre Grothendieck
Allons-continuer la recherche scientifique ?,
1972

Yesterday I found the courage at last to study
your mathematical manuscripts even without
reference books, and I was pleased to find that I
did not need them. I compliment you on your
work. The thing is as clear as daylight, so that
we can’t wonder enough at the way the
mathematicians insist on mystifying it. But
this comes from the one-sided way these
gentlemen think.
Friedrich Engels
Letter to Karl Marz, 1881



Résumé

Cette these porte sur 'action de membranes, un mécanisme qui munit I'espace des
extensions de I'opération identité dans une oo-opérade cohérente O% d’une struc-
ture canonique de O-algebre dans 1’oco-catégorie des cocorrespondances d’espaces.

Dans un premier temps, on démontre que la construction donnée par Mann—
Robalo de cette action s’étend aux oc-opérades cohérentes générales, sans re-
striction sur I’espace des couleurs ni sur celui des opérations unaires. On établit
ensuite I'équivalence entre les modeles de Lurie et de Mann—Robalo de I’espace des
extensions d’une opération, en les reliant par un zigzag explicite d’équivalences
d’homotopie.

Dans le cas monochromatique, on démontre que, contrairement a ce que la
littérature existante suppose, 'espace des extensions au sens de Lurie n’est en
général pas équivalent a la fibre homotopique du morphisme d’oubli associé mais
en est un quotient homotopique par ’action de I’co-groupe des opérations unaires.
Comme conséquence de ces résultats, on montre que les oo-opérades de petits
disques a reperes tordues sont cohérentes et admettent une action de membranes
reliée aux opérations de topologie des cordes.

Mots-clés

Action de membranes, opérades, oo-opérades cohérentes, fleches tordues, oo-
catégorie des cocorrespondances, théorie des catégories supérieures, ensembles
simpliciaux marqués, opérade des petits disques, topologie des cordes et des mem-
branes, théories topologiques des champs.



Abstract

We study the brane action, which endows the space of extensions of the identity of
a coherent oo-operad O® with a canonical O-algebra structure in the oo-category
of cospans of spaces.

First, we prove that Mann—Robalo’s construction of the brane action extends
to general coherent co-operads, with possibly multiple colors and non-contractible
spaces of unary operations. Second, we establish that Lurie’s model of the space of
extensions of an operation is equivalent to Mann—Robalo’s model, via an explicit
zigzag of homotopy equivalences.

In the monochromatic case, contrary to what is claimed in existing literature,
we show that the space of extensions in the sense of Lurie is not in general
equivalent to the homotopy fiber of the associated forgetful morphism, but rather
to its homotopy quotient by the oco-group of unary operations. As a consequence
of these results, we prove that the oo-operads of B-framed little disks are coherent
and admit brane actions related to string topology operations.

Keywords

Brane action, operads, coherent co-operads, twisted arrows, cospans, higher cate-
gory theory, marked simplicial sets, little disks operad, string and brane topology,
topological field theories.
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Chapter 1

Introduction

1.1 A glimpse of algebraic topology and operads

One of the fundamental goals of algebraic topology is to classify topological
spaces, up to homotopy equivalence. The main tool to this end is the use of
algebraic invariants, that is, objects endowed with operations whose algebraic
structure encode the topological properties of the corresponding spaces. The
simplest of these invariants is the homology of a topological space, which forms
an abelian group, graded by the natural numbers.

While extremely useful, considering only the homology of a topological space
does not in general retain all of its structure. To remedy this issue, algebraic
topologists have studied refined versions of homology, in order to encode the
homotopical properties of spaces more faithfully. These new invariants usually
take the form of certain algebraic structures defined on chain complexes associated
with the space. However, such algebraic structures can be intricate; the adequate
language to define and study them is that of operads.

Operads

In a nutshell, an operad is a device that encapsulates all the operations that one
can perform in any algebra of a given sort.

Consider for instance the associative operad, denoted Ass. It contains the
information of all the possible ways one can multiply &k inputs aq,...,a; in an
associative algebra A: these multiplicative operations are given by all the per-
mutations on the symbols aq,...,a,. In other words, we may say that the set
Ass(k) of arity k operations in the associative operad is in bijection with the
symmetric group on k elements. These sets Ass(k), for varying k € N, are related
one another by composition maps

—o0; —: Ass(k) x Ass(m) — Ass(k+m — 1)

given by inserting an operation of arity k£ as the i-th input of an operation of
arity m, thereby giving rise to a new operation of arity k£ +m — 1.

10



1.1 A glimpse of algebraic topology and operads 11

An operad is then defined as a collection O = {O(k) }ren of sets O(k) equipped
with an action of the symmetric group ¥, together with a distinguished identity
element id € O(1) and composition maps — o; —: O(k) x O(m) — O(k +m — 1)
that are associative, unital and equivariant in an appropriate sense. The set O(k)
encodes all the possible operations with k£ inputs in an O-algebra.

More generally, one can replace sets and maps by topological spaces and con-
tinuous maps to obtain the notion of a topological operad. A similar definition
gives operads in vector spaces, chain complexes, etc. This greater level of gener-
ality allows to consider new types of algebraic structures, where usual algebraic
equations do not hold in a strict sense, but rather up to some homotopies, which
in turn themselves satisfy some equations up to some higher homotopies, etc.

For example, the based loop space €,X := Map,(S', X) of a pointed topo-
logical space (X, z) has a very natural algebraic structure given by concatenation
of loops. This operation is not associative on the nose: the associativity equation
holds only up to some homotopy given by reparametrization of the loops. The
higher homotopies then encode higher coherences, in the sense of associativity-
type relations between the various ways of concatenating multiple loops. The
resulting algebraic structure, which in particular induces a group structure on
the set of connected components 7 (X, z) of 2, X (aka the fundamental group of
X at x), is that of an E;-algebra.

Little disks operads

The topological operad E; encoding the previous algebraic structure of the based
loop space §2, X governs, more generally, the structure of all coherently homotopy-
associative algebras. This operad E; is the first of a sequence of topological oper-
ads [E,,, for n € N*, whose corresponding algebras are associative up to homotopy
and increasingly commutative up to homotopy, as n tends to infinity. The operad
E,, originally introduced by Boardman—Vogt [BV73] and May [May72], is called
the operad of little disks of dimension n and is of major importance in algebraic
topology. The space E,(k) of operations of arity k inside this operad is given
by the space of configurations of k open disks of dimension n embedded in a
larger such disk. Composition in the little disks operad is obtained by insertion
of configurations of disks, as depicted in figure 1.1.

In our work, we do not consider topological operads, but instead the closely
related notion of co-operads. While topological operads can be viewed as exam-
ples of oco-operads (via a nerve construction), the latter notion is more flexible
and adequate for the purposes of modern homotopy theory.

The little disks oo-operads E, form the paradigmatic examples of coherent
oo-operads. Together with the brane actions they give rise to, these oco-operads
are the central objects of this thesis. Other important examples of coherent
oo-operads come from geometry, most notably the operad Mg ;1 of algebraic
curves of genus 0 with marked points, as well as variants of its Deligne-Mumford
compactification My 441, which governs the structure of genus 0 Gromov-Witten
invariants from enumerative geometry (see also the end of section 1.3).
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Figure 1.1: Composition in the little disks co-operad E; of an operation of arity
3 (on the left) with three operations of arity 2, 3 and 4 (in the middle) yields an
operation of arity 9 (on the right).

To motivate our study of coherent oco-operads and their brane actions, we
take a detour through string topology. We will then introduce the brane action
in section 1.3 and explain our contribution in section 1.4.

1.2 String topology

For certain classes of spaces, the homology and its complex of singular chains
naturally carry specific algebraic structures, on top of that of a graded abelian
group. The previous example of the E;-algebra structure on the based loop space
Q, X suggests to consider the related class of free loop spaces.

By the free loop space LX of a topological space X, we mean the space of
continuous maps of the circle into X, endowed with the compact-open topology.
It turns out that such spaces indeed have very rich algebraic structures, whose
study has given rise to a subfield of algebraic topology named string topology.

Topological viewpoint

One of the roots of string topology can be tracked down to the investigations of
the geometry of surfaces from the years 1980-1990’s. A major contribution was
Goldman’s introduction and study of a Lie bracket on the free abelian group on
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isotopy classes of closed curves on a compact surface [Gol86], in relation to his
celebrated work on the symplectic structure of character varieties [Gol84].

String topology started with the construction by Chas and Sullivan [CS99,
CS04] of an associative product on the homology of the free loop space of a
closed oriented manifold X, called the loop product, which restricts to the inter-
section product on the homology of X via the inclusion X — L£X of constant
loops. Moreover, the interaction of this operation with the S!-action induced
by rotation of loops gives rise to a Batalin—Vilkovisky-algebra structure, which
recovers Goldman’s Lie algebra on Hy(LX) when X is a surface. The operad BV
encoding this algebra is closely related to the little disks operad of dimension 2:
a result of Getzler [Get94] identifies BV with the homology of the framed little
disks operad EE, a variant of Ey obtained as a semi-direct product of the latter
with the group SO(2) of rotations.

One is led to wonder whether this BV-algebra is part of a larger structure and
if moreover it can be lifted from homology to the level of the underlying chains.
Motivated by such questions, the study of string topology has considerably ex-
panded since Chas—Sullivan’s seminal work, using methods from stable homotopy
[CJ2f, BM19, Mor20, Roy13], combinatorial models of moduli spaces of Riemann
surfaces [TZ06, God07, Kau07, Kupll, DPR15] or algebraic models based on
Hochschild homology [Goo85, Jon87, Mer04, Malll, GTZ12, Iril7, CHV22|. Cer-
tain string topology operations have also been extended to spaces beyond the case
of manifolds, notably classifying groups [CM12, HL.15], Gorenstein spaces [FT09]
or oriented topological stacks [BGNX12].

Field theory viewpoint

This wealth of operations can be extended and organized into the structure of a
topological field theory of dimension 2 (in a sense closely related to the original
definition by Atiyah [Ati88] and Segal [Seg91]): from this perspective, operations
on free loop spaces are induced by surfaces, viewed as cobordisms between their
boundaries (as depicted in figure 1.2). Since the operad of framed little disks
ES can be realized as the moduli space of Riemann surfaces of genus 0 with
boundaries, we can view the string topology BV-algebra as the genus 0 part of
the homology of this topological field theory.

This viewpoint from field theory has been implemented in various forms
[Cha05, CG04, CV06, Cos07, KS09, CTZ08, BCT09, WW16]. Let us mention
Costello’s approach, which is a form of the noncompact cobordism hypothesis in
dimension 2 (see [Lur09b]): it consists in associating to every Calabi-Yau E;-
algebra A a topological conformal field theory, that is, an action of chains of the
moduli space of Riemann surfaces with boundary on the Hochschild homology of
A. The string topology operations are then obtained by applying this result to
the cochain complex A = C*(X) of the target manifold X, which is an E;-algebra
with Calabi-Yau structure coming from the Poincaré duality pairing, and whose
Hochschild homology is isomorphic to the cohomology of LX, when X is simply
connected (see [FTVP04]).
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Figure 1.2: A configuration in Ey(3) giving rise to a cobordism between circles.

Moreover, the previous approach using topological conformal field theory
makes apparent the strong analogy between string topology operations and the
structure of Gromov-Witten invariants in enumerative geometry. This relation
will come back in the next section, when discussing Toén and Mann-Robalo’s ap-
proach [Toél3, MR18] to Gromov-Witten theory via the study of brane actions.

Symplectic viewpoint

Another aim of algebraic topology is to characterize geometric structures in terms
of algebraic and homotopical data. This question constitutes a further motivation
for the study of free loop spaces, since it has been conjectured that a full set of
string topology operations on a closed oriented smooth manifold could encode
part of its diffeomorphism type, beyond its underlying homotopy type [Sul07].

Such expectations come from the deep connections string topology possess
with symplectic geometry. A central result in this vein is Viterbo’s isomorphism
[Vit98], as well as its generalization by Abouzaid [Abol5], which provides an
isomorphism of BV-algebras between the homology of the free loops space of a
closed oriented manifold X (twisted by a local system) and the so-called sym-
plectic cohomology of its cotangent bundle 7% X. This relation is expected to be
even stronger: for instance, Cieliebak and Latschev proposed in [CL09] (see also
[CFL20]) that the sympletic field theory of the unit cotangent bundle of X and its
equivariant string topology should form quasi-isomorphic structures of homotopy
involutive Lie bialgebras, which are closely related to algebras over the operad
ES (see for instance [CMW16]).
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Brane topology

String topology may be generalized to mapping spaces Map(S™, X) from higher
dimensional spheres: this field is often called brane topology.

For X a closed oriented manifold, Sullivan and Voronov have stated and
sketched a proof that the shifted homology of Map(S™, X) is an algebra over
the higher dimensional version BV, of the BV-operad, defined as the homol-
ogy of the framed little disks operad E, | (as explained in Cohen—Voronov’s book
[CV06]). In particular, this homology inherits an (n 4 1)-Poisson algebra struc-
ture, that is, an algebra over the homology of the little disks operad E,, ;. The
commutative multiplication of these algebras has been constructed by Sullivan—
Voronov and also appears in [Cha05, KS06, HKV06, BGNX12].

This motivates the following conjectural chain level generalization of Sullivan—
Voronov’s construction (which is implicit in [CV06, Section 5.4] and appears
explicitly in the introduction of [GTZ12]).

Conjecture 1.2.1. For X a closed oriented manifold, the chains on Map(S™, X)
form an algebra over the chains of the framed little disks operad Effﬂ.

The case of the underlying E,,, 1-algebra structure has been proven by Ginot—
Tradler—Zeinalian in [GTZ12], under the assumption that X is an n-connected
Poincaré duality space whose homology groups are projective k-modules, where k
is an arbitrary ring of coefficients for chains (see also [Hu06] for related results).
Passing from E, 1 to E, | requires to incorporate the SO(n + 1)-action on little
disks, which is still an open problem.

One possible approach to the above conjecture is to realize brane topology
operations via the mechanism of brane actions, which we now introduce.

1.3 Brane actions

Let us come back to Chas—Sullivan’s loop product p. Following a construction of
Cohen and Jones [CJ2f] (completed in [Mor20]), one may construct p from the
following span diagram of spaces

LX X LX «2— Map(S'Vv S, X) -2 £X (1.1)
by a pull-push operation on homology, that is:
@ = out, o in'.

Here, the map "out" is given by evaluation at the base point of the circle and
the map "in" is the natural inclusion, which is of finite codimension, so that an
umkehr (ou wrong-way) map in' can be defined on homology [CK09).

As in the field theory viewpoint, diagrams of the form (1.1) are induced by
certain cobordisms of surfaces, parametrized by the configurations of pairs of
disks in Ey(2), as represented in figure 1.2.
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Remarkably, such span diagrams arise canonically from the oo-operad E, it-
self. This results from a universal construction introduced by Toén in [Toél3],
called the brane action, which can be loosely described as a formal incarnation
of topological field theory structures in a general operadic context.

Toén’s approach to brane actions

To describe this construction, let us first recall the notion of categories of cospans
(see section 2.1). Given € an oo-category with finite colimits, we may form its
oo-category of cospans, denoted Cospan(C), whose objects are those of € and
whose morphisms from X, to X; are given by diagrams X, — Y < Xj, called
cospans, where Y is some object of €. Composition of cospans is given by taking
pushouts, in the sense that a composite of X; — Y5 <+ X, with Xg — Y51 + Xi
is given by
Xo — Yo U, Y12 ¢+ Xo.

Now let O® be an oo-operad, which we assume to be monochromatic! for
simplicity and suppose that O% is unital, that is, the space of nullary operations
O(0) is contractible.

Given an operation o of arity n, we define an extension of o to be an operation
o™ of arity n + 1 that restricts to o when forgetting the last input (up to some
specified homotopy). More precisely, we consider the morphism O(n+1) — O(n)
that forgets the last input, by composing with the identity on the first n inputs
and with the unique nullary operation on the last one, and form the following
oo-fiber product (or homotopy pullback) of spaces

Exty — O(n+1)
J - Jforget (1.2)
x ——— O(n).
Definition 1.3.1. We refer to this space
Exty = O(n + 1) Xg(n) {c}
as Toén’s model of the space of extensions of o.

Given two operations v € O(n) and 7 € O(m) and an index i € {1,...,n},
composition at input 7 induces a cospan of spaces of extensions

Exty s Extyo,r ¢ Ext, (1.3)
well-defined in the homotopy category of spaces.

Now assume that the space O(1) of unary operations in the co-operad is con-
tractible. In this situation, the space Extiq of extensions of the identity operation

LOur oc-operads are implicitly coloured, as in [Lurl7]. By a monochromatic co-operad 0%,
we then mean that O® has an essentially unique color.
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is canonically equivalent to that of binary operations O(2). Let o be an oper-
ation of arity n. Writing diagram (1.3) successively for (v,7) = (id, o) and for
(v,7) = (0,id®") yields two composable cospans, with composite

O(2)" m Exty, m O(2). (1.4)
Informally, we may interpret the above diagram as expressing the following prop-
erty: spaces of extensions come canonically equipped with particular elements
of two types, coming either from extensions of the inputs or from extensions of
the output. The mechanism of brane action then consists in assembling cospans
(1.4) obtained for varying o into the structure of an O-algebra in the oo-category
Cospan(8) of cospans of spaces.

However, to ensure compatibility of the operadic structure with the composi-
tion of cospans, one needs to restrict to a certain class of co-operads, originally
called of configuration type in [Toé13| and corresponding to the notion of coherent
oo-operads in more recent literature [Lurl7]. We shall emphasize that the proof
that these two notions indeed coincide was unavailable in the literature until our
corollary 1.4.1, which requires the assumption that the space O(1) is contractible.
We will come back to this question when adressing the closely related problem of
comparing Toén’s model Ext, for spaces of extensions with Lurie’s model Ext(o)
(defined in 1.3.4), at the end of this section (see problem C and also the discussion
of section 5.1.2).

By [Toé13, Proposition 3.5], we may define oo-operads of configuration type
as follows.

Definition 1.3.2 (oco-operads of configuration type). Let O® be a unital
monochromatic oo-operad with trivial space of unary operations. We say that O®
is of configuration type if for every integers n,m > 2, every operations o € O(n),
7 € O(m) and every integer 1 < i < n, the canonical map

Ext, I Ext, — Extyo,r
0(2)

is an equivalence.

The prototypical example of an co-operad of configuration type is given by the
little disks oo-operad EZ, ,, for every n € N. This follows from the identification
E,+1(2) ~ S™ and the equivalence, for every o € E,,11(m),

8Xto’ = En+1<m + 1) Xgn+1(m) {U} = \/ S

The construction of the brane action associated to an oo-operad of configura-
tion type is then given by the following result of Toén.

Theorem 1.3.3 ([Toél3]). Let O be a unital monochromatic co-operad of con-
figuration type, with contractible space of unary operations. Then the space O(2)
of binary operations has a canonical O-algebra structure in the oco-category of
cospans of spaces, with structure maps given by the cospan diagrams (1.4).
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Operations on spaces of branes

As a consequence of the previous theorem, one can construct operations on
mapping spaces Map(0(2), X), by a pull-push procedure analogous to the one
sketched at the beginning of this section for the loop product. An important
feature of this construction is its level of generality: indeed, it does not require X
itself to be a topological space and can therefore be applied to various geometric
contexts.

Let X be an co-topos, which we think of as an co-category of geometric objects.
Recall that there is a canonical functor 8§ — X sending a space Z to the colimit of
the constant diagram Z — X with value the terminal object in X. Through this
functor, we can view O(2) as an object in X and transport its O-algebra structure
(given by the brane action) to the co-category Cospan(X).

Let X be an object in X. The internal hom object Map(0(2), X) in X, called
the space of O-branes on X by Toén, carries an O-algebra structure in Span(X),
whose structural morphisms

Map(0(2), X)"* «2 Map (Exty, X) —2— Map(O(2), X), (1.5)

for 0 € O(n), are obtained from the brane action by applying the functor
Map(—, X).

In most applications, one is interested in inverting the "wrong-way"' map in
the above spans to obtain an O-algebra structure in some more tractable, linear
oo-category. The general idea is as follows. Given a presentable stable monoidal
(00, 2)-category €, a functor D: X — € (which we think of as a linear invariant
of objects in X) that satisfies a certain base change condition and an object
X € X with some appropriate finiteness conditions, one can perform a pull-push
operation (see [Ste20]) and obtain morphisms

D(Map(0(2), X))®" 220 D(Map(0(2), X)) (1.6)

that turn D(Map(O(2), X)) into an O-algebra in C.

Following Toén, we now describe an important example of this strategy in an
algebro-geometric context. Let X be the oo-topos d8t; of derived stacks over a
field k of characteristic 0. Consider the functor D = QCoh that assigns to every
derived stack its derived oo-category of quasi-coherent sheaves, viewed as an
object of the (0o, 2)-category € = dgCaty of (possibly large) k-linear presentable
dg-categories with functors preserving small colimits. For X a quasi-projective
derived scheme, or more generally a perfect stack in the sense of [BZFN10] (see
definition 5.4.19), the base change condition is satisfied and the brane action
therefore yields an O-algebra structure on the dg-category QCoh(Map(0(2), X))
of quasi-coherent sheaves on the space of O-branes on X.

In particular, for O® = E¥,; the oc-operad of little disks of dimension n +
1, one obtains an [, -algebra structure on the derived dg-categories of quasi-
coherent sheaves on the space of branes Map(S™, X) of X, for an important class
of stacks X. Toén deduces from it a higher formality theorem, identifying the dg



1.3 Brane actions 19

Lie algebra associated to the E,,,-algebra of endomorphism of the unit object of
QCoh(Map(S™, X)) with that of shifted polyvector fields on X.

Program: string topology via brane actions

The work of Toén on operations on spaces of branes naturally suggest the fol-
lowing approach to string and brane topology, as well as further generalizations
beyond the realm of manifolds.

o Can one adapt the linearization strategy described above to the topologi-
cal setting in order to prove conjecture 1.2.1, thereby extending Sullivan—
Voronov’s construction to the chain level?

e Can one develop brane topology operations, including the original string
topology ones, in more general geometric contexts, such as those of derived
differentiable and derived algebraic stacks, and relate them?

Note that the framed little disks co-operad Ef 41 appearing in conjecture 1.2.1
has a non-contractible space of unary operations E (1) ~ SO(n + 1), so that
Toén’s theorem 1.3.3 does not apply to this case. The first step towards realizing
program 1.3 is therefore to extend the brane action to encompass the cases of
oo-operads with non-contractible spaces of unary operations. Moreover, to incor-
porate module-type structures into the brane action, one would like to drop the
requirement for the input co-operad O® to be monochromatic in the construction
of brane actions.

Problem A. Extend the brane action to general co-operads of configuration type,
with possibly multiple colors and non-contractible space of unary operations.

The first contribution of this thesis is to provide a solution to this problem
(see theorem A).

The above program is further motivated by the analogous situation of
Gromov—Witten invariants, for which brane actions turned out to be particu-
larly relevant [MR18].

Gromov—Witten invariants

Since Gromov-Witten theory will play no role in this work but a motivational
one, we only give a very sketchy introduction to these ideas.

Given a smooth projective algebraic variety X over C and some subvarieties of
X, one can associate rational numbers, called Gromov—Witten invariants, which
have an enumerative interpretation in terms of maps from stable curves of pre-
scribed genus to X, transverse to the chosen subvarieties. These invariants, in-
troduced by Kontsevich and Manin [KM94] in the context of algebraic geometry,
can be encoded using different structures: quantum products, cohomological field
theories and Frobenius manifolds, among others. This led Manin and Toén to
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the idea that the Gromov-Witten invariants of X could be detected at the level
of the derived category of X.

The construction of categorified Gromov-Witten invariants was then one of
the major motivation for Toén’s work on brane actions. This was accomplished
by Mann and Robalo in [MR18], for the genus 0 situation, by applying the brane
action to variants of the oo-operad {Mo n+1}nen of stable algebraic curves of
genus 0 with marked points. The strength of this method is that invariants
are constructed at a purely geometric - or motivic - level, in the sense that the
structure exists before taking any invariant, such as cohomology or K-theory.

Mann—Robalo’s approach

The approach taken in [MR18] (see also the survey [MR21]) relies on a new
construction of the brane action, very different from Toén’s original one, and will
be presented in details in section 2.4. For the moment, let us simply note that
their definition of the brane action is encapsulated as an explicit fibration

m: BO — Tw(Env(0))®

over the twisted arrow oo-category of the symmetric monoidal envelope of O%,
whose classifying functor gives the desired O-algebra structure in cospans of
spaces. We will call this functor 7 the brane fibration.

On the one hand, Toén’s definition of the brane action uses the model of
Segal operads for oo-operads and relies on model categorical and strictification
arguments, which have the drawback of making the resulting construction rather
inexplicit. On the other hand, Mann-Robalo’s work is phrased in the language of
quasicategories and involves Lurie’s specific model of co-operads [Lurl7], but has
nevertheless the advantage of coming close to a model-independent construction.

However, contrary to Toén’s original approach, Mann and Robalo do not con-
sider oo-operads of configuration type, but instead the analogous notion of coher-
ent oco-operads in the sense of Lurie, implicitly identifying these two definitions
without proof.

The definition of coherence for oco-operads relies on modeling the spaces of
extensions of an operation o via an explicit simplicial set Ext(o) (see definition
2.2.3%) that we shall call Lurie’s model of the space of extensions of o. Following
Lurie, we can now informally define coherence as follows.

Definition 1.3.4 (Coherent oo-operads). Let O® be an oo-operad, with possibly
several colors and without any assumption on the space of unary operations. We
say that O® is coherent if it is unital, its underlying oco-category is a Kan complex
and moreover for every composable operations f: X — Y and ¢g: Y — Z, the

2Qur definition of the simplicial set Ext(c) and therefore the corresponding definition of co-
herent oco-operads differ slightly from that of [Lurl7]. We refer to remark 2.2.5 for a justification
of this difference.
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diagram
Ext(idy) —— Ext(g)

l l (1.7)

Ext(f) —— Ext(go f),

which is well-defined in the homotopy category of spaces, is homotopy cocartesian.
We refer to definition 2.2.6 for a more rigorous expression of the above condition.

The construction of the brane action given in [MR18, Theorem 2.1.7] then
takes the form of the following statement, analogous to Toén’s theorem 1.3.3: for
0% a coherent monochromatic oo-operad with O(0) ~ O(1) ~ *, there exists a
map of oo-operads

0% — Cospan(8)®

that sends the color ¢ € O to the space Ext(id.) and an operation o: X — Y to
a cospan
Ext(idy) — Ext(o) «— Ext(idy). (1.8)

Note that Mann-Robalo’s construction actually relies on yet another model
for the spaces of extensions of an operation o, given by the fiber BO, of the
brane fibration they define. More precisely, the above theorem of Mann—Robalo
requires an identification of BO, with Lurie’s model Ext(o), but the proof of this
fact is left unexplicit in [MR18].

However, it seems to the author that no straightforward comparison between
those two definitions is available. For instance, simply writing an explicit mor-
phism of simplicial sets relating the two models already seems a non-trivial prob-
lem. We are therefore left with the following issue.

Problem B. Given an operation o in a unital co-operad, prove the equivalence
between Mann—Robalo’s model BO, and Lurie’s model Ext(c) parametrizing ex-
tensions of o.

To apply brane actions to particular examples of coherent oo-operads, or to
prove that a given oo-operad is coherent, one needs to compute the spaces of
extensions. For that purpose, Mann—Robalo’s model BO, and Lurie’s Ext(o) are
both highly impractical. Identifiying the homotopy type of the space of extensions
Ext(id) supporting the brane action seems unnecessarily difficult if using only the
definition of BO, and Ext(c), even in simple examples such as that of the little
disks oc-operad E,,.

In particular, we have the following pair of problems.

Problem C. Provide a method to compute spaces of extensions in particular
examples of co-operads.

Problem D. Prove that the framed little disks co-operad E is coherent.

In this thesis, we will solve problems B, C and D, via the corresponding
theorems B, C and D.
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Kern’s work

Finally, let us also mention the recent work of Kern [Ker21], who extended Mann—
Robalo’s proof of the brane action to the case of colored oo-operads, satisfying a
weaker form of unitality® and without the assumption that O(1) is contractible.

Let us note that, in addition to further applications to Gromov—Witten theory,
Kern explains how in absence of the coherence assumption on O%, the brane action
takes the form of a lax morphism of categorical oo-operads O® — Cospan(8), a
result already present in Toén’s original paper. The approach taken by Kern is
phrased in terms of the algebraic patterns introduced by Chu-Haugseng in [CH21].
As a benefit of this high level of generality, and even if the author has to restrict
eventually to the particular case of the algebraic pattern encoding oco-operads,
his work paves the way towards generalizations of the brane action for a larger
class of algebraic patterns.

However, Kern’s work takes for granted the equivalence between the spaces
Ext(o) and BO,, so that his proof is confronted with the same issue as Mann—
Robalo’s, namely problem B, which is then solved by our theorem B.

1.4 Main results

Extension of the brane action to general coherent oc-
operads

The first contribution of this thesis is to extend the mechanism of brane operations
to encompass the case of general coherent oo-operads, without any restrictions
on the space of colors or that of unary operations, thereby generalizing Toén’s
theorem 1.3.3 and solving problem A.

Theorem A. Let O® be a coherent co-operad. Then the collection of spaces
Ext(idy), for varying colors X € O, carries a canonical O-algebra structure in
Cospan(8), with structural maps given by cospan diagrams (1.8).

Our approach is based on Mann—Robalo’s construction and relies on a careful
analysis of the brane fibration 7: BO — Tw(Env(0))®. It was somewhat un-
expected that the assumption of contractibility of the space of unary operations
can simply be dropped from the theorem, since both Mann—Robalo’s and Toén’s
proofs seem to make essential use of this hypothesis.

Comparison of models of spaces of extensions

Our second main result provides a solution to problem B. In other words, we
prove the following statement.

3The precise condition, called hapazunitality in [Ker21, Definition 2.2.1.2.8], requires that the
oo-operad has a distinguished color whose oo-groupoid of unary endomorphisms is contractible.
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Theorem B (Theorem 4.1.1). Let o be an active morphism in a unital co-operad
O®. Then the fiber BO, of the brane fibration and the oo-category of extensions
Ext(o) are equivalent.

Note that this result is actually necessary in Mann—Robalo’s approach of the
brane action, and therefore also in our proof of theorem A (as well as in Kern’s
approach). Our strategy to prove theorem B consists in providing an explicit,
ad-hoc zigzag of homotopy equivalences between BO, and Ext(o).

We now turn to our solution to problem C.

Recall that in order to compute the homotopy type of the spaces of extensions
in applications, neither of the models Ext(c) or BO, of Lurie and Mann-Robalo
is practical. On the other hand, Toén’s model O(n + 1) x?)(n) {o} is very suit-
able to computations in particular examples, and indeed all known computations
involving spaces of extensions rely on the equivalence with Toén’s definition.

Such an equivalence for Lurie’s model Ext(c) (and therefore also for Mann—
Robalo’s model, by theorem B) is claimed in [Lurl7, Section 5.1.1]. More pre-
cisely, a comparison map is defined and asserted to be an equivalence. How-
ever, we find that Lurie’s model Ext(o) only agrees with Toén’s when the oo-
operad O® has a contractible space of unary operations. Moreover, we provide
a counter-example when this assumption fails, thereby contradicting the corre-
sponding statement in [Lurl7]. We refer to section 5.1.2 for a more detailed
discussion.

The general situation is explained by the following result, which exhibits
Ext(o) as a quotient of Ext, by an O(1)-action.

Theorem C (Theorem 5.1.1). Let O% be a monochromatic unital co-operad
whose underlying oco-category O is an oo-groupoid and let o € O(n) an opera-
tion of arity n. Choose a semi-inert morphism i: (n)y — (n+ 1) in O®. Then
the space Ext(o) is equivalent to the homotopy quotient of O(n + 1) xg(n){a} by
an action of the co-group O(1) of unary operations on the additional color of the
extensions.

As a direct consequence of this theorem, we justify that configuration type
and coherent oo-operads agree, at least in absence of non-trivial unary operations.

Corollary 1.4.1. Let O® be a monochromatic oo-operad with O(1) ~ . Then
0% is coherent if and only if it is of configuration type.

Recall that the oc-operad of little disks ES ; is coherent for any n > 0, by
Lurie’s result [Lurl7, Theorem 5.1.1.1], whose proof relies on the validity of our
theorem C.

Using the computation tool given by the previous theorem, we extend this
coherence result to the variants E of EY,; obtained by endowing disks with a
framing datum (see [AF15]). These oco-operads depend on the choice of a Kan
complex B equipped with a Kan fibration B — BTop(n + 1) to the classifying
space of the topological group of self-homeomorphisms of R"*!; one recovers the
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case of framed little disks E, | by taking B = BSO(n + 1). Thus, the following
general result solves problem D.

Theorem D (Theorem 5.4.8). Let B a Kan complex equipped with a Kan fibration
to BTop(n + 1). Then the co-operad of B-framed little disks E%, is coherent.

One can prove that the space of extensions Ext(id,) of any color b € B is
homotopy equivalent to the sphere S™. As a consequence of theorems D and A,
we obtain an Epg-algebra structure on S™ in cospans of spaces.

Corollary 1.4.2. Let X be a topological space. Then the space of branes
Map(S™, X) has an Eg-algebra structure in Span(8) given by the brane action.

Taking B = BSO(n + 1), this yields an E, |-algebra structure on the brane
space Map(S™, X) in the co-category of spans of spaces, hence proving the conjec-
ture 1.2.1 at the level of spans and thereby providing a first step in the realization
of the general program 1.3.

1.5 Outline of the thesis

We start in chapter 2 by recalling some important constructions: the co-categories
of spans and that of twisted arrows, the precise definition of Lurie’s model Ext(o)
for the space of extensions and the definition of coherent oo-operads. We then
define the brane fibration, following Mann—Robalo, and outline the proof of theo-
rem A. This proof is then completed in chapter 3, by establishing that the functor
m: BO — Tw(Env(0))® is indeed a cartesian fibration (theorem 2.5.1).

Chapter 4 is devoted to the proof of B, that is the comparison between Mann—
Robalo’s and Lurie’s model of spaces of extensions, via the construction of an
explicit zigzag of homotopy equivalences.

Finally, we deal in chapter 5 with the problem of computing the homotopy
type of spaces of extensions, by establishing an equivalence between Toén’s and
Lurie’s models, thereby proving theorem C. Moreover, we discuss how our results
differ from a claim in [Lurl7] and provide a counterexample to the latter state-
ment. The end of chapter 5 concerns applications to string topology, via a proof
of coherence of the co-operad of B-framed little disks (theorem D). We end with
a discussion of the new operations on spaces of branes that the previous result
allows to construct, both in the topological context (at the span level) and for
derived algebraic stacks (at the level of derived categories).

An appendix gathers some auxiliary definitions and results that are used
throughout the thesis. Most notably, we prove some results concerning marked
anodyne morphisms, which to the knowledge of the author do not appear in the
literature and might be of independent interest.
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1.6 Notations and conventions

o We work in the particular model of co-category theory given by quasicate-
gories and use Lurie’s presentation of co-operads. Our notations generally
follow those of [Lur09a] and [Lurl7].

o Particular arrows: monomorphisms are denoted as A — B, cofibrations
as A »— B and atomic morphisms (see definition 2.2.1) as A — B.

o When considering a diagram X : P — C from a poset P to an oco-category
C and a sequence i < i1 < ... < 1, in P, we will write X, ... X, for the

n-simplex of X o (ig...1,): A™ — P — C. For instance, the notation X;X;
denotes the unique morphism X; — X of the diagram.

o Given a finite linear order I = {ip < 7; < --- < i, }, the full subsimplex of
A! on the objects ij, < --- < i;, will be denoted A%o-"i(unless k = 0).
Similarly, AZEZ”“ stands for the horn in A%-¥r obtained by removing
the face opposed to vertex 4;,. For instance, the horns Aj* and A}* are
respectively the simplicial subsets A2} and At} of the 1-simplex A2, while
the notation AL* does not make sense in our convention.

o For simplicity, given an co-operad O®, we will often write € for its symmetric
monoidal envelope Env(0)® and T for the associated twisted arrows oo-
category Tw(Env(0))® (see notation 2.3.1).

o We let F, denote the nerve of the category of pointed finite sets. We usually
identify F, with its equivalent full subcategory on the pointed sets (n) =

({0,...,n},0).



Chapter 2

The brane fibration

In this chapter, following [MR18], we explain how the brane action of theorem
A arises from a certain fibration, which we call the brane fibration. Before giving
the precise construction, we recall the notions of oco-categories of (co)spans, of
twisted arrows, of spaces of extensions in the sense Lurie and the definition of
coherent co-operads.

Contents
2.1 Categories of spans and of twisted arrows . . . . . .. 26
2.2 Extensions and coherent co-operads . .. ... .. .. 28

2.3 Symmetric monoidal envelope and its twisted arrows 31

2.4 Construction of the brane fibration. . ... ... ... 33
2.5 Proofoftheorem A .. ... ... ............ 36
2.6 Generalized version of theorem A . ... ... .. .. 36

2.1 Categories of spans and of twisted arrows

Given an oo-category € with finite limits, we may form the oo-category Span(C)
of spans in €, whose objects are those of €, morphisms between two objects X and
Y are given by span diagrams X «— Z — Y and composition is given by taking
pullback (see [Barl3] or [Haul8]| for a rigorous oco-categorical definition). Dually,
if € has finite colimits, we may consider its co-category of cospans Cospan(C)
defined as Span(C°P).

The oo-category Span(€) has a canonical symmetric monoidal structure
Span(€)®= induced from the cartesian monoidal structure on C*, although
Span(€)®= is not itself cartesian.

Definition 2.1.1 (Twisted arrow oco-category). Let s: A — A be the func-
tor given by s[n| = [n] * [n|°’. Precomposition with s yields an endofunc-
tor s*: sSet — sSet that we shall denote Tw. Left Kan extension of s along
the Yoneda embedding of A induces a functor s.: sSet — sSet left adjoint to

26
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Tw. The image under Tw of an oo-category € is again an oo-category Tw(C)
called its twisted arrow oo-category, whose n-simplices are (2n + 1)-simplices
S (A™) = A™ %« A™°P — @, represented as

Xo X1 Xn
I |

To depict a morphism in Tw(C€), that is, a twisted arrow between two arrows f
and g of C, we will often write f ~~ g.

Remark 2.1.2. Given a 2-simplex o

Y
7N
X h 7

in € that exhibits h as a composite of g and f, we obtain twisted arrows h ~ g
and h ~ f in Tw(C) given respectively by the following commutative squares:

X M,z X .z
INC o ] N
YT>Z XT)Y

in which the 2-simplices are either degenerate, are equal to o.

By [Lurl7, Example 5.2.2.23.], any symmetric monoidal oo-category €% in-
duces a symmetric monoidal structure Tw(€)® on the twisted arrow co-category
Tw(C), in which the tensor product of two morphisms f: x — y and ¢g: z — t is
the obvious arrow of the form f®g: 2 ® 2z - y @ t.

An important feature of the construction of oco-category of twisted arrows is
the following universal property.

Proposition 2.1.3 (Universal property of Tw and Span). Let € and D be
two oco-categories and assume that D has all finite limits. Then:

(1) There is a natural equivalence between the space of functors € — Span(D)
and that of functors F: Tw(C) — D satisfying the pullback condition:

namely that for every 2-simplex h: X Ly %7 exhibiting h as a composite
of g and f, the induced square

h ~rsnns g
oo
f s idy

in Tw(C) is sent by F to a cartesian square in D.
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(2) If C® is a symmetric monoidal oco-category with underlying oo-category
C, then there is a natural equivalence between the space of symmetric
monoidal functors €% — Span(D)®x and that of symmetric monoidal func-
tors Tw(C)® — D> satisfying the above pullback condition.

A proof of the first part of this result can be found in the appendix of [Ras14,
Section 20]: there, the statement takes the stronger form of an adjunction between
Cat,, and a certain oo-category Catdlr of small co-categories with directions, which
fully-faithfully contains the oco-category of small co-categories with finite limits
and functors preserving them. In particular, this requires to enhance Tw to
a functor Cat,, — Cat®™. The extension to the symmetric monoidal case is
explained in [MR18, Corollary 2.1.3.].

2.2 Extensions and coherent co-operads

In this subsection, we recall the definition of the oco-category of extensions of
an operation in an oc-operad and the closely related notion of coherence. We
essentially follow [Lurl7, Section 3.3.1], except for a small difference in the
definition of Ext(o) (see remark 2.2.5).

Let p: O® — F, be a unital co-operad.

Definition 2.2.1 (Semi-inert and atomic maps). Let f: X — Y be a morphism
in 0%, corresponding to a morphism a = p(f): (n) — (m) in F, together with
a family of multimorphisms f;: {X;}au)=; — Y; for j € (m)°. We say that f is
semi-inert if for every j € (m)°

o either the set a=1{j} is empty, or

« the set a~'{j} is the singleton {i;} and the map f;: X; — Yj is an equiv-
alence.

Following the terminology of [Ker21], we say that f is atomic if it is semi-inert
and lies over an inclusion a: (n) — (n + 1). In other words, f is atomic if and
only if it is semi-inert with no non-trivial factorization through another semi-inert
morphism. Given a commutative diagram

X ——Y

S 7

X/ f Y/ / Y/
with fx and fy atomic, we say that f is compatible with extension if f sends the
unique color of p(X’) \ im(p(fx)) to the unique color of p(Y”) \ im(p(fy)).

Remark 2.2.2. In [Lurl7, Definition 3.3.2.3.], the notion of a m-semi-inert mor-
phism is introduced, for m € N. In terms of this definition, a morphism f in O%
is atomic if and only if it is 1-semi-inert but not O-semi-inert.
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Definition 2.2.3 (co-category of extensions). Let o: A" — 0%, be an n-simplex

corresponding to a sequence of active morphisms X oI X,. Given a
downward-closed subset S = {0,...,r} C [n], let Ext(c,S) be the (non-full)
subcategory of Fun(A", 0®),, whose

e objects are diagrams A x A" — O represented as

X, P I x, X, In

{90 {gr Zlgrﬁ»l Zlgn
/

Xy x X

satisfying the following conditions:

« morphisms are diagrams A% x A" — 0% represented as

X, s x,
{90 gnll
X i, & X! h
- y
xy S

in which the morphisms h;: X] — X" are compatible with extension for all

1€ 8.

Given an active morphism o: Al — 0%, we write Ext(c) for Ext(c,{0}). We
call Ext(o) the co-category of extensions of o. When the underlying co-category
O of 0% is an oco-groupoid, Ext(o) is a Kan complex and therefore refered to as
the space of extensions of o.

Ezample 2.2.4 (Description of Ext(o) in the discrete case). Let Oa be an operad
in sets, O% its homotopy coherent nerve and o: (m) — (1) an active morphism
in O®. Then the k-simplices of Ext(o) are those functors between 1-categories
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[1] x [1 + k] — Oa whose associated diagrams is of the form

(m) —— (1)

[atomie |~
(m+1) =% (1)
(2.1)

(m;|—1> 2, (i)

| I

(m 4 1) =2 (1),

and such that all the left vertical morphism (m + 1) — (m + 1) are compatible
with extensions.

Remark 2.2.5 (Difference with the existing definition). The previous definition
is slightly different from the initial definition from [Lurl7] in that we impose a
condition on the morphisms in Ext(o), rather than defining it as a full subcat-
egory of Fun(A", 0%),,. The reason for this choice is that the space defined in
[Lurl7, Definition 3.3.1.4.], that we shall denote Ext™* (5) here, does not have the
expected homotopy type. To see this, consider the example of the commutative
oc-operad O® = Comm® and o: (m) — (1) be an active map in Comm®. As
described in [Lurl7, Example 3.3.1.12], the space of extensions of ¢ is supposed to
be the singleton set (1)°, viewed as a discrete space. However, the space Ext™ ()
is not discrete. Indeed, consider the object a € ExtHA(a) given by the following
diagram
(m) —— (1)

(m+1) —— (1)

where m is a positive integer, !: (m 4+ 1) — (1) is the unique active map and
i the canonical inclusion. We claim that 7, (Ext™ (o), a) is not trivial. Let
p: {m+1) — (m+ 1) be the morphism in Comm¢, that restricts to the atomic
morphism i on (m) and sends the remaining color m + 1 to 1. Then the diagram

(m) —— (1)

ok

!

il (m+1) —— (1) |id (2.2)

[ [ia
(m+ 1) —— (1)
defines a morphism v: o — a in Ext™ (o) with the property that [y] # [id,] in

7 (Ext™(¢), a). Indeed, a homotopy between ~ and id, would give a retraction
p of p, which can’t be.
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Note that diagram (2.2) does not define a morphism in Ext(c) since p is not
compatible with extensions. We will see that definition 2.2.3 yields the expected
homotopy type for the spaces of extensions: this is the content of theorem C.

Definition 2.2.6 ([Lurl7, Definition 3.3.1.9]). An oc-operad O® is coherent if it
satisfies the following conditions:

(a) it is unital,
(b) its underlying oo-category O is an oco-groupoid,

(c) for every degenerate 3-simplex o

Y 9 7
% \di %
X ! Y

in O2,, the commutative diagram

Ext(o,{0,1}) ——— Ext(o|at013,4{0,1})

l J (2.3)

Ext(o]aw022,{0}) ——— Ext(o]awa, {0})

is a homotopy cocartesian square of Kan complexes.

Remark 2.2.7. Let 0 and S = {0, ..., 7} be as in definition 2.2.3 and suppose that
O is an oo-groupoid. As mentionned before, the simplicial set Ext(c) is a Kan
complex. By remark [Lurl7, Remark 3.3.1.6.], if » < [n], there is a canonical map
Ext(o,S) — Ext(f,+1) which is trivial Kan fibration. Using these equivalences,
we may rewrite the commutative square (2.3) as

Ext(idy) —— Ext(g)

J J (2.4)

Ext(f) —— Ext(go f).

Note that the previous square is only well-defined in the homotopy category
of spaces.

2.3 Symmetric monoidal envelope and its
twisted arrows

Recall the construction of the symmetric monoidal envelope Env: Op_, — Cat®
which is left adjoint to the forgetful functor from symmetric monoidal oo-
categories to oo-operads [Lurl7, Section 2.2.4]. This left adjoint sends an oo-
operad P® to the oo-category

EDV(?)® = j)@ X Fun({0},F+) FunaCt(Al, F*),
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where the superscript act indicates the full subcategory of Fun(A!, F,) whose ob-
jects are active morphisms in [F,. This co-category inherits a symmetric monoidal
structure via the functor p;: Env(0)® — F, given by evaluation at 1 € A'. Note
that the underlying co-category Env(O) of Env(O)® can be identified with the
wide subcategory 02, of O% consisting of all objects and only active maps be-
tween them. As explained in 2.1, the oo-category of twisted arrows Tw (Env(0O))
inherits a symmetric monoidal structure from that of the monoidal envelope, also
denoted p;: Tw(Env(0))® — F,.

For later purposes, we let pg: Env(0)® — F, denote the functor given by
evaluation at 0.

Notation 2.3.1. For simplicity, we will write & for Env(0)® and T for
Tw(Env(0))®.
Let us unravel the definitions of € and 7.

e An object in €, is given by an object X € O% together with an active
map (k) — (n) in F,. In terms of the projection functors py and p;, we have
that po(X, (k) — (n)) = (k) and p;(X, (k) — (n)) = (n). Thus, we may
think of the object (X, (k) — (n)) in £ as a list of n objects (Xi,..., X,)
in 0%, with total arity &7, po(X;) = (k).

e A morphism f in & from (X, po(X) — (n)) to (Y,po(Y) — (m)) is a
morphism X — Y in O% together with a commutative diagram

po(X) —— po(Y)

| |

(n) —=— (m).

In the case where « is active, the morphism f is p;-cocartesian if and only
if X — Y is an equivalence, by [Lurl7, Lemma 2.2.4.15.]

+ An object of T, is given by an active map g: X — Y in 0% together with
a commutative triangle

po(X) _ne po(Y)

%H/m

of active maps in F,. A morphism in T from the previous object to (¢': X' —
Y’ po(Y') — (m)) is given as a pair of commutative diagrams

po(X) —— po(X')

X — s X/ po(g)l Jpo(g’)
gl ng and po(Y) —— po(Y) (2.5)
Y «+— Y’ J{act J{act
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respectively in O% and F,. If one interprets the objects in & as lists of
objects of O, then the equivalence T,y ~ Tw(Og)™ allows to view the
object (g: X — Y,po(Y) — (n)) in Ty, as a list of n active morphisms

(X1 —Y,..., X, = Y,)in 0%

o A morphism in T between two objects (o1: X7 — Y1,...,0,: X, = Y,)
and (o}: X{ — Y{,...,0/ : X! — Y!) then corresponds to a morphism
a: (n) — (m) in F, together with a commutative diagram in O® of the
form

ica=1(4)

Dio; Jact l{aCt

® Vi

ica1(j)
for each j € (m)°.

Remark 2.3.2. Consider the morphism in T given by diagrams (2.5) and assume
that « is active. Then this morphism is p;-cocartesian if and only if both maps
X — X' and Y/’ — Y are equivalences.

2.4 Construction of the brane fibration

To prove theorem A, we will follow the strategy developed by Mann—Robalo in
[MR18, Section 2.1]. Let us recall their approach.

Mann—Robalo’s strategy

First, note that the datum of a map of oco-operads O® — Cospan(8)® is equiva-
lent to that of a map of symmetric monoidal functors & — Cospan(8)®. By the
universal property of spans (proposition 2.1.3), this datum is equivalently that
of a symmetric monoidal functor T — (8°P)! satisfying the pullback condition.
By [Lurl7, Proposition 2.4.1.7.], since the monoidal structure (8§°°)! on 8°P is
cartesian, this is the same as providing a weak cartesian structure 7 — 8°P satis-
fying the pullback condition. Using the Grothendieck construction, it will suffice
to construct a right fibration 7: BO — T whose classifying functor F: T — 8§°P
satisfies the conditions described above.
The rest of this section is devoted to the construction of this fibration 7.

Definition 2.4.1 (The brane fibration, following [MR18]). Define BO as the
subsimplicial set of Fun(A!, T) whose

« objects are twisted morphisms o ~ o such that

— the projection p; (o ~» o) in F, is the unique active map p; (o) — (1);
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— in the corresponding 3-simplex in O®

oy
Soc—O\SJ

Ul |-+ (2.6)

~ +
Sy +5— 57
the map og is atomic and o, is an equivalence;

« morphisms from ¢ ~ % to 7 ~ 7" are the morphisms f in Fun(A!, T)
such that

O~y oF
— the projection p; é é in F, 1is the diagram

T wonny TT

pi(o) == (1)

J J

p(7) == (1),
— in the induced square
Sy 2 Sf
fol lfg (2.7)

T0 +
TO TO 5

the morphism f; is compatible with extension, in the sense that po(fy")
is of the form (s+1) — (t+1), sending the singleton (s+1)\im(po(cyp))
to the singleton (¢t + 1) \ im(po(70))-

Let m: BO — T be the composite of evy with the inclusion BO C Fun(Al, T).
Remark 2.4.2. The following properties will be useful throughout this paper.

 Since equivalences and atomic maps are active, the diagram (2.6) is in fact
in O2,.

e The image of BO under p; is constant along the fibers of 7, in the sense
that there is a commutative diagram

BO —— Fun(AYT)

‘I p1o—
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Here € is the unique functor that sends (n) to the unique active morphism
(n) — (1) and such that evgoe = idp, and evy o e = const(yy. Thanks to
this observation, we will often leave implicit the description of the projection
under p; of various constructions.

Let us mention the following general facts about BO.

Lemma 2.4.3. The inclusion BO C Fun(A',T) is a conservative isofibration.
In particular, BO is an oo-category.

Proof. We have to show that BO is a replete subcategory (in the sense of [Lur22,
Definition 01CF] and [Lur22, Example 01EX]) of Fun(A!, 7). First, we verify
the conditions of [Lur22, Corollary 01CR| to prove that BO is a subcategory
of Fun(A!,T). As the condition of compatibility with extension of 2.4.1 only
depends of the image of the morphisms in the 1-category F., one easily verifies
that the set of morphisms in BO contain all identities of objects in BO is closed
under homotopy and composition, as desired.

Next, we turn to the proof that BO is replete. Let f*: ot — 71 be an equivalence
in Fun(A!, 7) with 0™ € BO. We have to show that both 7 and f* belong to BO.
Since the canonical functor Tw(O®) — O® x (0%)°P is conservative (being a right
fibration), we deduce that in the diagram induced by f* in 0%, all four morphisms
fo: So = To, fof: S — To5, fi: Ty — S, fi: Ty — ST are equivalences. From
this and the commutativity of the square (2.7), one obtains that 7o: Ty — 75" is
semi-inert, lies over an injection (t) < (¢t + 1) and that f; is compatible with
extension. Similarly, the morphisms oy, f; and f;" are equivalences, therefore so
must be 7. This concludes the proof. O

Lemma 2.4.4. Assume that the underlying oo-category O of O% is an co-groupoid
and let o € T. Then the fiber BO, of m at o is a Kan complex.

Proof. By the previous lemma, the inclusion BO C Fun(A', T) is a conservative
isofibration. So is the map evg: Fun(A',T) — T, hence 7 is an isofibration.
To prove the result, it now suffices to show that 7 is conservative. Consider a
morphism f: o7 — 77 in BO whose image 7(f) in T is an equivalence. The data
of f is that of a diagram of the following form:

y Sa_ f(;r y T(j_
So ‘ fo To ‘T+
o ) (2.8)
s S Ty
f J
: o : ; o

Using that the fibration T — & x €°P is conservative, we deduce that f, and f;
are equivalences. By definition of the objects in BO, the maps o, and 7, are also
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equivalences, therefore so is f;. Finally, we claim that f; is an equivalence. To
see this, write fi" as the sum fy @ fif|., where fi|4: S5\ Sy — Ty \ T is the
restriction of f to the new color. Since f | is a map in O, which by assumption
is an oo-groupoid, it is an equivalence; therefore so is f. O

2.5 Proof of theorem A

One of the key steps in the proof of theorem A is the following result, whose proof
is given in chapter 3.

Theorem 2.5.1. Let O% be a unital co-operad. Then the functor m: BO — T is
a cartesian fibration.

Assuming theorems 2.5.1 and B, whose proofs will be given in chapters 3 and
4, we can prove theorem A.

Proof of theorem A. By Mann—Robalo’s argument (as described in section 2.4),
in order to prove the theorem it suffices to construct a right fibration over T, with
fibers equivalent to spaces of extensions and whose associated functor T — 8°P
is a weak cartesian structure and satisfies the pullback condition of proposition
2.1.3.

Theorem 2.5.1 ensures that 7 is a cartesian fibration. By lemma 2.4.4, its fibers
are Kan complexes, hence 7 is a right fibration. Moreover, theorem B identifies
the fiber BO, over an object o € T as its space of extensions Ext(c). Therefore,
it remains to show that the functor F,: T — 8° classifying the right fibration
7 is a weak cartesian structure and satisfies the pullback condition. The latter
is exactly the condition that the co-operad O® is coherent, using the equivalence
BO, ~ Ext(o). For the weak cartesian condition, let ¢ in T be decomposed
as a sum o ~ @I ,0; of objects in Tyy ~ Tw(0L,;). Since p; is constant along
fibers of 7 (in the sense of remark 2.4.2), the fiber BO, decomposes as a disjoint
union of the spaces BO,, so that the natural map F, (o) ¢ [[I-, Fx(0;) in 8 is an
equivalence. This shows that F}; is a lax cartesian structure. To verify that it is in
fact a weak cartesian structure, let f: ¢ — ¢’ in T be a p;-cocartesian lift of the
unique active morphism (n) — (1) in F,. By remark 2.3.2, this implies that the
two maps source(o) — source(c’) and target(c) < target(o’) are equivalences,
which in turn ensures that F,(f) is an equivalence, as desired. O

2.6 Generalized version of theorem A

The brane action given by theorem A can be generalized to the setting where O®
is a unital oo-operad, without assuming that its underlying oo-category O is an
oo-groupoid (condition (b) in the definition of coherence given in 2.2.6).

To make this claim precise, let us say that an oo-operad O% is categorically
coherent if it is unital and satisfies the variant (¢’) of condition (c) in definition
2.2.6 in which one requires diagram (2.3) to be a categorical pushout square of
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oo-categories (instead of a homotopy pushout square). Note that if O® is unital
with 0% an co-groupoid, i.e. 0% satisfies conditions (a) and (b) from definition
2.2.6, then conditions (c) and (¢’) actually coincide, since for Kan complexes,
homotopy pushout squares are automatically categorical pushout squares. As
a consequence, coherent oo-operads are categorically coherent. The generalized
version of theorem A writes as follows.

Theorem A’. Let O% be a categorically coherent oo-operad. Then the collec-
tion of oo-categories {Ext(id.)}eco carries a canonical O-algebra structure in
Cospan(Caty,), which recovers that of theorem A when O is an co-groupoid.

The proof of theorem A’ is almost the same as the one given above for
theorem A, only slightly simpler. Indeed, most of the arguments, including the
use of theorems 2.5.1 and B, do not use the assumption that O is an co-groupoid.
The only difference is that in the situation of theorem A’, 7 is merely a cartesian
fibration (as opposed to a right fibration) and therefore its classifying functor is
of the form T — CatZl.

Following [Toé13], one may go one step further in generality by dropping the
assumption that O% is coherent, that is assuming only that O® is a unital oo-
operad. In this case the brane action merely gives a lax algebra structure on
the oco-category Ext(o) in cospans of co-categories, which is an genuine algebra
structure precisely when O% is coherent (in the previous generalized sense). We
refer to Kern’s thesis [Ker21] for more details on this lax structure.



Chapter 3

Cartesianity of the brane
fibration

This chapter is devoted to the proof of theorem 2.5.1, asserting that the brane
fibration 7: BO — Tw(Env(0))® of definition 2.4.1 is indeed a cartesian fibration.
We will define particular lifts of edges along 7 and then show that these are
cartesian arrows in BO in the rest of the chapter. Note that cartesianity of this
fibration is the property ensures the existence of all the homotopical coherences
involved in the definition of the O-algebra in Cospan(§) given by the brane action.

Contents

3.1 Construction of cartesian lifts . . . .. ... ... ... 38
3.2 Outline of the proof of cartesianity . . . . . ... ... 40
3.3 From slices to functor categories: the functor ¢(® .. 43
3.4 Anodyne extensions: the functors ¢ and ¢® . ... 46

3.5 Existence and uniqueness of factorizations: the func-
tor q(l) ............................ 49
3.6 Proof of technical lemmas . ............... 53
3.6.1 Proofoflemma3.3.2 . .................. 53
3.6.2 Proofoflemma 3.5.3 . . ... ... ... .. ...... 55
3.6.3 Proofoflemma 3.5.5 . . ... ... ... .. ...... 57

3.1 Construction of cartesian lifts

Let f: 0 ~ 7 be a morphism in T and let e;: 7 ~» 71 be in the fiber BO,. We
will construct a cartesian edge f*: o ~» 77 lying m-above f.

+ ST+

o - » T BO
3 | K
g

o —— T T

38
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Unraveling the definition of BO, we are given a diagram of the form

Ty

SITTI

in & and want to extend it to one of the shape

i
o1 T

51 f

+

so that the resulting morphism f*: o™ ~ 77 is in BO. We proceed in several

steps, depicted in figure 3.1.

Step 1. Pick a representative f for the composite e, o f in T. In particular, this
yields a 3-simplex SoTy T7HS; and a 5-simplex SoToT, 15 T1.S; extending
diagram (3.1).

Step 2. Define the object Si™ as S; and the morphism o;: S;7 — S; as the identity.
Since o7 is an equivalence, by using Joyal’s lifting theorem [Lur22, Theorem

019F] and several horn fillers, we can extend the 3-simplex SoT; T;"S; to a
4-simplex SoT, 15 ST S:.

Step 3. We now turn to the key step, namely the construction of the triangle
SoSy Ty Decompose Ty as a sum of colors

T(T = @iepo(1)Ci cr

so that CT is the color lying above the element po(7y") \ im(po(0)). Since
O® is unital, there exists an essentially unique morphism ¢+ from the zero
object of O% to CF. Define Sy as the sum Sy @ C* and oy as idg, Beo+,
which is clearly an atomic morphism.

It remains to construct fo". Note that po(fy) is required to coincide with
the unique morphism h: po(Sy) — po(Ty") that restricts to po(fo) on po(So)
and preserves po(CT). Consider the oo-category

M = (0%)* X (o)l {15} X geyaot {00} X]ng {(po(fo), h)}
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Step 4.

consisting of all diagrams of the form

V (3.3)

satisfying po(a) = h and po(b) = po(fo). The inclusion A% < A? yields a
morphism

M — Maph) (8o, T;) = T Map§"(So, C). (3.4)
=1

On the other hand, from the inner anodyne inclusion A? < A? and the
definition of oco-operads, we get the following sequence of equivalences

M = Mapg®(Sa“,T0+)

- 11 Mapgigh(SJ, C;) x Mapgz;l(’h(S(T, Ct)
i1

— ] Mapgigh(so, C;) x Mapy(C*,C*).
i1

Composing those equivalences with the projection Mapy(CT,CT) — x re-
covers exactly the morphism (3.4). Therefore we see that the oco-category
of diagrams of the form (3.3) satisfying that b = f,, which we identify with
the fiber of the morphism (3.4) at fo, is equivalent to Mapy,(CT, CH).

To define fy and a corresponding 2-simplex of diagram (3.3), it then suffices
to specify any object in this co-groupoid Mapg(Ct,C™T).

At that point, we have extended the 3-simplex SyT; T;"S; to a diagram of
shape

AT T 8151 L ASSI T
ASOTO
A simple computation shows that the inclusion of the latter simplicial set
. +ptpt ot .. . .
into A%0% 7o 775151 g inner anodyne; this allows us to choose an extension

of this diagram to a 5-simplex SySg T 15 ST Sy

This completes the construction of an edge f*: o ~ 77 lifting f. The bulk
of the proof of theorem 2.5.1 consists in proving that f* is cartesian.

3.2 Outline of the proof of cartesianity

Given a morphism f: ¢ — 7 in T and an object 71 in BO, we have constructed
a particular edge f*: o — 77 lying over f, which can be interpreted as an
object in the co-category BO,.+ x5, T,;. The purpose of this section is to give
an overview of the proof that f* is cartesian. The details will be dealt with in
the rest of the chapter.
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I Ty

St —— 1

7

S1

Figure 3.1: Diagrams of steps 1, 2 and 3 of the construction of f*. An arrow is
dashed if it is added at the current step.

Notation 3.2.1. Throughout the proof, we will make use of the notation intro-
duced in A.2.2. In other words, from now on, we fix an object v € BO, write
D,+ for the oo-category BO/r+ Xg, T/f Xpo {v"} and fix an object u in it. We
then consider the associated space of lifts

L= BO/JH- XBO {I/Jr} XDV+ {u}

More explicitly, the datum of the object u € D, + is that of a triangle uy in T

of the form
o
/ \ (3.5)
g
v T

together with a morphism ¢*: v* — 7+ in BO lying m-above g. An object in £
is a lift of u, that is the datum of a triangle

ot
/ \f* (3.6)
a3 9" +t

in BO that lies m-above the triangle uy depicted in (3.5). In the diagrams
parametrized by this oco-groupoid £, only the morphism v* — o and the
2-simplex filling triangle (3.6) are allowed to vary.

By lemma A.2.3, proving that f* is m-cartesian amounts to showing the fol-
lowing result.
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Proposition 3.2.2. The space of lifts £ is contractible.

The rest of this chapter is devoted to the proof of proposition 3.2.2. To help
the reader, let us first explain the strategy of the argument: we will study the
terminal morphism ¢: £ — *, decompose it as a composition

7© ey

g: £ 9% g0 2% s 1% po) % @) oy (3.7)

and prove that each of the maps ¢ is an equivalence of Kan complexes. The
idea is that each oco-category £ parametrizes diagrams in T of a certain shape
S and with certain data fixed. For i > 0, the functors ¢ : £0=D — £ can be
interpreted as forgetful maps. The simplicial set S is A% x A! and corresponds
to the shape of diagrams in € corresponding to triangle in BO (such as diagram
(3.6)). The decreasing sequence of simplicial sets S > 1) 5 5 5 SG) encode
diagrams with fewer and fewer non-fixed data (see definition 3.4.1).

The following picture illustrates the decomposition of the composite functor
L0 - 6

ot o" ot
ot — ot y ot o+ s
/ ¢ / q® ¢®
w /// o w /// 9 (o3
/ /
' L L l o L y N
Ve———3T Ve————>7 ve——37 (35)

In this description, solid arrows stand for morphisms in T that are fixed within
L) whereas dashed arrows indicate morphisms that are allowed to vary in that
space. At each step of the composition, the new diagram is obtained from the
previous one by removing one 3-simplex in T (and some simplices of smaller
dimension), namely the 3-simplices vv o7, voot 7T and vorT™, respectively
for ¢, ¢ and ¢® (as indicated in grey in the picture). The last co-category
LB) 2 4 should be thought of as the fixed data in the £®).

The functors ¢ and ¢® are both induced by inner anodyne morphisms and
will therefore be trivial Kan fibrations. The case of the functor ¢! is more
delicate, and proving that it is also a trivial fibration will constitute the heart of
the proof of proposition 3.2.2.

We divide the argument outlined above in three steps: each one amounts to
proving that some of the functors ¢ are equivalences. We postpone the most
technical parts of the proof to the end of the chapter (section 3.6).
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3.3 From slices to functor categories: the func-
tor q(0>

The first step is to define the functor ¢©: £ — £ and prove that it is a categor-
ical equivalence. The co-category £ will be a slight variation of £, in that these
two oo-categories both parametrize triangles of the form (3.6) with the following
data fixed: the morphisms f* and ¢* in BO and the triangle uy underlying u
of shape (3.5). The two oco-categories thus share the same objects, the difference
being that £ is constructed from the slice oo-category BO, s+ whereas £O) is ob-
tained from the functor co-category Fun(A2 BO). More precisely, we define £(©)
as

£O =BO x_ o {(f %)} xqar {uo}. (3.9)

Lemma 3.3.1. There exists an equivalence of co-categories ¢9: L — £O). In
particular, £ is a Kan complex.

To construct this equivalence ¢(%), we first need a comparison between slice
oo-categories and corresponding co-categories of diagrams, given by the following
lemma.

Lemma 3.3.2. Let C be an oo-category and p: K — C a diagram. Then there is
a canonical equivalence of co-categories

G/p L) @Kq X eK {p}

For the sake of completeness, we provide a proof of this folklore result at the
end of this chapter, see 3.6.1. We can now proceed to the proof of lemma 3.3.1.

Proof of lemma 3.3.1. First, note that we can write
LO = (BOY xyoan {f7}) xp {u},

where P denotes the pullback

P = <3OA02 XBOA{Q} {T+}) X(‘IAOQX iTA2 Xgal2 {f}) .

sal2) {T}> (

We define the functor ¢®: £ — £© as the one induced from the commutative
square

BO/]H- L BOAQ X%OA12 {f+}
f’l Jé (3.10)
'BO/T+ XT/T iT/f i P

by taking the fiber at u € BO,r+ x5, T/

To prove that ¢\°) is an equivalence of co-categories, we will use that Joyal’s
model structure is locally right proper (although it is not right proper). This
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property holds for any model structure, and means that for any diagram d =
(X, = Xp « X.) of fibrant objects in which one of the maps is a fibration, the
canonical morphism X, X x, X, = X, x}}(b X. from the pullback to the homotopy
pullback is an equivalence. In particular, if a morphism of such diagrams d — d’
is a pointwise weak equivalence, then the induced morphism limd — limd’ is a
weak equivalence.

Since each of the simplicial sets in diagram (3.10) is an oo-category (hence a
fibrant object in Joyal’s model structure), to show that ¢(® is an equivalence of
oo-categories, it suffices to establish that the following two claims :

(1) ¢ and v’ are categorical equivalences,
(2) & and &' are isofibrations.
To prove the first claim, we make again use of the argument described in the

previous paragraphs. Indeed, the morphism ) is itself induced from the natural
transformation of diagrams

BO, - T/ T

|+ [ Jo

fBOAOQ X {2} {T+} —_— (IAOZ XU_A{Q} {7‘} <T ‘.TA2 Xgal2 {f}

BOA

Lemma 3.3.2 guarantees that each of the vertical morphism are equivalences. We
know that J,; — T, is a right fibration (by the dual of Proposition 2.1.2.1 in
[Lur09a]), hence an isofibration.

We now prove that the functor x: T4 x a2 {f} — TA” X a2y {T} 18 an
isofibration. Let v be an object in T4 x a12 {f} and y(v) —= @ an equivalence
in TA” X at2t {7}. We want to lift this equivalence to one in T2 X ar2 {f}. The
datum of v is that of a triangle in T of the form

/ ’ N (3.11)
l

The datum of the morphism x(v) — @ is that of a commutative square of the
form

(3.12)

As a natural transformation is an equivalence if it so pointwise, the fact that
x(v) — w is an equivalence translates into the statement that o — o' is an
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equivalence. We want to extend the previous diagram into one of the form

Iy

)
/

l/"\f

O{/ 7_/

(3.13)

which represents an equivalence in T2 Xqa12 {f}. We do this construction in
several steps : first, by gluing diagrams (3.11) and (3.12) and adding degenerate
2-simplices o771’ and oo’7’, we obtain the diagram

I

T

B
f
o \ T

From this point, the construction of diagram (3.13) is obtained using successive
horn fillers in T, that is to say a sequence of choices of solutions to lifting problems,
each of the form

A} — T.

i
.
.
.
.
.
.
.

An

First, choosing a filler of the horn of shape A3 in ao77’, we construct the
2-simplex awo7’. Similarly, by filling the horn A? in aoo’, we obtain a morphism
ao’. Using a filler of the horn A? in aco'r’, we get a 2-simplex ac’7’. Finally,
using that the morphism o’ is an equivalence, we can fill the horn A2 in
ad'c’; as well as the horn A3 in aa’/c’r’. This yields a diagram of the form
(3.13) in which @ — o’ is an equivalence; hence an equivalence v — w lifting

the given morphism x(v) — w along y. This concludes the proof of the first claim.

We now come to the second claim. As ¢’ is a right fibration, it is in particular
an isofibration. It remains to prove that ¢ is also an isofibration. Consider an
object # € BO/+ Xg, T/; and an equivalence &(r) — 7y in P. We want to
construct an equivalence x — y lifting {(x) — 7. The data of z is that of a
triangle in BO of the form

O-+
/ \f* (3.14)
at a T,
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The data of the morphism &(x) — ¥ is that of a diagram of the form (3.13) and
a lift

+
at —— 71

N

ot —— 7

(3.15)

+

of its subdiagram (3.12) along w. By [Lur22, Corollary 01H4], since the morphism
X is an isofibration, the maximal oco-subgroupoid P~ of P is given by the limit of
the following diagram of co-categories

~

(BOAOQ XBOA{2} {T+}): - (‘J’AO2 X gal2} {7—})2 = (TAZ Xgal2 {f}>

The morphism £(z) — 7 being an equivalence therefore translates into the fact
that the morphism a* — o/t from is an equivalence. Our aim is to extend
diagrams (3.14) and (3.15) to obtain a lift

ot

St I

+

at T

(3.16)

=
f+
o't / \ Tt

of the given diagram (3.13) along the functor m. The construction of diagram
(3.16) is given by solutions to the same sequence of horn filling problems as that
of the proof that y is an isofibration (in claim (1)); the only difference being that
in the present case, the horn filling problems have to be considered relative to
the inner fibration 7, that is as problems of lifting of the form

A} —— BO

A
.
e s
.
.
.
.

A" —— T

This construction provides an equivalence x — y as desired, ensuring that £ is
an isofibration. This concludes the proof of lemma 3.3.1. O]

3.4 Anodyne extensions: the functors ¢® and
(3)
q

We have defined the functor ¢(©: £ — £© and proved it is an equivalence of oo-
groupoids. We now spell out the rest of the decomposition (3.7) of the terminal
morphism ¢: £ — *, by defining the co-categories £®, for i € {1,2,3}, as well
as the functors ¢®.
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Definition 3.4.1.  « First, let S© denote the simplicial set A? x A with
vertices labelled with v,o,7,v", 0", v" as in the diagrams represented in
(3.8).

e Fori € {1,2,3}, we define decreasing subsimplicial sets S of S using
the following formulas:

S(l) — AVV+ Tt U
5(2) — AVV+T+

+ ++

Avrt L AVOTT UAuu7+ AYooTT
vorTT ootrt

Uport A7 Uy pre AT (3.17)

o+ + +t
5(3) — AW'T UAW+ A:O’TT UAO‘T+ Ao

Y

For i € {0,1,2}, the simplicial set S will encode the shape of the diagrams
parametrized by £ whereas S® will describe the shape of diagrams that are
fixed within £®). The simplicial sets S(©, ..., S®) can be pictured as

+ 0 + + i o + +U > + +/Ul}+
(3.18)

We define £ as the terminal oo—groupoid ; we think of its unique object as
the diagram SB) — T given by the data (f*, g7, ug) that we fixed earlier on. The
inclusion j®: S® < SG=1 induces a forgetful functor p® : TS 759 that
we use to deﬁne the oo-categories

(1)
L0 — ‘J’Sl X 153) {(f+,9+aU0)}a

L2 — ‘J’S(z) X 150) {(f+79+>uo)}-

Recall that £© was defined by formula (3.9) using terms of diagrams with val-
ues in BO. Nevertheless, the following lemma ensures that £ actually admits
a simple equivalent description in terms of diagrams in 7T, following the above
pattern for L) and £®.

Lemma 3.4.2. We have a canonical equivalence of co-groupoids
O
L0 = T3 x o {(F, 97 u0)}-

Proof. It follows from its definition that the oo-groupoid £ fits into the com-
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mutative diagram

Lo,
|- |

BOY —— BOM x; TN —— BOM
J | - |

‘J’AQXAl :J'S(3> TAngl

in which the upper left and the bottom right squares are cartesian. To prove

the lemma, it therefore suffices to show that the bottom outer square is carte-

2 2
sian. Note that both vertical maps BO — TAIXA" and BOA™ — TAXA! 4pe
subcategories, meaning they are monomorphisms that are inner fibrations. This
2
implies that the morphism BO*2 X A2xal TA? _y JATXAT g also the inclusion of

a sulgcategory, hence it is enough to verify that the two subcategories BOA’ ang
BON:2 X aZxal TA% have the same objects and morphisms. An object in BO®

(respectively in BOA X aZxal TAQ) is a diagram

af
S x
+ w +
Qg 85
/ . \
&%) (%)

in 7 in which the maps agag, ajaf and asag are objects in BO and such that

the morphisms s, ¢t and w (respectively only ¢ and w) lie p;-above id;y and are
compatible with extension (conditions of definition 2.4.1). The key observation
is that whenever ¢t and w both satisfy these properties, then so does s; this fact
implies that the two subcategories have the same objects. One can use a similar
argument to show that the same is true for morphisms of these two subcategories,
as desired.

[]

Therefore, the functors ¢ and the co-categories £ fit into the commutative
diagram

£,(0) L £, L £2) L LB) = 4

J ] l ’ J ” J(fﬂg*,uo) (3.19)

(1) (2) (3)
5(0) p S(1) p S(2) p S(3)
P T — T — T

where all squares are cartesian.
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We now claim that the inclusions j®: S ¢ S® and j®: @ < SO are
inner anodyne. For the latter morphism, this is obvious from the formulas (3.17),
as j® is obtained as a pushout of the inner anodyne map AZ”TT+ c A¥™" . For
the former map, note that we can write j as a pushout of the composition

+ +r+ ot ot
AVO'T UAU7—+ AO’O’ T C AZO’O’ T C AVO'O' T ,

in which both maps are inner anodyne. This shows the claim. We therefore obtain
that the induced functors p® and p® are trivial Kan fibrations. As every square
in diagram (3.19) is cartesian, we deduce that the functors ¢® and ¢® are also
trivial Kan fibrations. In particular, we see that £® and £® are contractible
Kan complexes.

3.5 Existence and uniqueness of factorizations:
the functor ¢!

In order to prove theorem 3.2.2, it only remains to prove that ¢! is a trivial Kan
fibration, which is the main step of the proof. Since the inclusion j() restricts to
a bijection S(()l) C S(()Q) on the sets of 0-simplices, by [Rez22, Proposition 40.6 and
footnote 30], we obtain that p(¥): £L®) — £?) is an isofibration. Since we already
know that both £V and £® are Kan complexes, it follows that p") is a Kan
fibration. Since the squares in diagram (3.19) are cartesian, we deduce that ¢ is
also a Kan fibration between Kan complexes. To see that it is a weak equivalence,
we have to show that all of its fibers are contractible, which is asserted in the
following proposition.

Proposition 3.5.1. Let d: SV — T be a diagram in LY. Then the fiber L&O)
of ¢V at d is contractible.

Proof. First, we claim that the question can be restricted to the full subdiagram
of d on the objects v, v, ot and 7. Indeed, if we let SV’ denote the subsimplicial
set AT Avrt AT of SO = AwTotTT encoding commutative squares of
the form

o+ ,

T / T (3.20)

v ——> 0o,

we observe that j1: S® ¢ SO can be written as the pushout

s o gy
l (3.21)
-
s _—_, g0

5 ’
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of the inclusion. Therefore we can identify the fiber of ¢V at d as
©
,C;((io) ~ ‘:TS X{IS(l)/ {d/},

where d' = d|4ay, thus proving the claim.

Note that the diagram d’, which is of shape (3.20), is essentially determined by
the fixed data (T, ¢g",up). In particular, in this diagram, the morphism o*77 is
the edge f* constructed in section 3.1 and the 2-simplices vot7+ and vv 71 are
given. The proof of the proposition thus consists in showing that, from this data,
the remaining simplices v*ot, vvtot, vTotrt and vvto™ T can be constructed
in an essentially unique way.

Until now, the simplices were written in the oo-category T; we need to re-
formulate the problem in terms of diagrams with values in O%®. The diagram d’
of shape (3.20) corresponds to a certain diagram di: K — 0%, which can be
pictured as

Vo T, 1 3
e I

(3.22)

Here, in order to sometimes simplify notations, we denote the objects Vg, V',
Sy, Tyh, ThF, S, VT, Vi as the integers 0, ..., 7, in the same order. This way, we
can write the simplicial set indexing dj; as the subsimplicial set

K = A013467 U o347 A023457

of A". The fiber Lg)) is therefore canonically equivalent to the space L&O) ~
(02)A7 X 9oy {dy} parametrizing extensions of the diagram djy to a 7-simplex.

The key step of the proof concerns the space of lifts of the upper part of
diagram (3.22), namely the subdiagram indexed by the full subsimplicial set
Ky C K on the objects Vo, V", Si and Ty . Note that this simplicial set is
isomorphic to A x A'. Define Z as the fiber (92)4” X (99)Ko 1dp| K, 5 this oo-
category parametrizes extensions of the diagram djy|x,: Ko — O to a 3-simplex
VoVt ST, . Since the inclusion Ky C A? is a bijection on objects, the induced
functor (0%)2° — (O®)%0 is an isofibration and therefore the oo-category Z is a
space. We will show the following intermediate result.

Claim 3.5.2. The space Z = (0)2° X @yk0 1do|Ko } of lifts of the upper part of
diagram (3.22) is contractible.
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The argument relies on the observation that the diagram Ky — O® — F, has
a decomposition p o djy|x, = dg. @ df. given by

p(Vo)" —— po(Ty) () —— (k) (1) == (1)

N R O R

po(Vo) —— po(Sy) () ——=(m)  (0) —— (1)

where @ stands for the operation of pointwise disjoint union of diagrams in F,.
Using the identity maps in (3.23), one readily sees that both diagrams d_and d.
extend uniquely to 3-simplices J]E* and Elv]; in I, which implies that the diagram
p o dy|k, also extends uniquely to a 3-simplex, namely J’F* = JIE* &) JI'FZ In
particular, any diagram A® — 0% in Z will be a lift of d’s.. This shows that we
can rewrite the space Z as

2~ (0%)2 X 9oy {dl} Xgar {d'r. }-

We will make use of decomposition (3.23) to obtain a splitting of the space Z,
using the next lemma. Recall that a simplicial set is said to be braced if every
face of a nondegenerate simplex remains nondegenerate [Lur22, Tag 00XU].

Lemma 3.5.3. Let O be any oc-operad. Let J be a braced simplicial set and
I C J be a subsimplicial set. Consider two diagrams q and r making the following
square commute:

I
j » (3.24)

and assume that q decomposes as a disjoint union q = ®}_,q; of diagrams J — F,.
Then there exists a decomposition r ~ @' r; such that the co-category of lifts in
the square (3.24) splits as the following direct product:

n

(0%)7 X ooy {r} <y {q} = H(O®)J X oy {ri} Xps {a:}- (3.25)
i=1
The proof of this lemma is given at the end of this chapter, in section 3.6.2.
We can now complete the proof of lemma 3.5.3. Through the first of the
equivalences in (3.33), the object r € (O®)! is identified with an object @;r;.
Now observe that D fits in a diagram of pullback squares

D —— (09)7 xps {g} —— (09)’

T

* —— (O®)I X gl {4} —— (O®)I X gl Fi

\i J “ Fg
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Since the vertical functor p is an isofibration, so is its pullback p’. Therefore the
top left pullback square is invariant under equivalence of co-categories. Using the
above two decompositions, we deduce that D itself can be written as a product

D ~ H(O®)J XgJ {ai} X {ri} ~ H(O®)J X (9®)T {ri} XpJ {ai},
i=1 (O02) xpr{alr} i=1
as desired. m

We now come back to the proof of proposition 3.5.1. Using the previous
lemma, since A? is braced, we obtain a decomposition djy|x, = dgy ®dy lifting that
of equation (3.23) and a corresponding splitting Z = Z~ x Z*, with components
given by B

2E = (0%)2 X gaym {d5 } xpas {dE. }.

As before, we note that any diagram A3 — O® lifting di will automatically be
a lift of d& . Therefore, the space Z* is equivalent to (O%)4” X (99)Ko {d%}. We
note that the arrow in dy that lifts the left vertical map id, in diagram (3.23)
is an equivalence, since by assumption Vy — V" is semi-inert. Similarly, the
arrow in df that lifts the right vertical map idyy in diagram (3.23) is necessarily
an equivalence, by construction of the map S; — 7,". We claim that these
properties force the spaces Z~ and Z' to be contractible. To see this, we need
the following version of Joyal’s lifting theorem.

Lemma 3.5.4. Let C be an oo-category and o an equivalence in C. Consider

an outer horn @: AJ — €, with n > 2, whose restriction along A' on Af s a.
Then the fiber A" X oAp {@} parametrizing extensions of the form

AI
(3.26)

is a contractible oo-groupoid.

Proof of lemma 3.5.4. We want to show that any morphism 3: 9A™ — C2" x AT
{@} extends to an m-simplex, for all m > 0. This problem is equivalent to finding
a lift in the commutative square

diagoa m
Ay ZE25 e

-
-
- -
-
P 7
-
-
-
-

A" B’ eaAm

where diag is the diagonal functor € — @A™ i* is the inner fibration induced by
the inclusion 7: OA™ — A™ and (' is adjoint to OA™ L ean X oan {0} — eA".
As a is an equivalence, so is diag o ac: A' — @A™, Therefore, using Joyal’s lifting
theorem [Lur22, Theorem 019F], we obtain the existence of lifts in the above
square, as desired. O
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From the above argument and the previous lemma, we deduce that the space
Z is contractible. This proves claim 3.5.2. To finish the proof of proposition 3.5.1,
conmder the pushout K = K Ug, A® and the inclusion t: K — A”. The fibers

£ d ) and Z fit in the commutative diagram

£ 2 —=— {dy}
| L]
(O®)A7 _v (08)K 5 (0®)K
| |
(O®)A3 SN (O®)K0_

Here, both the right outer and the bottom right squares are cartesian, therefore
so is the top right square. As the top outer square is cartesian, so must be the top
right square. To complete the proof that £ do) is contractible, we need a careful
analysis of the morphism ¢. The result makes use of the notion of right anodyne
morphism recalled in the appendix in definition A.1.5 and writes as follows.

Lemma 3.5.5. Consider the simplicial set A7 as a marked simplicial set, with
6 — 7 as the only nondegenerate marked edge. Then the inclusion v: K — A7
s right marked anodyne.

This result is proved using a tedious explicit calculation that we defer to the
end of this chapter, in section 3.6.3.

Using the previous lemma and the observation that the morphism 67 in di-
agram d'|¢ is an equivalence, it then follows from lemma 3.5.4 that the functor

LE{)) — Z induced by /* is an equivalence.
This concludes the proof of proposition 3.5.1, hence that of theorem 3.2.2.

3.6 Proof of technical lemmas

In this section, we complete the proof of theorem 2.5.1 by providing proofs to
lemmas 3.3.2, 3.5.3 and 3.5.5.

3.6.1 Proof of lemma 3.3.2

Proof of lemma 3.3.2. Let W be a simplicial set. By definition of the slice oo-
category, we have a natural bijection

Hom (W, €/,) = Homg (W % K, €),

where the index K, denotes the subset of those morphisms W x K — C that
restrict to p on K. On the other hand, we have a natural bijection

Hom(W, X" xex {p}) = Homy, (W, €),
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where we use the simplicial set

W=WxK" 1I K.

WxK
We now construct a categorical equivalence oy : W — W x K, natural in W. It
is obtained by the universal property of the pushout W, induced by the canonical
inclusion K — W K and a certain morphism W x K< — W% K. To describe the
latter, recall that maps from a simplicial set X to W % K can be identified with
triples of morphisms (X — A' Xy — W, X; — K), where X; = {i} xa1 X is the
fiber at 7. Using this description, the morphism W x K< — W x K corresponds
to the triple

(canoproj: W x K*— K*— A', W xA "W, proj: W x K — K).

We now prove that y is a categorical equivalence. The argument relies on
the fact that the canonical morphism cs p: Ao B — A x B, comparing the two
join constructions, is a categorical equivalence for all simplicial sets A, B [Lur22,
Theorem 01HV]. Observe that W fits in a commutative diagram

WxK——Wx(A'’K) — W x K*?

idy XCA0 g

T

K Wolk WK W

in which all three squares are cocartesian. Since the top horizontal maps W x K —
W x (Ao K) and W x K — W x K< are monomorphisms, the left and outer
squares are categorical pushout squares; therefore, so must be the right one. As
the top right morphism idy Xcao g is a categorical equivalence, so is ¢y k. Now
observing that the comparison equivalence cy i : W o K — W x K factors as

CW,K

WokK W 2 WA K,

we conclude that oy is a categorical equivalence.

The morphisms ¢y for varying W induce a functor of co-categories ¢: €/, —
CK™ Xex {p}. To prove that ¢ is an equivalence, we will show that for each
simplicial set W, the induced morphism

Vit T (Fun(W, G/p)2> — T (Fun(W, CEY xex {p}):> (3.27)
is a bijection. By [Lur22, Tag 01KV], we have a canonical bijection
) (Fun(W, G/p)z) = (FunK/(W *x K, C)z) :

We claim that one has a similar bijection for the target of ¢,, namely:

Claim. There is a canonical bijection

mo (Fun (W, €5 xex {p}) ") 2 m (Fung, (W, €)%) . (3.28)
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Assuming this claim, we see that the morphism ¢, from (3.27) corresponds, under
the previous two bijections, to the map

Oy To (FunK/(W*K, C):) — (FunK/ (W, C):> :

induced by ¢y . By assumption, (py is a categorical equivalence compatible with
restricting to K; thus ¢j, is a bijection, for all W, as desired.

To complete the proof, we now prove claim (3.28). Let ag, oy be two functors
W — CK"xex {p} and let @y, @; denote the corresponding objects in Fung, (W, C)

under the bijection Hom <VV, CH X ex {p}) = Homg, (W, €C). We wish to prove
that ag and a; are equivalent if and only if @y and @; are. To this end, we will use
a characterization of equivalences in functor categories. Consider a categorical
mapping cylinder of W, that is a factorization of (idy,idy ) of the form

(50,51)

WIHW <% RW —2— W (3.29)

~

where p is a categorical equivalence and (sg, $1) is a monomorphism. From [Lur22,
Corollary 01KD], we know that the objects ag and «; are equivalent if and only
if the following condition is satisfied:

(1) there exists a: RW — CX xex {p} such that aosy = fy and a0 s, = f.

By definition of the functor X + X, one observes that the latter condition is
equivalent to the following:

(2) there exists some o': RW — € satisfying o/ 055 = f, and o/ 057 = f;.

Using again [Lur22, Corollary OLKD], one sees that this last condition is verified
it and only if the objects f, and f, are equivalent, provided that the factorization

Wi W 2% rw 2 W (3.30)

is a categorical mapping cylinder for W relative to K; the proof of this last fact
is an easy verification. This proves claim (3.28) and finishes the proof of lemma
3.3.2.

O

3.6.2 Proof of lemma 3.5.3

Proof of lemma 3.5.3. For ease of notation, let D denote the left hand side of
(3.25). Consider a diagram X € D. For each vertex j € J, we can write
the object X (j) in the form &;X(j);, with the resulting diagram X; lying over
¢;- Then, for each 1-simplex f: jo — 71 of J, using the definition of oo-
operads, we see that the space Map%(f ) (X (jo), X(71)) decomposes canonically
as [I; Map‘g(f)(X(jO)i,X(jl)i). Therefore, up to equivalence, we can write the
morphism X (f) as a disjoint union @;X(f); with each component lying over

ai(f).
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We now consider the general case. Let o be a simplex of J of dimension n and
let a: Sp™ < A" denote the spine inclusion. Since Sp™ is 1-skeletal, the previous
part of the proof gives a decomposition of the space parametrizing diagrams
Sp" — 0% lifting ¢(o o ) as a product

n

[LO%)" xgson {ai(0 0 a)} = (0%)" xyson {q(0 0 )}, (3.31)

=1

with the equivalence given by disjoint union. Now, as « is anodyne, we have a
canonical equivalence between the spaces of diagrams (0®)2" = (0%)%" from
which we can extend (3.31) to an equivalence

n

[10%)2" xzan {ai(0)} — (0%)2" xpan {q(0)}. (3.32)

i=1

Claim 3.6.1. Using the previous equivalence for every simplex o of I and J, we
obtain two decompositions

n n

1:[1((9@)[ xwr {ali} = (0%)" a1 {ql1}, 1:[1((5)@)‘] xpy {ai} = (0%) xzs {q}.
. . (3.33)

Proof of the claim. We prove the result for J, the case of I being completely sim-
ilar. Consider the category A | J of simplices of J and let ¢ denote the inclusion
(A ] J)na € A ] J of the full subcategory consisting of all nondegenerate sim-
plices. Writing F and F; for the simplicial presheaves F(o) = (0%)2" xpan {q(0)}
and Fi(o) = (0%)2" xgan {gi(0)} on A | J, the natural equivalences (3.32)
give a natural transformation v: [[; F/ = F which is a levelwise categorical
equivalence. Our goal is to show that the equivalence (3.33) is obtained from
iy T Fi = o F by taking the colimit over (A | J)pnq.

First, we show that .* [];, F; and (*F are isofibrant diagrams, in the sense of
[Lur22, Tag 0349]. We begin by proving that the forgetful functor & : (A | J)ng —
sSet sending A" — J to A™ is projectively cofibrant (that is cofibrant in the
projective global model structure on the diagram category Fun((A | J)uq, sSet)).
Observe that each simplicial level U}, of U decomposes as a coproduct

Uy = U TT U

of subfunctors of nondegenerate and degenerate simplices respectively. Each of
these two subfunctors is a coproduct of representables, so that both are projec-
tively cofibrant. By [Dug01, Corollary 9.4], we deduce that U is projectively
cofibrant. Therefore, the simplicial presheaves Hom(U, O®) and Hom (U, F,) on
(A ] J)na are isofibrant. Taking pullback, it follows that the simplicial presheaf
F is also isofibrant. The same argument proves that []; F; is isofibrant.

Since t*y is a levelwise categorical equivalence between isofibrant diagrams,
the induced map lim(:*y): Hm[]; ¢*F; — lim ¢*F on limits is a categorical equiv-
alence. The only remaining step is to identify lim [, t*F; (respectively lim ¢*F)
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with the left (resp. right) hand side of the second equivalence of (3.33). To this
end, note that since J is braced by assumption, the inclusion ¢ admits a left ad-
joint and therefore is cofinal. This implies that J = colimi = colim /*U, from
which the result follows easily. O]

The proof of lemma 3.5.3 now follows from claim 3.6.1. O]

3.6.3 Proof of lemma 3.5.5

Proof of lemma 3.5.5. Recall that the morphism ¢ is the inclusion

v K = A013467 U A023457 U A0123 A7
AO13 j A023

0347
A03

using the numbering introduced in diagram (3.22). First, note that ¢ factors
through K = K U A7 and the right anodyne inclusion K — K satisfies the

conditions of the statement It therefore suffices to show that the induced map
K — AT is inner anodyne. Note that the spine inclusion Sp’ — A7, which is
inner anodyne, factors through K. By the right cancellation property for inner
anodyne morphisms, it suffices to show that Sp’ — K is inner anodyne. We
decompose the latter inclusion in several steps; first, it is easy to see that the two
morphisms

Sp0123 p4567

Sp7 —» Sp7 U AUB (Sp7 U A0123> U AT g
Sp0123 S
are inner anodyne. As the inclusion Sp’ — AT factors through the composite
map Sp’ — S, the remaining steps consists in adding to S the simplices A013467
and A%23457  One verifies that the intersection between S and A%3467 ig given by

SﬂA013467 AOld U A34 U A467
A{3} Af4}

so that the inner anodyne inclusion Sp™?*" — AT factors through S N A013467
as an inner anodyne map. Therefore, by right cancellation, we deduce that S N

AT o AOI346T j5 inner anodyne. Since the inclusion of S into the simplicial

set § =8 e Fnaar AP3467 i the pushout of the inclusion SN ATy ADI3467 ¢
n

is also inner anodyne. Finally, we will prove that the same holds for the inclusion
S — SUA67 — [ We proceed as before: the intersection of S and A023457 ig
given by
& AD2AST _ A023 () AL () AT
NG} ATH

and the inclusion Sp®%7 — A02457 factors through it. To prove that S — K
is inner anodyne, it is then enough to show that Sp??*457 — § N A02457 hag this
property, which is obvious. O
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Step 1-simplices 2-simplices 3-simplices 4-simp. 5-simp. 6-simp. 7-simp.
01 02 03 04 012 013 014 016 017 0123 0134 0136 0137
05 06 07 12 023 024 025 027 034 0146 0147 0167 0234 01346 01347
Initial 13 14 16 17 035 036 037 045 046 0235 0237 0245 0247 01367 01467
step 23 24 25 27 047 057 067 123 134 0257 0345 0346 0347 02345 02347 013467
g 34 35 36 37 136 137 146 147 167 0357 0367 0457 0467 02357 02457 023457
45 46 47 57 234 235 237 245 247 1346 1347 1367 1467 03457 03467
67 257 345 346 347 357 2345 2347 2357 2457 13467 23457
367 457 467 3457 3467
o1 15 125
L2 26 236
L3 56 567
L4 015 0125
L5 026 0236
L6 124 1234
L7 126 1236
L8 135 1235
L9 145 1245
L10 456 4567
L11 356 3567
L12 267 2367
L13 256 2567
L14 267 2467
L15 156 1256
L16 056 0156
L17 157 1457
L18 127 1257
L9 0124 01234
L20 0135 01235
121 0126 01236
122 0145 01245
123 0256 01256
124 0157 01457
L25 0127 01257
L26 0267 02367
Lo7 1247 12457
Log 1237 12347
L29 1267 12367
L30 1357 12357
131 1567 12567
L32 0567 01567
L33 3456 34567
L34 2456 24567
L35 2356 23567
L36 2346 23467
L37 1456 14567
138 1356 13567
L39 1345 13457
L40 1246 12467
L41 0456 04567
L42 0356 03567
143 0246 02467
L44 01247 012457
L45 12345 123457
L46 12346 123467
L4t 12356 123567
148 12456 124567
L49 13456 134567
L50 23456 234567
L51 01345 012345
L52 03456 034567
L53 01237 012347
L54 01357 012357
L55 01267 012367
L56 02567 012567
L57 02456 024567
L58 02356 023567
L59 02346 023467
L60 01456 014567
L1 01356 013567
L62 01246 012346
163 013457 0123457
L64 012467 0123467
L65 123456 1234567
L66 023456 0234567
6T 013456 0134567
L68 012456 0124567
L69 012356 0123567
L70 0123456 01234567

Figure 3.2: Iterative construction of the non-degenerate simplices of AT using
right horn inclusion, starting from K.

Alternative proof of lemma 3.5.5. For the record, we provide another proof of
lemma 3.5.5 by exhibiting an explicit decomposition of ¢ as a composite of marked
anodyne morphisms.
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The first map of the composition is the canonical morphism

0 K= K| — Ky = ('[? Upgzs A125>

induced by the inner horn inclusion Aj* C A'5; it corresponds to adding to
the diagram K — € a 2-simplex 125 and a 1-simplex 15. The next morphism is
Lo Kg — EQ UA§36 A6,

For a more systematic presentation of the next morphisms ¢;, we use figure
3.2. In this table, the initial setup is the list of the non-degenerate simplices of
AT that belong to K. At step ¢;, the line of the table contains exactly two non-
degenerate simplices of A, which are of the form J; \ {k;} and J;, representing
the horn inclusion Agz < A’i of which ¢; is a pushout.

To verify that the construction is valid, one has to check that each of the non-
degenerate simplices of positive dimension of A7 appears exactly once in the above
table, and moreover that at each step of the construction, all the faces of the horn
A;; have already been constructed. For instance, in the step to corresponding to
the horn inclusion AZ3¢ — A3 one has to verify that the 2-simplices 23 and
36 have already been built (as well as all non-degenerate simplices of A2 of
dimension less than 2) and that neither 23 nor 236 have. Verifying similarly the
other steps is a simple but tedious exercise. O
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4.1 Statement of the results

We turn to problem B of the introduction, namely the question of the comparison
between Mann-Robalo’s and Lurie’s models for spaces of extensions. We provide

a solution to this problem through theorem 4.1.1.

More precisely, let O® be a unital co-operad and fix an active morphism o,
viewed as an object in the twisted arrow oo-category T := Tw(Env(0))® of the

monoidal envelope of O%.

The goal of the present chapter is to prove the equivalence between the fiber
BO, of the brane fibration BO — T (introduced in definition 2.4.1) at the oper-
ation o coincide with the co-category of extensions Ext(c) of o, thereby proving

60
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the corresponding claim in [MR18] !. Our method consist in providing an explicit
zigzag of categorical equivalences between BO, and Ext(o).

Theorem 4.1.1 (Theorem B). Let o be an active morphism in a unital co-operad
O®. Then the fiber BO, of the brane fibration and the co-category of extensions
Ext(o) are equivalent in Caty.

Corollary 4.1.2. Let o be an active morphism in a unital co-operad O, whose
underlying co-category is an oo-groupoid. Then BO, and Ext(o) are equivalent
Kan complexes.

The difference between the simplicial sets Ext(o) and BO, can be observed
from their set of 0-simplices. Both sets parametrize diagrams in O%, respectively
of the form

.[ >} iz and .[ X} Iz (4.1)

that is, of respective shape A! x Al and A3, such that the following conditions
are satisfied:

o the top horizontal arrow is sent to o;
o the left vertical arrow is sent to an atomic map;

o the right vertical arrow is sent to an equivalence in O%.

Informally, since the right vertical arrow is marked as an equivalence, both
diagrams in (4.1) encode the same data, namely that of a triangle of the form

{ / (4.2)

Our proof follows this idea and relies on finding suitable generalizations of the
previous diagram for higher dimensional simplices in Ext(c) and BO,.

4.2 Definition of spaces interpolating between
BO, and Ext(o)

We first discuss the shape of diagrams represented by general simplices of Ext(o)
and BO,. Let K be a simplicial set.

To help the reader with the cumbersome definitions and notations, we recom-
mend to look at figures 4.2.3 and 4.2.3 where the different diagrams introduced
in this section are depicted, for the cases K = A” and K = AL

'More precisely, for the claim BO, ~ Ext(o) to be correct, one needs to adopt definition
2.2.3 as one’s definition of the co-category of extensions, instead of [Lurl7, Definition 3.3.1.4.]
used in [MR18]. This minor change is argued in remark 2.2.5.
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4.2.1 Diagrams indexed by Ext(o)

Let Fy(K) denote the simplicial set K<x A! and consider the canonical projection
Fy(K) — Al. The vertices in the fiber over 0 will be denoted as z, whereas those
in the fiber over 1 will be written Z, where z € K. Unravelling definition
2.2.3, we see that morphisms K — Ext(o) are identified with those diagrams
a: Fy(K) — 0% that send all morphisms in K x {1} C K x A! to equivalences
and moreover satisfy the following condition.

Condition (x)o,: for every vertex k € K,

e the morphism <« — k in Fy(K) is sent to an atomic map;
o the morphism k — k in Fy(K) is sent to an active map;
o the restriction of a to {<} x Al is o; and

o for every morphism ky — k; in K, the corresponding morphism in Fy(K)
is compatible with extensions.
Letting Fy (K) denote the marked simplicial set obtained from Fy(K) by fur-
ther marking the 1-simplices of K< x {1}, one obtains a bijection between
Hom (K, Ext(c)) and a subset Hom? (Fy (K), O%®) of Home+ (Fy (K), 0%%) given
by those diagrams that satisfy condition (x)g -

4.2.2 Diagrams indexed by B0,

Observe that the set of diagrams from K to BO, is a certain subset of

Hom(K, T2 x5 {c}) = Hom(K x A", T) x {ooprojg}.
Hom(K,T)
Using remark 2.4.2, we may then identify Hom(K, BO,) with a particular subset
of Hom(G(K), 0®), where G(K) denotes the pushout
G(K):=s.(KxA"Y) 1I {0}
(K) = s.(K x A T s {0)
Let G*(K) denote the marked simplicial set obtained from G(K)’ by further
marking the arrows of the form (k,1) — (k,0), for all vertices k in K. Un-
raveling the definition of BO, we will identify Hom(K,BO,) with the subset
Hom’ (G (K), 9%4) of Hom .+ (GH(K), O%9) consisting of those diagrams veri-
fying the following condition:
Condition (x)g .t

o the arrow s,{0} 2 A! in G"(K) is sent to c;

o for every k € K, the 3-simplex s,({k} x A!) given by the vertices
(k,0)(k,1)(k,1)(k,0) is sent to an object of BO;

o for every l-simplex f: k — k' in K, the corresponding diagram s, (f x Al)
is sent to a morphism of BO; more explicitly, this conditions means that
the arrow f x {1}: (k,1) — (K¥/,1) in GT(K) is sent to a map in O% that is
compatible with extensions (in the sense of definition 2.4.1).
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4.2.3 Definition of intermediate steps

We will relate Ext(c) and BO, using intermediate co-categories C;, for ¢ €
{1,2,3}, whose construction is given by the following procedure. For K a sim-
plicial set, the set Hom (K, C;) is identified with the subset Hom? (F;t(K), O®*)
of Homge,+ (FiT(K), 0%#) consisting of all diagrams F;"(K) — O®* that satisfy
a certain condition denoted (x);,. Here, the marked simplicial sets F;"(K) are
to be thought of as shapes which interpolate between F" (K) and G*(K). These
marked simplicial sets will fit into a zigzag of the form

Fr(K) 25, prry My 25 oy P gk, (4.3)

natural in K, which yields a zigzag of functors of oco-categories

sk 5k -k *

Ext(o) «—2— @ — s €y «—2— @3 —2— BO,. (4.4)

Notation 4.2.1. Unless ambiguous, we will write i,, instead of ,,(K).
We now describe the different marked simplicial sets F;"(K), their associated
condition (x);, and the morphisms i, i, i3 and p.

(F;") The marked simplicial set Fif(K) is obtained from the simplicial set

Fi(K) = colim (A™ % A™),

A™Mm— K<

by marking all edges of the second copy of A™.

(ip) Using that Fy(K) can be rewritten as Acolir}x(l (A™ x Al), the canonical
m_y [

inclusions A™ x Al — A™ x A™ induce a map of marked simplicial sets
io: Fyf (K) — FF(K). Similarly to the case of Fy(K), we label vertices of

Fi(K) as x or T using the obvious projection Fy(K) — Al where r € K*.
(F5") The marked simplicial set Fy (K) is defined as Fy(K)®, where
Fy(K) = K.

(71) Using the isomorphism Fy(K) = Acolir}r{1 (A™)* we define the inclusion
m_y 4
i1: Fy'(K) — Fif(K) as induced by the morphisms iy ,,: (A™)> — F{H(K)
sending A™ to the first copy of itself in A™ x A™ and > to <.
(F57) The marked simplicial set F5(K) is obtained from the simplicial set

F3(K) = s.(K") = colim (A™ x A™°P)
AMm— K4
by marking all edges of the second copy A™°P.
(i2) The morphism iy: Fy (K) — F5 (K) is induced by the inclusions (A™)> —
Fy(K), that send > to 9 € F3 (K) and A™ to the first copy of itself in
A™ % AP,
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(p)

We now define the morphism p: G*(K) — F; (K). We will make use of
the canonical isomorphism

5,(K x A') 2 colim s,(A™ x A).
Ar—K
Given an n-simplex 7,,: A" — K of K, consider the projection p,: A™ x
Al — (A™)? that sends the vertex (k,1) to k and all vertices of the form
(4,0) to <. The composition 7, 0 p,: A" x Al — K< yields a map

5P (A" x AY) = 5, ((A™)Y) C Acolir}g s« (A™) = F3(K).
m_y [
For varying n-simplices 7, the maps s,p, organize into a map p: s.(K X
AY) — F;7(K), whose restriction to s,(K x {0}) factors through s,{0}
as the inclusion s,{0} = A% C F;"(K) and therefore induces our map
p: G(K) = F3(K).

The conditions (%), for n € {1,2,3} are given mutatis mutandis by con-
dition (*)070-.

SR

ky —— &y

Figure 4.2: Zigzag diagram (4.3) for K = {kq — k;} = Al
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Lemma 4.2.2. Let n € {1,2,3} and let K be a simplicial set. Consider the
corresponding morphism i,: F,7(K) — F(K), where the indices a and b are
determined by n. Then a functor a: FF(K) — O®F satisfies condition (%)a. if
and only if i,,(K)*(«) satisfies condition (x)p,-

Proof. The lemma follows from inspection of the different conditions. n
We now establish that the definition of (C,), as Hom?(EFF(A®), 0%#) yields

an oo-category.

Lemma 4.2.3. Forn € {1,2,3}, the simplicial set C,, is an oo-category.

Proof. We first prove the result for the simplicial set C;. Let k,m € N with
0 <k <mand f € Hom?(F; (A7), 0%%). We will show that the existence of a
lift in the following diagram

FH(Af) —— 0%

P
-
-
-
-
-
-
-
-

Fi(A™)

by decomposing the vertical map as a sequence of inner anodyne morphisms.
First, let X denote the simplicial set A%" U Fi" (A7) U A7 Tt is clear that
the inclusion F;" (A7) — X, is inner anodyne. Since ) — A™ is both right and
left anodyne, we may choose an increasing filtration

@ZA()CAlC"'CAr:Am (45)

of subsimplicial sets of A™ such that each inclusion A; — A;; is the pushout of
a horn inclusion AZ? — A™i, which either is inner anodyne or satisfies m; < 1.
Note that in the latter case, the horn inclusion is left or right anodyne. Introduce
the simplicial sets

Xj = XQU (A;‘*Tj)

Y; = XoU (A;]—i—l * /T;') U (A;] * Aj‘+1)>
so that the inclusion X, — F;"(A™) can be written as the sequence of inclusions

XoCYyCX1CY1C... CX,y CY,y CX,=F(A").

Each inclusion Y; — X4 is the pushout of the morphism (A5 C AS, ) & (A C
A$.,); lemma A.1.9 implies that it is inner anodyne. For p € [m], let A;(p)
denote the intersection of A; with the face of A™ opposed to vertex p. For every
J with 0 < j <7, let p; denote the index of the unique face of A™ that contains

Aj1\ Aj. Now consider the inclusion X; — Y;. By construction of the filtration
(4.5), this inclusion is obtained as a pushout of the map

(A5 A50) U AS(0) A1 () U (A5(0) # K5 U A ) = A5Ty)

l

(A3 % AT () U (Mg (py) + A5) -
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This last map is the pushout of the map (Af(p;) € AJ)®(AS(p;) € A5, (p;)) with
its symetric; it is therefore an inner anodyne map by lemma A.1.9; as desired.
Therefore f extends to a map f: Fi"(A™) — O®% The fact that f belongs to
the subset Hom? (EH(A™), 0%#) follows directly from the similar hypothesis for
f; this concludes the proof that €; is an co-category.

One can give a very similar proof for €3, simply reversing the direction of the
edges in A™; we shall therefore omit the details.

We now turn to the case of Cy. As before, let k,m € N with 0 < & < m.
It is enough to prove that the inclusion Fy (AT) — EF;F(A™) is inner anodyne.
One simply observes that this inclusion can be described as successively adding
to F5 (AQ") = (A1) fillers of the inner horns AY~™, A0-™ A% and A0-™,

which proves the claim. O

4.3 Proof of theorem 4.1.1

4.3.1 Strategy of proof

We explain our approach to proving that the functors ij, 7 and 3

5k 5k

EXt(O') 0 61 i 62 % 83

from zigzag (4.4) are all equivalences of oo-categories. The remaining case of the
functor p*: C3 — BO, is treated separately, with different arguments, in section
4.3.4.

Fixn € {1,2,3} and consider the associated natural transformation i, : F,” —
F;F, where the indices a,b € {0,1,2,3} are determined by n.

Notation 4.3.1. Let J denote the nerve of free-living isomorphism (i.e. the con-
tractible groupoid on 2 objects), which is an interval object for Joyal’'s model
structure (see the book by Cisinski [Cis19] and also [Cam21, Appendix A]). Given
a simplicial set K, we introduce the pushout

E oK)= FF(K < J) 1 B (E)™,

Fof (K12
Note that 7, (K) factors as a composite
FH(K x J) 2% Fh 2 (K) 22 BA(K % 7). (4.6)

The following result is central in our approach.

Lemma 4.3.2. Letn € {1,2,3}. Suppose that for all simplicial sets K, the mor-
phism i,(K): F(K) — F, (K) is marked anodyne and the induced morphism
kn: Fy 7(K) = FF (K x J) from factorization (4.6) is a monomorphism which
is bijective on 0-stmplices. Then the induced map

in(K)": mo Map(K, C,) — mo Map(K, C,)

s a bijection for all K.
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Proof. Using the left lifting property of marked anodyne morphisms against mor-
phisms of the form X% — % for X an co-category (lemma A.1.6), we obtain that
the map

I—IornsSet+ (FI)—F(K% O®»U) — HomsSet+<F;_(K)7 O®7h)

is surjective. Hence so is its quotient
in(K)": mo Map(K, Cp) — mo Map(K, C,).

We now prove that 4, (K)* is also injective. Let o, a’: F; (K) — O®* be such that
it (o) ~ if (') in Map(K, €,). Using the standard categorical cylinder K 11 K —

K x J — K of K, the latter condition means that we can fill the following
diagram of solid lines

so that @ respects conditions (%), . To show that a ~ o/ in Map(K, €), we have
to prove that the corresponding diagram for F,", namely

[0}

F)(K)

/

FA(KxJ) %> 0% (4.8)

\

F(K)

al

can be filled by a map &: F; (K) — 0% that satisfies conditions (x);,. Now
observe that i, (K x J) factors through the pushout £}, ;(K). By hypothesis,
in(K) is marked anodyne, whence so is j,. Using the right simplification property
of marked anodyne morphisms (Proposition A.1.7), we deduce that there exists
a lift & in the following diagram

FHEK xJ) a
J»
. + (OéHOé,,a) ®h 4 9
in| Ffy(K) —2% 0o, (4.9)

Fr (K xJ)
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By lemma 4.2.2, any lift & as above will automatically satisfies conditions (%),
This shows that o and o’ are equivalent as points in Map(K, Cp), as desired.
m

We will prove that the maps iy, i; and i3 are marked anodyne and use the
above lemma to deduce that the oco-categories Ext(o), €1, €3 and C3 are equiv-
alent. The remaining step will be to deal with the map p, which is a marked
equivalence but not a marked anodyne morphism, so that we cannot use lemma
4.3.2; we will therefore rely on a different argument, involving a careful analysis
of categorical cylinders in C3 and BO,.

4.3.2 Study of the map 1

Lemma 4.3.3. For every simplicial set K, the morphism ko(K): Fy 7(K) —
F{'(K) is a monomorphism which is bijective on 0-simplices.

Proof. Let K € sSet. Observe that io(K): Fy (K) — F; (K) is a bijection on
O-simplices. Since K is arbitrary, the map io(K x J) also has this property.
Moreover, so does the map jo(K): Fy (K x J) — Fy, ;(K), as it is obtained as
a cobase change of ig(K)". By 2-out-of-3 property, we deduce that ko(K) also
has this property.

Let us show that ko(K) is a monomorphism. Suppose that ¢ and ' are two
m-simplices of Fy, ;(K) with the same image under ko(K). We separate three
cases:

(1) either both ¢ and #' lift to simplices of F;" (K x J), or
(2) both lift to F;"(K)"2, or
(3) t lifts to a simplex in Iy (K x J) and t' to one in Fy" (K)12.

For the first case, note that jo(K x J) is defined as a pushout of a monomorphism,
hence is a monormophism, so that ¢ = ¢’ as desired. For the second case, writing
t and # for choices of lifts of ¢t and ' in F;" (K)"2, we easily see that either £ and
t' belong to the same of the two copies of ;" (K), or they factor through (A¥)!2,
Finally, in the third case, the simplices t and ¢’ have to factor through one of
the two copies of Fy (K); since Fy (K) — Fy' (K x J) is a monomorphism, the
simplices ¢t and ¢’ must coincide. H

Proposition 4.3.4. For every simplicial set K, the map iy: Fy (K) — FiH(K)
is marked anodyne.

Proof. Recall the marking on these simplicial sets: on Fy (K) = K x Al the
marked edges are those of the form < — ¥, with y € K, whereas for F}"(K) =

ACOIiI}I(l (A™x A™), all edges T — 7 with x — y in K< are marked. The morphism
m_y {4

iy factors through the marked simplicial set Fy (K) obtained from F, (K) by
further marking the edges (z,1) — (y,1), for x — y in K% The resulting
inclusion F"(K) — Fyf (K) is easily seen to be marked anodyne.
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Let ig: Fyf (K) — Fi(K) denote the map induced by ig. We will prove that it
is marked anodyne as well. By construction of 7 as a colimit, it is enough to prove
the claim for K = A™!, in which case the morphism i, is the canonical inclusion
A™ x Al — A™x A™ where the non-trivial marking occurs in the second copy of
A™. Therefore, we are left with showing the following combinatorial result. [J

Lemma 4.3.5. For every m € N, consider the canonical inclusion ig: A™ x
Al — A™mx A™ where both simplicial sets are endowed with the minimal marking
that makes (A™)* x {1} a marked simplicial subset of them. Then iy is marked
anodyne.

Proof. Note that the inclusion 7o factors through the simplicial set

A" = (A" x Ay U AL (4.10)
AOL..m LLAmm
AT
First, we want to show that the inclusion A™ — A™ % A™ is marked anodyne. To
this purpose, we consider the inclusion s,,: S, — A™ x A™, where S, denotes
the spine Sp» ™ endowed with the maximal marking that turns s,, into
a morphism of marked simplicial sets. As s, is clearly marked anodyne and
factors through A™, it will suffice to show that the inclusion .S,, — A™ is marked
anodyne. The underlying simplicial set of A™ is a union of m + 2 simplices of

dimension (m + 1), denoted 79, ..., 7, T and defined as follows:

e for 0 < k < m, the simplex 7, is defined as AOL-kF(k+1)..m
o the simplex 7 is A70L-,

In each case, the marking is induced by that of A™. Writing T}, for S,, UT U, U
-+ U Ty, we get a filtration of A™ of the form

S, C S,ur c T, C T,.1 C ... C Ty=A". (4.11)

We will prove that at each step, the inclusion is a marked anodyne morphism.
This is clear for S,, C S,, UT. The second inclusion S,, UT C T,, is obtained as
the pushout

(Sp%" ™Y s S, UT

l ) J (4.12)

Tm ? Tm

and is therefore marked anodyne, since so is the left vertical map. We now prove
that the inclusion T}, C T}_; is marked anodyne for every 0 < k < m. We

introduce the marked simplicial set 7, (k) defined as the face opposed to vertex

k in 1, or more explicitly as AO-(k-DE- - ondowed with the induced marking.

The intersection 7, = T}, N 7,—1 can then be expressed as

T=T(k) U (ARDRmy (4.13)
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and the inclusion Ty C Tj_, as the pushout

T]::—>Tk

l _ J (4.14)

Te—1 — Tk:—1~

To see that T, — T}j_; is marked anodyne, it therefore suffices to show that
T, — Tr_1 has this property. Looking at equation (4.13), we observe that the
latter inclusion is of the form (Iy C I)® (Jy C J), with Iy = 0, I = [k — 1],
Jo={k,...,m}and J = JoU{(k—1)}. By lemma A.1.10, we deduce that this
map is marked anodyne, as desired.

It remains to prove that the inclusion A™ x A — A™ is marked anodyne. By
equation (4.10), it suffices to prove that the inclusion A%-™UA™™ —y AM0--T jg
marked anodyne. Denoting B; = A% U AT the latter map can be written
as the composite

Bm C Bpno1 C ... C By.
Each inclusion B;; C B; is induced by its restriction Bi+1ﬂAmg“'m C BZﬂAmg'“m,
which is marked anodyne by lemma A.1.9 applied with Iy = 0, I = {m}, J =
{i,...,m} and Jy = J \ {i}; therefore so is the map A™ x A' — A™. This
completes the proof of lemma 4.3.5. n

4.3.3 Study of the maps i; and i,

Lemma 4.3.6. For K a simplicial set, the morphisms ki(K): Fy (K) —
Fy 7(K) and ky(K): Fy (K) — Fys ;(K) are monomorphisms which are bi-
jective on 0-simplices.

Proof. The argument is completely analogous to that of the proof of lemma 4.3.3.
O

Lemma 4.3.7. For all simplicial set K, the maps iy: F5 (K) — F{'(K) and
in: F5 (K) — F3 (K) are marked anodyne.

Proof. We only give the proof for iy, the case of the map i, being very similar.
Recall that #; is defined by taking the colimit over all simplices A™ — K< of
the morphisms i1 ,,,: (A™)*> — FiF(K), sending A™ to the first copy of itself in
(Am™)*2 C FF(K) and > to 9. Note that we may restrict the colimit to those
simplices A™ that contains the cone point <, in which case the map i; ,, factors
through (A™)*2. Let A™ — K< be such a simplex; it now suffices to show that
the factored map 7y ,,: (A™)” — (A™)*? is marked anodyne.

For the rest of this proof, we relabel < as 0, so that we can identify ¢, ,, with
the obvious inclusion of (A™)> 2 A%-70 into (A™)*2 22 AO-m0-T  Now this map
is the composite of the sequence

AO...mﬁ C AOmOT C AOmﬁ} C AOmOTm

Since all edges of the form ¢ — P are marked, by lemma A.1.10 we deduce that
each of these inclusions is marked anodyne, whence the result. O
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4.3.4 Study of the map p

This subsection is devoted to the last step of the comparison described in zigzag
(4.4), namely we prove the following result.

Proposition 4.3.8. The functor p*: C3 — BO, induced by the natural transfor-
mation p: GT — Fy is an equivalence.

We start with some preliminary results.
Lemma 4.3.9. The functors F3, G: sSet — sSet both preserve monomorphisms.

Proof. Since s, and (—)¢ preserves monomorphisms, so does their composite Fj.
We now turn to the case of G. Let ¢: A — B be a monomorphism of simplicial
sets and n € N. Let a¢ and a; be two n-simplices of GT(A) whose image under
GT(p) coincide. We wish to prove that ag = a;. Since s,(A x Al) — GT(A)
is an epimorphism, we may choose lifts ag and ay in (s.(A x Al)), of the two
simplices. We distinguish several cases in the argument.

(1) If both ag and a; belong to the subset (s,A),, then their common image
@(ag) = p(a1) actually belongs to (s.{0}),, which is a subset of GT(A),,
so that ag = a;.

(2) If none of dy and a; belongs to the subset (s.A),, since s.(A x A, \
$+(A), = G*(B), is an inclusion, we deduce that ag = aj, so that again
ag = aq.

(3) Finally, the case where exactly one of ag and a; belong to s.(A), is con-
tradictory: indeed, by construction of G*(A) the subset s.(A), and its
complement in s,(A x A'), remain disjoint in the quotient G*(A),, hence
also in GT(B),,.

O

Lemma 4.3.10. For every simplicial set K, the morphism p(K): Gt(K) —
F5 (K) is an equivalence of marked simplicial sets.

Proof. Let U be the class of simplicial sets X for which p(X) is an equivalence. We
will show that &/ = sSet by proving that I/ contains every representable A™ and
is stable under isomorphisms, small coproducts, pushouts along monomorphisms
and sequential colimits along monomorphisms. In other words, we will show that
U is saturated by monomorphisms in the sense of [Cisl9, Definition 1.3.9] that
contains all representables.

We first show that all standard simplices are in . Let m € N and consider
p(A™): GT(A™) — F;"(A™). This morphism admits a section e, non-naturally
in the variable [m] € A, whose underlying morphism of simplicial sets is defined
as the composition

e: Fy(A™) = 5, AT~ 22 g ADOOL-0m g (A™ 0 AY) 5 G(A™).
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where the middle identification of (m + 1)-dimensional simplices sends < to 00
and the vertex i to 0i (following the notations of sections 4.2.2 and 4.2.3). Let D,
be the non-degenerate (m + 1)-simplex of A™ x A! containing the edge i0 — i1,
where we declare all edges contained in A™ x {0} to be marked. Let D;; 4
denote the face of D; opposed to vertex i1. The morphism e then factors through
a filtration

Ff(A™) =% G 5 Gf — ... 25 G = GH(A™),
where G is the image of s.(Ui—y D;) by the quotient map s,(A™ x A!) —

GT(A™), with the induced marking. Since the edge i0 — (i 4+ 1)0 is marked, the
inclusion $.(D; ;1) — S«(Di41) is marked anodyne, hence so is its pushout

i i+1
S*UDJ‘%S*UDJ‘.
7=0 j=0

We thus obtain a diagram

S*{O} - S*AOO,Ol ..... 0., S, U;:O Dj

H | I
S*{O} S*AOO’Ol ..... (i+1)0 S, Uzi%) D.

J

where each row defines a cofibrant diagram in the projective model structure on
the category of diagrams Fun(e < e — e sSet™). Taking pushouts yields a weak
equivalence e;: G — G;,1. This proves that e is a marked equivalence, hence
A™ e lU.

It is clear that U is stable by isomorphisms. Consider a simplicial set of the
form K = [l,c; K; with all the K; in U. As (—)“: sSet — sSet, and s, both
preserve colimits, we can compute

s - +((14))

<o () )
colim (H s (K7 «— J] suf<us} — s*{*}>

ieJ ieJ

112

and

GT(K) = colim (H se(K; x A +— [ su(K; x {0}) — s*{0}>

icJ i€

12

colim (H GH(K;) +— [ s.{0} — s*{0}> .

icJ iceJ
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Since each map p(K;): GT(K;) — F5 (K;) = s.(K}) is a marked equivalence and
the diagrams are cofibrant, we deduce that p(K) is also an equivalence. This
proves that U is stable under small colimits.

Suppose now that K is a pushout B][4 C, with A, Band Cini/ and A — B
a monomorphism. We will prove that K € U. As before, rewriting the colimits
gives isomorphisms

Fy() = Ff(B) I] FF(0)  and  GHE)=GH(B) [] G7(0).
F(A) Gt(4)

To prove that p(K) is a weak equivalence, it suffices to show that the pushout
diagrams F; (B) « F3(A) — F;(C) and G*(B) + GT(A) — G*(C) are
cofibrant. This is a consequence of the fact that F;~ and G* both preserve
monomorphisms; in the first case, this is clear whereas in the latter, it is given
by lemma 4.3.9. Finally, the proof that U is stable by sequential colimits along
monomorphisms comes from a similar argument, therefore we omit it. O]

Recall from 4.3.1 the notation J for the standard interval object. We will use
the fact that Joyal’s model structure on sSet can be obtained a la Cisinski using
J x (=) as an exact cylinder [Cis19].

Lemma 4.3.11. For every simplicial set K, the image of the categorical equiva-
lence q: K x J — K under the functors Fy and G is a marked equivalence.

Proof. Let Up (respectively Ug) be the class of simplicial sets X such that
Fif(q): Fif (X xJ) — F5H(X) (resp. GT(q): GT(X x J) — GT(X)) is a marked
equivalence. We aim at proving that Ur = Ug = sSet. Using arguments similar
to those of the proof of lemma 4.3.10, one easily shows that both Uz and U are
stable under isomorphisms, small coproducts, pushouts along a monomorphism
and sequential colimits along monomorphisms. It is thus enough to prove that Ug
and U contains every representable A™. The key point is the observation that
both F3 and G restricts to an endofunctor on the full subcategory of sSet given
by the essential image of the nerve functor from 1-categories. More precisely, we
have
F5(A™ x J) = N (s.([m] x J)%)

and

G(A™ x J)= N (5*([m] x J x [1]) H 3*{0}) ,

s« ([m]xJx{0})

from which one readily verifies that F; (¢) and G*(q) are the image under the
nerve functor of an equivalence of 1-categories, hence are marked equivalence. [

We now turn to the proof of the last step in our comparison of BO, and
Ext(o), namely the proof that p*: €3 — BO is an equivalence of oco-categories.

Proof of proposition 4.3.8. Let K be a simplicial set. Recall that BO, is de-
fined by identifying, naturally in K, the set Hom(K,BO,) with the subset
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Hom”(G*(K), 9%%) of Homg,+ (G*(K), O%*) of morphisms satisfying conditions
(%)c.o- Similarly, Hom (K, C3) is identified with the set Hom” (F3f (K), 0%%). Since
p(K) preserves the conditions (*)g.», the map

p(K)*: Hom(F; (K),0%%) — Hom(GT(K), 0%

restricts to a map Hom? (Fy (K), 0%%) — Hom?(G*(K), O%+).

We will need to consider two quotients of these Hom sets, whose associ-
ated equivalence relations we will denote ~ and ~. They correspond respec-
tively to the homotopy relations in Fun(K, Cs) and Map’(F; (K), 0%). We
only describe those two relations in the case of Hom?(Fy (K), O®F), the case
of Hom?(G*(K), 0®#) being similar.

(Definition of ~). First, we consider the set of connected components
mo Map(K, €3), which is defined as the quotient of Hom(Fy (K), 0%¥) by
the homotopy equivalence relation ~ in the functor co-category Fun(K, C3).

(Definition of ~). Second, we consider the set of connected compo-
nents my Map?(Fy (K), 9%#), that is the quotient of Hom(F; (K), 9%H)
by the homotopy equivalence relation ~ in the functor oo-category
Map’(F5 (K), 0°%).

Using the characterization of equivalences in functor co-categories of [Lur22, The-
orem 01KA] (or more precisely, a slight generalization of this result to marked
simplicial sets), we can rephrase the definitions of ~ and ~ more explicitly.

Let fo and f; be two maps Fy (K) — O®*.

Both of the following conditions are equivalent to asserting that fo ~ fi.

(i~) There exists a factorization of the fold map (idg,idx) as K[ K —
K % K, with p a categorical equivalence, and a lift in the diagram

F+(K)]'_[2 fO:fl O@h

F (ZO Zl)l ? /////

such that f satisfies conditions (x)g.,-

80751)

(7i~) For every factorization of the fold map (idg,idx) as K[ K
K—K, where sy and s; are disjoint monomorphisms, there exists a
lift in the diagram

Fy (K)12 M, L
(F5 (50), 5 (51)) ; ./
Fy (K)

such that f satisfies conditions (x),.


https://kerodon.net/tag/01KA
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Both of the following conditions are equivalent to asserting that fy, ~ fi.

(i~) There exists a factorization of the fold map (id () 1 g K)> as

F (K) [T F5' (K) = F5 (K) = F(K),

with p a cartesian equivalence (in the sense of [Lur09a]) , and a lift in
the diagram
By (K) 1 B (F) 20 0o,

-

/
/
LJ{ /
_ ,
r .7
P

F(K)

(1i~) For every factorization of the fold map (id Fr () 1 K)) as

F (K) [T FT(K) == F5 (K) = F(K),

where ¢ is a monomorphism, there exists a lift in the diagram

Fy (K) 1 B (K 20 oo,

-

/
7/
LJ/ /
_ ,
r .7
P

F(K)

Using these descriptions, one easily sees that p(K)* induces maps on the quotients
by the equivalence relations ~ and =, that we denote respectively

Pom - Hom? (Fy (K), 0%%),. — Hom?(G*(K), 0%%),.,
Pi~ : Hom?(Fy (K),0%%),x — Hom? (G*(K), 0%%) ~.

By lemma 4.3.10, we know that p(K) is marked weak equivalence, so that
pL: Hom(F; (K), O(X)’u)/z — Hom (G (K), O(X)’h)/z

is a bijection. It is an easy observation that a morphism f: F3 (K) — O%*
verifies the conditions (x)3, if and only if f o p(K): GT(K) — 0% satisfies
the corresponding condition (x)g,,. Therefore the induced map pj . is a bijec-
tion. The fact that p; _ is a bijection is now a consequence of the following result.

Claim. The equivalence relations ~ and =~ coincide, both on
Hom(F; (K), 0%%) and on Hom(G*(K), 0%#).

We prove the claim for the functor F3", the case of G* being similar. Consider
two morphisms fo, fi: Fy (K) — 0%,
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Suppose fo ~ f1. By assumption (ii.), there exists a lift f in the diagram

F;(K)HQ M) o®,h

A
/

(F;(So),F;(Sl))J 7 ///
Ff (K xJ) "

and by lemma 4.3.11, the map F; (K x J) — F; (K) is a marked equiva-
lence, so that condition (iy) is satisfied.

Suppose that fy ~ f;. We will show that condition (i.) holds. The factor-
ization of (idg,idg) through ¢: K x J — K induces a factorization

(i (s i 1)) + B () TT o (K)— Fyf (K x ) — Fy (K)
Al

where the first map is a monomorphism. We can thus apply assumption
(7i~) to obtain a lift f in the diagram

F;_(K)H2 (fo,f1) REE]

7n
/

(F;(SO)VF;(Sl))J A
FH(K xJ) "

It now suffices to prove that f satisfies conditions ()3, which is a conse-
quence of the fact that f, and f1 both do and (K x J)o = (K112),.

This shows the above claim and therefore completes our proof of proposition
4.3.8.
m

Proof of theorem 4.1.1. Combining lemma 4.3.2, proposition 4.3.4, lemma 4.3.7
and proposition 4.3.8, we obtain that each map in the zigzag (4.4) is an equiva-
lence, so that Ext(c) and BO, are equivalent Kan complexes. ]
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5.1 Statement of the results

5.1.1 Motivation

Let O% be a unital co-operad, that we now assume to be monochromatic and
such that the underlying co-category is an oco-groupoid. Consider an operation

o € O(n) of arity n.

In the previous chapter, we provided a zigzag of equivalences between two
models for the space of extensions of : on the one hand, the fiber BO, of Mann—
Robalo’s brane fibration 7: BO — Tw(Env(0))® and on the other hand, Lurie’s
space Ext(o). As explained in the introduction under the name of problem C,
neither of these two models is suitable for applications, since computing their
homotopy type seems difficult even for simple examples of oco-operads.

7
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However, there is a third possible model for the space of extensions of the
operation o, namely Toén’s space Ext,, defined as the homotopy fiber

O(n+1) % {o},
O(n)

of the morphism i*: O(n + 1) — O(n) given by precomposition with a chosen
atomic map 1.

In this chapter, we compare Toén’s model Ext, to Lurie’s space Ext(c). We
will show that, contrary to what one might expect, the models are not equiva-
lent in general, unless the space O(1) of unary operations is contractible. More
precisely, we will prove the following result.

Theorem 5.1.1 (Theorem C). Let O be a monochromatic unital co-operad
whose underlying co-category O is an oo-groupoid and o € O(n) an operation of
arity n. Choose an atomic morphism i: (n) — (n+ 1) in O¥. Then there is a
homotopy cartesian square

O(n+1) O%){U} —— Ext(0)

J L (5.1)

* ———— BO(1),

well-defined in the homotopy category of spaces, which exhibits Ext(c) as a ho-
h
motopy quotient of O(n + 1) ?){0} by a O(1)-action.
O(n

Remark 5.1.2. The restriction to the monochromatic situation is merely there to
make the comparison with Toén’s model more transparent and to slightly simplify
the notations. The results of this chapter readily generalize to the general case
of (coloured) unital co-operads.

Notation 5.1.3. Throughout this chapter, when considering a monochromatic co-
operad O® with unique color ¢, we shall use the slightly abusive notation of
writing objects of O% in the form (n), instead of say ¢®".

5.1.2 Difference with the existing literature

Theorem 5.1.1 contradicts the statement [Lurl7, Remark 5.1.1.10], in the case of
oo-operads with non-contractible spaces of unary operations. This statement is
a key result in Lurie’s proof of coherence of the little disks oo-operad E,,. Note
that this statement is, however, only used for this example of [E,,, which satisfies
that E,,(1) ~ % so that our theorem 5.1.1 actually implies that the conclusion of
Lurie’s statement is true, in this particular case.

We then provide through proposition 5.1.4 an explicit example of an co-operad
for which this statement is incorrect, without appealing to the above theorem
5.1.1.



5.1 Statement of the results 79

Let us now explain Lurie’s statement. Let Oa be a unital fibrant simplicial
operad, with underlying oo-operad O® = N®(04). By unitality, the canonical
inclusion ig, : (m) — (m+1) in IF, lifts uniquely to a morphism ¢ in the simplicial
category 0%, which induces a map of simplicial sets

i Map ((m + 1), () — Mapi (m), (n)).

Given an active morphism f: (m) — (n) in OX, Lurie defines in [Lurl7, Notation
5.1.1.8.] the space of strict extensions of f, denoted Exta(f), as the fiber of
i* at f. Now consider an n-simplex o of O® corresponding to a sequence of n
composable active morphisms

(mo) I (my) 25 2% (my)

in OF. In [Lurl7, Construction 5.1.1.9.], a comparison map 6: Exta(f,) —
Ext(o) is defined. Then [Lurl7, Remark 5.1.1.10] asserts that € can be identified
with the canonical map fiby, (¢*) — hofiby, (¢*). In particular, Ext(o) is supposed
to be equivalent to the fiber of ¢* at f,,. However, as a consequence of theorem
5.1.1, this equivalence can only hold when the group of unary operations O(1) is
trivial.

For a direct counterexample to [Lurl7, Remark 5.1.1.10] for O(1) % *, con-
sider the operad Op = Asslnv encoding associative algebras together with an
involution. It is the monochromatic operad in sets freely generated by two
operations 1 € Oa(2) and 7 € Oa(1) satisfying the relations 72 = id and
Topu(a,b) = u(7h, Ta); it can also be described as a semi-direct product Ass x 3.
Its homotopy coherent nerve O® = N(O%) is a unital monochromatic discrete oo-
operad, in which morphisms from (m) to (n) are given by a map «: (m) — (n) in
IF,, a linear order on each preimage a~'{i} and a choice of sign ¢: (m) — {+, —}.
The previous morphism will be denoted more compactly

i€(n)°

im;

Composition is defined so that negative signs reverse the linear order.

Proposition 5.1.4. For 0% = N(AssInv)® the co-operad of associative algebras
with involution and o the identity operation on the unique color (1), the spaces
of extensions Ext(o) and that of strict extensions Exta(o) are not homotopy
equivalent.

Proof. On the one hand, since Op is a discrete simplicial operad, the homo-
h
topy fiber Oa(2) X {o} coincide with the actual fiber Exta (o), which is the
1)

A

4-elements set {p(a,b), u(a, ), u(b, a), u(rb,a)}.
On the other hand, we claim that the set of connected components my Ext(o)
consists of only two elements. To prove this, recall the description of k-simplices
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of Ext(o) given in (2.1). In particular, the objects of Ext(c) are given by com-
mutative squares

(1) == (1)
T (52
2) = (1),

with ¢ atomic, a active and ¢ an equivalence. The morphisms in Ext(o) are given
by diagrams
(1) =% (1)

il %N

pl(2) =25 (1) ¢~ (5.3)

I
@)~ )

with active morphisms and with f compatible with extensions. Consider two
objects © = (i,p,a) and ' = (i, ¢’,a’). There exists a unique morphism
such that ¢ = ', whereas there are always two distinct morphisms f that are
compatible with extensions and satisfy fi = i’. For this data (f,%) to define a
morphism in Ext(o), we further need equation o/ f = 1« to be satisfied. But
since there are 4 active morphisms (2) — (1) (namely 172%, 1727 2%1% and
2%17), only half of the pairs (z,z’) are in the same connected component; this

concludes the computation.
O

5.2 Auxiliary models for Ext(c) and the homo-
topy fiber of O(n+ 1) — O(n)

The first step is to represent the map i*: O(n + 1) — O(n), which is only well-
defined in the homotopy category of spaces, by a zigzag of spaces

—_——

On+1)«— 0O0n+1) — O(n).

h
This will give a strict model of the homotopy fiber O(n + 1) x {o}.
O(n)

Consider the subsimplicial set
A =A"T[Aa™

of A?. Using that A? can be written as the pushout A7 = A2 [] A' we obtain
OA12

that the mapping space O(n + 1) is isomorphic to the fiber
O(n+1) = Fun(A' 02,) X {({n+1), (1))}

Y Pun(9a12,09 )
~  Fun(A],02,) X {0, (1)}-

Fun(A%,O®

act
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Similarly, writing A2 as A2 JI A% we can identify O(n) as the fiber
BAOZ

O(n) = Fun(A3, 0%,) X {(, (1))}.

act

Fun(AZ2,08)

—_——

Now let O(n + 1) denote the fiber of the restriction

Fun(A?,02,) — Fun(A3, 02,)

act act

at (i, (1)). Since A3 — A? factors through both AZ and A3, we obtain a commu-
tative diagram

—_—

On+1) «— O(n+1) ——— O(n)
J{(ivid) - J - l(i,id) (5.4)

Fun(Af, Oﬁt) —— Fun(AQ,OS%t) — Fun(Ag,Offct).

Lemma 5.2.1. The above diagram yields equivalences of fibers

o<n+1)o%){a} ~ 0(n+1) x {o} = Fn(8%,0%)  x  {(i.0)}

act
Fun(A2,02.)

0>~ act
Proof. In diagram (5.4), observe that the top row is obtained as the fiber of the
bottom row at the point (i, (1)) of Fun(A2%, 0%,). Therefore both squares in the

diagram are cartesian. In particular, since the bottom right morphism is a Kan

—_—

fibration, so is O(n + 1) — O(n). Similarly, since the bottom left morphism is a

trivial Kan fibration, so is O(n + 1) — O(n + 1). This gives the first homotopy
equivalence of the lemma. The second equivalence, which is an isomorphism of
simplicial sets, is obtained by taking the fiber of the right cartesian square at the
object 0 € O(n), whose image in Fun(A32, 02,) is (i,0). O

We now replace Ext(c) with a more convenient model, that we shall denote
Ext™(c), defined as a certain subcategory of the functor oo-category Fun(A! x
Al 02,) of commutative squares of active maps in O®. The squares will be

indexed as follows:
00 —— 01

I

10 —— 11.

We will require that the left vertical map is atomic, the right vertical one is an
equivalence and the top one is precisely the fixed morphism . In order to define
Ext™(0), the following notations will be convenient.

Notation 5.2.2. Let Atomy denote the non-full subcategory of Fun(A!, 02,)
whose objects are atomic morphisms (see definition 2.2.1). Let Atomg(n) be
the full subcategory of Atomg whose objects are maps with codomain (n).
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Notation 5.2.3. The marked simplicial set obtained from the square A! x A! by
further marking the edge A x {1} will be denoted OJ.

Definition 5.2.4 (Definition of Ext”(c)). Define the simplicial set Ext”(c) as
the iterated fiber product

Atomg Map® (0, (02,)) {o}
Ext™ (o) = lim J / \ l
Fun(A! x {0}, 02,) Fun({0} x A, 0%,)

where the two diagonal morphisms are the obvious restriction maps.
In other words, Ext™(c) is the subcategory of Fun(A! x A, 02,) whose

e objects are commutative diagrams

(n) —— (1)

won |

n+1) —— (1)

in which the left vertical map is atomic and the right vertical map is an
equivalence,

« morphisms are compatible with extensions, i.e. preserve the new color

(n+ 1) \ Im({(n)).
It is easy to see that Ext™ (o) is an co-category.
Lemma 5.2.5. The space Ext(0) is equivalent to Ext™(o).

Proof. By inspection of definition 2.2.3, one easily verifies that all diagrams in-
volved in the definition contains only active maps. Therefore diagrams to Ext(o)
factor through the subcategory Fun(A', %),/ of Fun(A*, 0%),,. Now recall the
canonical equivalence of oo-categories

v: Fun(A!, 02

act

o) — Fun(A', Oit)”

from the slice to the alternative slice, the latter being defined as the fiber at o of
the restriction map

Fun(A! x A, 0%

act

) — Fun({0} x A',0%2)).

The restriction of v to Ext(c) factors through the obvious inclusion Ext™(c) —
Fun(A'!, 02,)°/. Moreover, by inspection of the objects of these two co-categories,
one sees that this functor v|g(): Ext(c) — Ext”(o) is essentially surjective. To



5.2 Auxiliary models for Ext(o) and the homotopy fiber of O(n + 1) — O(n) 83

prove the lemma, it therefore suffices to show fully faithfullness of 7|gx(s). Given
two extensions X, X’ € Ext(c), consider the commutative diagram

Mappyo) (X, X') ————— Mapp,atge,, (X, X)

V'Ext(o‘)J/ Zl’y

Mapg, 06y (V(X), (X)) —— Mapg,pa1.02,)0/ (7(X), 7(X7)).

As v is an equivalence of oco-categories, the right vertical map is a homotopy
equivalence. Observe that, given two equivalent morphisms fy ~ f1: X — X’ in
Fun(A', 0%4),/, fo is compatible with extensions if and only if f; has this prop-
erty, and similarly for morphisms v(X) — v(X’). Consequently, the horizontal
maps in the above diagram are both inclusions of the connected components
determined by the condition of preservation of the new color in the extensions.

Therefore the restriction 7|« () is a homotopy equivalence, as desired. O

h
To compare Ext”(o) with O(n + 1) x {o}, we first give an alternative de-
0(n)

scription of the former oco-groupoid. By definition of Atomg(n), we have a com-
mutative diagram

Atomg(n) {o}

c v _I J/
L

o Fun(A3,00) ——— Fun({0} x A1,0%)  (5:)

| |

Atomy —— Fun(A! x {0},0%,) —— Fun({0} x {0},0%,)
in which both squares are cartesian, using the identification
A =A"UA” 2 Al x {0} U {0} x AY (5.6)

and the map 7 is induced by the universal property of pullbacks.

Lemma 5.2.6. There is a canonical isomorphism

Ext™ (o) 2 Map’ (0, (0%,)F) X Atomg(n). (5.7)

Fun(Ag,C)@ )

act
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Proof. Consider the following commutative diagram, extending diagram (5.5):

Ext”(0) Map® (O, 0Z,) x {0}

(Oﬁt){O)XA'
\\ ) \
Atomg(n) (05)210 x {0} {o}
o?ct
) L
g
Atomg X M'abpb(D7 0%,) Ma‘pb(D, O

R S

Atomy x (Oﬁt){O)XAI (Ofct)Ag (O?ct){o}XAl
Ot

-

Atomg (02,210} — (08,)(0x{0},

In the above, certain squares are cartesian by construction, namely:

 all the squares whose arrows are either vertical or horizontal

« the two squares that contains Map’(0J, 02,) and either {o} or Atom.

Using the usual transitivity rule for pullback squares, one deduce that any square
in the top left cube is cartesian, from which the desired isomorphism follows. [

5.3 Proof of theorem 5.1.1

There are two differences between the homotopy fiber of O(n + 1) — O(n) at o,
modelled as fib(; ,)(Fun(A2,0%,) — Fun(A2, 0%,), and Ext™(o):

(1) objects of hofib,(O(n + 1) — O(n)) are given by commutative triangles in
02, , whereas objects of ExtD(a) are commutative squares,

(2) in hofib, (O(n + 1) — O(n)), the map (n) — (n + 1) is the fixed morphism
i whereas in Ext™ (o), any atomic map is allowed.

As we will see, the first difference does not affect the homotopy type of the
spaces, but the second difference explains the origin of the quotient by the action
of O(1). To make this remark precise, we will introduce variants of Ext™ (o) that
differ according to the previous two parameters.

Consider the morphism 7: A! x A — A? induced from the map of posets
[1] x [1] — [2] given by

r(0,0)=0, r(0,1)=1, r(1,0)=1, r(1,1)=2.

It induces a morphism of marked simplicial sets 0 — (A2)’, which yields a
restriction map 7*: Fun(A2,02,) — Mapb(D, 02.). Moreover, r extends the
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identification (5.6) to a commutative square

{0} x AUA! x {0} —— A2

J J

Al x Al ——F— A2

Definition 5.3.1. Let Ext®(c) and Ext™(c,4) be the co-categories fitting in the
following diagram of cartesian squares

O(n+1) %){a} — Ext®(0) —— Fun(A2?,02,)
O(n

|

l i (5.8)

ExtY(0,i) ———— Ext"(0) —— Map’(0, 02,)
l - |
* ———— Atomg(n) SN Fun(AZ, 0%,).

g

h
The fact that O(n + 1) ?){a} and Ext”(c) fit in the above diagram is a
O(n

reformulation of lemmas 5.2.1 and 5.2.6.

Lemma 5.3.2. In the top left square of diagram (5.8)

O(n+1) O%L){U} —— Ext®(0)

J . L (5.9)

Ext”(0,i) —— Ext™(0),

the vertical maps are equivalences.

Proof. A simple computation shows that r is an equivalence of marked simplicial
sets [ = (A! x AL Al x {1}) — (A2?)’. Therefore * is an equivalence of oo-
categories. Since Map’(CJ, 02,) and Fun(A2, 02,) are fibrant over Fun(A2, 02,),
taking pullback along the morphisms j and o: * — Fun(A32, 0%,) gives the desired
equivalences. O

Lemma 5.3.3. Let O% be a monochromatic unital co-operad. Then the oo-
category Atomey(n) is equivalent to the underlying co-category O of O%.

Corollary 5.3.4. Let O% be as above and assume moreover that its underlying
oo-category O is an co-groupoid. Then the co-category Atomg(n) is equivalent to
the classifying space BO(1) of the group of automorphisms of (1) in O.
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Proof of lemma 5.3.5. First, fix an atomic morphism a: (n) — (n+1) in F, and
consider the subcategory Atomg(n) of morphisms lying over .. By definition, we
have a cartesian square

Atomg(n) —— Atomg(n)
l l
{a} ———— Atomp, (n).

Observe that the oo-category Atomp, (n) is the nerve of a l-category in which
any two objects j: (n) — S and j': (n) — S’ are related by a unique morphism
S — S’ (namely the unique bijection that restricts to j’ o (j[™))~! on the image
of 7). As a consequence, this (oo-)category is terminal and we obtain a canonical
equivalence of oo-categories Atomg(n) ~ Atomeg(n).

Now we may decompose the atomic morphisms of Atomg(n) according to their
arity using lemma 3.5.3. The result is an equivalence of co-categories

Atomg(n) ~ (O<1>/> oy
where the oo-category O, is a notation for the comma category
((0) € 0%) | (0% D 0).

Since O is assumed to be an oo-groupoid, so is its slice O()/; the latter has an
initial object, it is therefore contractible. We now turn to analysing the comma
category O ,. By definition, it fits in a commutative diagram of cartesian squares

Oy — (02)0/ —— Fun(A', 9%)

- _
l l J(evo,evl)

{0V} x O —— {{0)} x OF ——— OF x O°.

Since the middle vertical map is a cocartesian fibration, so is the left vertical
map. The fiber of this morphism at at object X € O is Mapye((0), X), which
is contractible by the assumption that O® is unital. Therefore this cocartesian
fibration is a trivial fibration O, = O, which completes the proof. O

Proof of Theorem 5.1.1. The homotopy cartesian square (5.1) is obtained as the
top left square in diagram (5.8), using the equivalences Ext® (o) ~ Ext”(o) ~
Ext(o) of lemmas 5.3.2 and 5.2.5 and the equivalence Atomg(n) ~ BO(1) of
corollary 5.3.4. O

5.4 Applications

As explained in the introduction (section 1.3), an important motivation for study-
ing the brane action comes from string topology, as the Es-algebra structure on
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free loop spaces arises from span diagrams given the brane action for the oo-
operad [E,. More precisely, recall from the program described in section 1.3 that
our work was motivated by the desire to use the formalism of brane actions to
generalize string topology in the following directions.

« On the one hand, we may consider analogs of free loop spaces Map(S™~!, X)
based on higher dimensional spheres (brane topology).

e On the other hand, with an eye towards conjecture 1.2.1, we would like
to enhance the E,-structure of brane topology to take into account the
action of groups of homeomorphisms of disks. The oo-operads governing
such structures are variants EC of the little disks co-operad E,, that are
given by semi-direct product of K, with a group G endowed with a mor-
phism to the oo-group Top(n) associated to the topological group of self-
homeomorphisms of R”.

Remark 5.4.1. As noticed when discussing program 1.3 in the introduction, al-
though the application of the formalism of brane actions to brane topology (i.e.
the first of the above directions of generalization) is already possible using the
original results of [Toé13], the latter generalization requires to extend the formal-
ism of brane actions to coherent oco-operads whose space of unary operations may
not be trivial, a problem that has been adressed in the previous chapters with
theorem A.

The rest of this chapter is devoted to the study of a generalization of the
oo-operads EY, a proof of their coherence and, as a consequence, a construction
of new operations operations on spaces of branes in a derived stack.

5.4.1 Coherence of the little B-framed disks oco-operad

In this section, we define the oco-operad of B-framed little disks and prove that it is
coherent. This co-operad depends on the datum of a Kan fibration B — BTop(n)
and recovers the variants EY of the little disks co-operad mentionned above when
B is the classifying space of a subgroup G of Top(n).

We recall the definition of co-operad E$ introduced in [Lurl7, Section 5.4.2],
following the presentation and the notations thereof.

Notation 5.4.2. Given two topological spaces X and Y, we let Emb(X,Y") denote
the topological space of open embeddings X — Y, topologized as a subspace of
the compact-open topology on the set Homro,(X,Y). For n € N, we let Top(n)

denote the topological space of homeomorphisms of R", viewed as a subspace of
Emb(R"™ R™).

Remark 5.4.3. The Kister-Mazur theorem implies that the inclusion Top(n) —

Emb(R™,R™) is a homotopy equivalence, for all n > 0 (see [Lurl7, Theorem
5.4.1.5)).

Let us fix a natural number n.
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Definition 5.4.4 ([Lurl7, Definition 5.4.2.1]). Let 'Egy,, ) denote the topo-
logical category whose objects are the finite pointed sets (m) € F, and where
mapping spaces are given by the formula

Mapige  ((m), (k) = 1T ﬁEmb(R” x a ' {i},R").  (5.10)
y)i=1

BT«
op(n) acHomp, ((m),(k

Let BTop(n)® denote its homotopy coherent nerve, ie. the oo-category
N (tEgTop(n)>. By [Lurl7, Proposition 2.1.1.27], BTop(n)® forms an oc-operad.
We will denote by BTop(n) its underlying oo-category, which by remark 5.4.3 is
a classifying space for the topological group Top(n).

Let us fix a Kan complex B together with a Kan fibration B — BTop(n).

Notation 5.4.5. Recall that given an oo-category C, one can construct a cocarte-
sian oo-operad CM whose spaces of multimorphisms are given by the formula
Muleu (cq, . . ., ¢m; €) = [T Mape(c;, ¢) (see [Lurl?, Section 2.4.3)).

Definition 5.4.6 ([Lurl7, Definition 5.4.2.10]). We let E% denote the co-operad

E$ = BTop(n)® x B (5.11)
BTop(n)d

and refer to it as the oo-operad of B-framed little disks.

Note that the underlying co-category of E is canonically equivalent to the

Kan complex B. In particular, one may identify the objects of E% with those of
B.

Remark 5.4.7 (Examples). o For B a contractible Kan complex with a Kan
fibration to BTop(n), the associated co-operad E% reduces to the ordinary
oo-operad EZ of little disks of dimension n.

» Consider a topological group together with a map to Top(n). The induced
morphism on classifying space can be represented up to equivalence by a
Kan fibration B := BG — BTop(n). Then the oo-operad of B-framed little
disks ES is equivalent to a semi-direct E® x G (in the sense of [SW03]). As a
particular case, for G = SO(n) we obtain the framed little disks co-operad
B

o Let M be a topological manifold of dimension n. Following [Lurl7, Defini-
tion 5.4.5.1.], let Cp; denote the topological category with two objects M
and R™, whose mapping spaces are

Mapeg,, (R",R") = Emb(R",R") Mapy,, (R", M) = Emb(R", M)
Map@M<M7 Rn) = (Z) Map@M (M, M) = {ldM}

Define By, as the Kan complex BTop(n) Xxe,,)N(Car)/n and let Ef; denote
the co-operad E%M. It is a variant on the co-operad EZ in which colors are
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open embedding U : R™ — M of disks of dimension n into M and operations
of arity k are diagrams of embeddings

LR R"
M

together with an isotopy making the triangle commute. Note that K-
algebras can be identified as locally constant factorization algebras on M,
by theorem [Lurl7, Theorem 5.4.5.9.].

The oo-operad of little disks operad E, is coherent, for all n € N by [Lurl?,
Theorem 5.1.1.1]. We generalize this result to the B-framed situation.

Theorem 5.4.8. The oo-operad of B-framed little disks E, is coherent.
The proof relies on theorem 5.1.1 together with the following computation.

Lemma 5.4.9. Let o: (by,...,b,) — b be an active morphism in ES, with
bi,..., by, b in B and choose an additional color by, in B. Then Toén’s model
for the space of extensions of o in ES is given by

OB x V™St if by ~bin B,

Mulg ; (b1,...,bm;b) 0 otherwise.

h
MulEB(bl,...,bm+1;b) X {O’}ﬁ {
(5.12)
Proof. By construction, the left hand side of equation (5.12) is equivalent to the
homotopy fiber at ¢ of the map

Emb(R"™ x (m + 1)°, R") X [174 Mapg(b;, b)
Emb(R" R7)m+1

l (5.13)

Emb(R™ x (m)°, R") X [Ti2, Mapp(b;, ).
Emb(R" Rn)m

Commuting the fiber product with the homotopy fiber, we obtain the space

(Emb(R” x (m+1)°,R") X {0}) x  Mapg(bmi1,b) (5.14)

Emb(R" x (m)°,R") Emb(R",R")
Since B is a Kan complex, the factor Mapg(b,,11,b) is empty when b,,,; and b
are in different connected components, and is equivalent to the based loop space
Oy B otherwise. On the other hand, for any finite set S, the obvious map from
the space Emb(R" x S,R") to the product Emb(R",R")® x Conf(S,R") is an
equivalence (see [Lurl7, Proof of Proposition 5.4.2.8.]). As a consequence, we
obtain an equivalence

h
Emb(R" x (m+1)°,R") X {o} >~ Emb(R",R")x Conf(S,R"). (5.15)
Emb(R" x(m)°,R")
Substituting this equivalence in (5.15) and using that Conf(S,R") ~ \/™ S"~1
we obtain the result. O
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Lemma 5.4.10. Let o: (by,...,by,) — b be an active morphism in ES, with
bi,...,bm,b in B. Then the space of extensions of o in ES is equivalent to
\/m Sn—l'

Proof. By theorem 5.1.1, any choice of a color b, yields a homotopy cartesian
square

h
Mulg, (b1, ..., bpme1;b X — Ext
ulg, (b1, -+ b )MulEB(blmbm;b){U} xt(o)
J ) l (5.16)
{berl} Ba

Upon taking base change of Ext(c) — B along the inclusion By — B of the
connected component of b and using proposition A.3.8, square (5.16) endows
the space of strict extensions (at the top left corner of equation (5.16)) with an
Q) B-principal co-bundle structure over Ext(o).

If b,,+1 does not belong to the connected component of b in B, then the
corresponding fiber of Ext(o)p over By is empty. In particular, the structural
map Ext(c) — B factors through Bp). Now choose a point by, 1 € Bp). Through
the identification given by lemma 5.4.9, the 2, B-action on the space of strict
extensions is the regular action on the first factor of 2, B x \/™ S™~1. Taking the
quotient by this action, we see that the space Ext(c) is equivalent to /™ S"~1. [

Proof of theorem 5.4.8. First, it is clear that the oo-operad E is unital. More-
over, its underlying oo-category B is a Kan complex by assumption. It remains
to prove condition (c) of definition 2.2.6. By lemma 5.4.10, for a sequence of
composable active morphisms X % Y = Z in ES, with X, Y and Z of arity
respectively m, k and 1, diagram (2.4) is equivalent in the homotopy category of
spaces to a commutative square of the form

k
H qn— 1 \/k: Snfl

| | (5.17)

H \/ Sn—l @ Sn—l

i=1p(0)~1{i}

which is easily seen to be homotopy cocartesian (as in the case of the little disks
oo-operad E,). This concludes the proof. ]

5.4.2 Action of the little B-framed disks oc-operad on
spaces of branes

As we just established, the co-operad E$ is coherent (theorem 5.4.8); therefore,
it admits a brane action by theorem A. This yields the following result.
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Corollary 5.4.11. Using the same notations as above, there is a canonical
morphism of ooc-operads ES — Cospan(8)Y, sending a color b to the space
Ext(idy) ~ S™ and an operation o: (by,...,b,) — b to a cospan diagram

Ext(idy)'" —— Ext(o) «—— Ext(id,) (5.18)

in which the middle space Ext(c) is equivalent to a wedge of m spheres S~ 1.

As explained in section 1.3, the previous result can be applied to multiple
geometric contexts. Let us recall the method to produce operations on spaces of
branes.

Let X be an co-topos. There is a canonical functor (—)es: 8 — X that sends
every space Z to the object Z. obtained as the colimit of the constant diagram
with shape Z and value the terminal object *. One could call Z.; the locally
constant stack with value Z, or the Betti shape of Z in X. Through this functor,
we obtain from the Eg-algebra structure of Corollary 5.4.11 a corresponding
algebra in the oo-category Cospan(X).

Given an object X € X, we may now apply the functor Map(—, X): X°? —
X to the objects Ext(c).st to obtain an Eg-algebra structure in Span(X). To
summarize, we have the following result.

Corollary 5.4.12. For any object X in X, the space Map((S™ 1)est, X) of Ep-
branes internal to X has a canonical Eg-algebra structure in Span(X), with struc-
tural morphism sending an operation o of arity m to the span

Map((S™ ) est, X)™ +—— Map(Ext(0)est, X) ——— Map((S™ ) est, X).
(5.19)

Remark 5.4.13. The advantage of the above construction is its generality: one
can say that the Eg-algebra structure on Map((S™ ™)., X) in Span(X) is mo-
tivic, in the sense that it exists before taking any sort of linear invariant (chains,
cohomology, quasi-coherent shaves, K-theory, etc.).

This is similar to the case of Gromov-Witten invariants [MR18], where the
authors use the brane action to construct Gromov-Witten invariants at a purely
geometric (or motivic) level and are then able to apply K-theory or ordinary
cohomology functors to recover the invariants in their more classical form.

In particular, specializing to the case B = BSO(n), the oo-operad E$ recovers
that of framed little disks E, so that the above corollary gives the following

n?

partial answer to conjecture 1.2.1.

Corollary 5.4.14. Let X be a topological space.  Then the brane space
Map(S"~1, X) carries an EX-algebra structure in Span(§).

Inverting spans

In many applications, it is useful to "invert" the wrong-way morphisms appearing
in the spans to obtain an algebra structure in a more tractable co-category, such
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as that of chain complexes or of spectra. To make this construction more precise,
we rely on the universal property of the category of spans, as established in [Ste20]
(see also [GR17] for an earlier description of this universal property).

First, given an oo-category € with pullbacks, we consider an (oo, 2)-
enhancement Span,(C) of the oo-category Span(C) of spans in € (see [Haul§]
or [Ste20] for a precise construction).

Next, we define the Beck—Chevalley condition.

Definition 5.4.15 (Adjointable squares, [Ste20, Definition 3.4.1]). Let D be an
(00, 2)-category. A commutative square
d —2

lﬁ, Jﬁ (5.20)

/ @
e —— €

in D is called vertically right adjointable if 3 and 3’ admit right adjoints 8% and
A" and moreover the canonical 2-morphism

o B — pla (5.21)

constructed using the unit idg — %3 and the counit %3’ — id., is an isomor-
phism.

The square is said to be horizontally right adjointable if its transpose is verti-
cally right adjointable. If it is both vertically and horizontally right adjointable,
we simply say that the square is right adjointable.

Definition 5.4.16 (Beck—Chevalley condition, [Ste20, Definition 3.4.5]). Let € be
an oo-category with pullbacks and D be an (o0, 2)-category. A functor F': € — D
is said to satisfy the left Beck—Chevalley condition if for every cospan x — s < y
in €, the induced commutative square in D

Flx xsy) —— F(y)

is right adjointable.

Using these definitions, one can characterize the 2-functors out of (oo, 2)-
categories of spans.

Theorem 5.4.17 (2-categorical universal property of spans, [Ste20, Theorem
3.4.18]). Let € be an oo-category with pullbacks and D be an (00, 2)-category.
Precomposition with the canonical functor € — Span,(C) identifies the space of
2-functors Spany(C) — D with the subspace of Mapc,, (€, D) consisting of those
functors € — D that satisfy the left Beck—Chevalley condition.
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Remark 5.4.18. Given a functor F': € — D satisfying the left Beck—Chevalley

condition, the associated 2-functor Span,(€) — D sends a span z Lss y to the
morphism ffog: F(z) = F(y).

We briefly discuss two geometric contexts: the case of derived stacks X = dSty
and that of spaces X = 8.

Algebro-geometric context. Let k be a field of characteristic 0 and dSt; the
oo-category of derived étale stacks over k.

To invert the correspondences of derived stacks that arise from the brane
action, we need to restrict our attention to a particularly well-behaved class of
spaces, namely that of perfect stacks introduced by Ben-Zvi-Francis—Nadler in
[BZFN10].

Definition 5.4.19 (Perfect stacks, [BZFN10]). A derived stack X is said to be
perfect if its diagonal morphism is affine and if QCoh(X) is the ind-completion
of its full subcategory of perfect complexes. We let P denote the full subcategory
of d8t; on perfect stacks.

Example 5.4.20. The class of perfect stacks contain many examples of interest.
For instance, every quotient Y/G of a quasi-projective derived scheme Y by a
linear action of an affine group G is perfect. Perfect stacks are moreover stable
under fiber products and if X € P, so is Map((K ), X ) for every finite simplicial
set K.

Consider the (0o, 2)-category dgCaty of (possibly large) k-linear presentable
dg-categories, with functors preserving small colimits as morphisms. Let
QCoh: d8t, — dg(i’atk denote the functor that assigns to every derived stack
its derived oo-category of quasi-coherent sheaves.

By [BZFN10, Proposition 3.10], the restriction of QCoh to P satisfies the left
Beck—Chevalley property and therefore extends to a 2-functor

QCoh: Span,(P) — dgCaty,

using Theorem 5.4.17. Moreover, we can upgrade this 2-functor QCoh to a sym-
metric monoidal one, using [Ste20, Corollary 1.2.2]. Together with Corollary
5.4.12, this shows the following result.

Corollary 5.4.21. Let X be a perfect stack. Then the oco-category of quasi-
coherent sheaves on its space of branes Map((S™')es, X) carries a canonical
Eg-algebra structure in dg@atk.

This results extends results of Toén [Toél3, Corollary 5.1] and of Ben-Zvi-
Francis—Nadler [BZFN10], which corresponds to the particular case of the E,-
operad (that is Ep for B ~ x).
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Topological context. We may want to adapt the above construction to the
case of topological spaces, in order to recover the classical string topology opera-
tions, and more generally to prove conjecture 1.2.1 (this was essentially Program
1.3 from the introduction).

However, one immediately runs into the problem of defining functorial umkehr
(or wrong-way) maps at the chain level. In particular, this would require to handle
all the coherence data needed to produce a functor from a suitable subcategory
P of § to that of chain complexes (or suitable variants of such). The subcategory
P would have to contain the free loop spaces £X, which are infinite-dimensional
manifolds, and the sought functor to chain complexes would have to specialize
to the classical Thom—Pontryagin construction of umkehr maps upon taking ho-
mology.

To the knowledge of the author, the existence of such a construction is still
an open question.



Appendix A

Recollections

A.1 Marked simplicial sets

In this section, we collect various facts about marked simplicial sets that are
used in the proof of theorem B. These results are standard and well-known to
specialists, with perhaps the exception of proposition A.1.7, stating that anodyne
morphisms satisfy a weak form of the right simplification property, which seems
to have not appeared in the literature. This last result might be of independent
interest.

A.1.1 Some properties of marked simplicial sets

Definition A.1.1. A marked simplicial set is a pair (X, mX) where X is a simpli-
cial set and mX is a subset of X; that contains all degenerate edges. A morphism
of marked simplicial sets (X, mX) — (Y,mY") is a morphism of simplicial sets
f: X — Y such that f(mX) CmY.

The category of marked simplicial sets is denoted sSet™.

Notation A.1.2. Given a simplicial set X, one can associated three marked sim-
plicial sets:

« the minimal marking X°, consisting only of degenerate edges,

« the cartesian marking X® in which an edge is marked if and only if it is an
equivalence,

« the maximal marking X*, containing all edges.

Given an edge e in a marked simplicial set Y, we let Y[e] denote the marked
simplicial set obtained by further marking e. In other words, Ye| is the initial
marked simplicial set whose underlying simplicial set is Y and such that both
canonical maps Y — Ye] and e: A — Y[e] are morphisms of marked simplicial
sets.
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Given a category C and a class S of morphisms in €, we say that S is weakly
saturated if it contains all isomorphisms and is closed under cobase change, trans-
finite composition, coproducts and retracts. The smallest weakly saturated class
containing S is denoted S and called the saturation of S.

We introduce several classes of morphisms in sSet and sSet™:

o the class Cell = {0A" C A" | n € N},

the class InnHorn = {A} C A" | 0 <k <n, n>2},

the class Cell’ = {AT” C A™ | 0 <k <n, n>1},

the class InnHorn’ = {A}” € A™ | 0 <k <n, n > 2},

the class LHorn® = InnHorn” U {AJ”[0 — 1] € A™[0 — 1] | n € N*},

the class RHorn® = InnHorn’ U{A™[n—1 — n] C A™[n—1 — n] | n € N*}.

The saturations Cell and InnHorn are respectively the class of monomorphisms
and that of inner anodyne morphisms. We now introduce a notion of anodyne
morphisms for marked morphisms that is suitable for our computations of chapter

4.

Definition A.1.3 (Marked anodyne morphisms). The class Mark of marked
anodyne morphisms is defined as the saturation of the union of LHorn* and
RHorn* together with the map

APF]T A% — A%

AZP
as well as the maps K° — K* for all Kan complexes K.

Remark A.1.4 (Difference with Lurie’s definition). Beware that the previous def-
inition differs from that [Lur09a, Definition 3.1.1.1] in that our definition is sym-
metric, whereas Lurie’s include RHorn® but not LHorn®. The conceptual reason
for this discrepancy is the following: Lurie’s marked anodyne morphisms are
examples of trivial cofibration in the cartesian model structure on sSet™, while
our marked anodyne morphisms should be trivial cofibrations in an appropriate
model structure of bifibrations on sSet™. However, for the purpose of this work,
we shall not need the full power of such a model structure.

Definition A.1.5. Morphisms satisfying definition [Lur09a, Definition 3.1.1.1]
will be called marked right anodyne in this thesis. The obvious dual definition
gives the class of marked left anodyne morphisms.

Lemma A.1.6. Every marked anodyne morphism has the left lifting property
against all morphisms of the form X% — % for X an oo-category.



A.1 Marked simplicial sets 97

Proof. By [Lur09a, Proposition 3.1.1.6], marked right anodyne morphisms have
the desired lifting property. By symmetry of the argument, so do marked left
anodyne morphisms. Since Mark is the saturation of the class given as the union
of these two types of anodyne morphisms, we deduce the result. O

In chapter 4, we will use that the class of marked anodyne morphisms satisfy
the following weak form of right cancellation property.

Proposition A.1.7 (Right cancellation property for marked anodyne mor-
phisms). Leti: A — B and j: B — C be monomorphisms of marked simplicial
sets. Assume that i and joi are marked anodyne morphisms and that j is bijective
on 0-simplices. Then j has the left lifting property with respect to all morphisms
of the form X' — x for X an oo-category.

Proof. Our proof is merely an adaptation to the marked simplicial setting of the
argument of [Stel8, Theorem 1.5] which states that the class of inner anodyne
maps has the right cancellation property. We give details here for completeness.

Let X be an oo-category. We will show that j has the left lifting property
against X% — *. Suppose we are given a map u: B — X of marked simplicial
sets. By lemma A.1.6, that j o7 is marked anodyne allows to pick a morphism
p: C — X satisfying pojoi = wos. This implies that u and poj are in the same
fiber of the map i*: Map(B, X*) — Map*(A, X!). By [Lur09a, Proposition
3.1.3.3 and the following remark| (or more precisely a generalization thereof to
arbitrary marked anodyne maps in our sense), the map ¢* is a trivial Kan fibration.
We may then take a homotopy between u and ¢ o 5 over their common image
by *. This homotopy takes the form of a morphism h: Ab x B — X! with the
following properties:

hlioyxs =@ o j hlgyxs = u ho(ida Xi) = woioprojy,.

Consequently, h and ¢ induce a map w = (¢, h): {0} x CUAY x B — X" The
problem therefore reduces to finding a lift d: A% x C' — X% in the diagram

{0} x CUAY x B —*“— X*

7

’
,
e
J{ d/’/

Abtx O

for then d|(13xc will provide the desired lift of w along j. Using the skeleton
filtration on C, write C'(n) = B Usk,(C). Note that we have the equality B =
C'(0), since j is bijective on objects. Working inductively, it therefore suffices to
prove the existence of a lift in the following diagram:

({0} x Cn +1) U (A x C(n)) —— X

A
,
.
-
-
-
-
-

-

AV x C(n41), -
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for every n € N. Since every monomorphism of marked simplicial sets is obtained
by cell attachments and edge markings, the proof reduces to the case where the
inclusion C(n) — C(n + 1) is either QA" — A"+ o ALY — ALE Using
[Lur09a, Corollary 3.1.1.7], one easily sees that (A x AY) U ({0} x AL#) —
AV x AV is marked anodyne, so the result follows for the case of the latter
inclusion. For the former inclusion, one can adapt the argument of [Stel8, Lemma
2.4]: decompose the inclusion

({0} > A™FP) U (AN x QA™) — AL 5 AmHL

as a sequence of inner horn inclusions that successively add the different top-
dimensional simplices, composed with the inclusion of a left marked horn
AGFHO — 1] into A"FLH0 — 1]. O

A.1.2 Calculus of pushout-joins

Given maps i: A — B and j: K — L of simplicial sets, define the pushout-join
¢t @ j as the map

ij:A*LHB*KM)B*L. (A1)
AxK

If < and j are instead maps of marked simplicial sets, then i @ j also defines a
map of marked simplicial sets.

Lemma A.1.8. Let S and T be two classes of morphisms, either both in sSet or
insSet™. Then S®MT C S®T.

Proof. For the case of sSet, this is [Rez22, Proposition 30.12]. The case of marked
simplicial sets is a straightforward adaption of the argument thereof. m

Lemma A.1.9. We have the following inclusions of classes of morphisms in sSet
and sSet™ :

RHorn ® Cell € InnHorn  and  Cell ® LHorn C InnHorn,

Cell’ ® RHorn® C RHorn*  and  LHorn® @ Cell” C LHorn".

Proof. The results follow from lemma A.1.8 together with the following compu-
tation: for j,k,n € N with 0 < j < n, there are canonical isomorphisms

(A;l C An) (aAkz C Ak) o~ (A}H—l-‘rk C An-i—l-i—k)’
(OA* c AMym (A} C A™) = (ApHTE c A™).

The following computation will be essential in chapter 4.

Lemma A.1.10. Let I and J be finite linear orders and Jy C J a suborder. Let
i and j denote respectively the inclusions ) C I and Jy C J. Then
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(1) the inclusion

idysj: (AT 5 (AT)E 5 (A1) (A7)

(2) and the inclusion

i@ (A7) (ALJJO)ﬁ((AI)b # (AT)F) — (A1) 5 (A7)

are both marked anodyne.

Proof. For both assertions, it suffices to show the result for J = Jy U {y}.

(1)

We consider the inclusion id; xj. We proceed by induction on the cardinality
of I. Suppose first that I = (). Assuming that y is not an extremum
in J, let y_ (respectively y,) denote the maximum (resp. minimum) of
the elements z € J such that © < y (resp. = > y). Consider the spine
inclusion Sp’ — A7, which is inner anodyne. Note that this map factors
through the simplicial set T = A’ U AY-%¥+ as a inner anodyne inclusion
Sp” — T. As A% — A’ also factors through T, it is enough to show
that (AJ)* — T* is marked anodyne: this follows from the two inclusions
(Av-¥)F — (AY-w+)f — (A¥-99+)F being marked anodyne. The case where
y is the maximum (resp. minimum) of J is analogous, replacing 7' by
AT U AY=Y (tesp. AT U AW+).

For I # (), assume the result for finite linear orders of cardinality less than
I. Let z be the minimum of [ and let Iy = I\ {z}. It suffices to show that
the inclusion
(A c Aym (AP cAl): (AP« A7) U (AT AT) = (AT A7)
A10xAY0

is inner anodyne. This follows from lemma A.1.9, since Ao C A7 is right
anodyne and A% C A’ is a monomorphism.

We now turn to the inclusion ¢ @ 5. If y > Jp, then j is marked left
anodyne; using lemma A.1.9 we obtain that i @ j is inner anodyne, hence a
marked equivalence. Otherwise, we can partition Jy as J; [[.J;" such that
Jy <y < Jg and Jj is non-empty. Then j factors as the composite

AP A T (A AT) — A

+
Ao

where the first map is induced by the inclusion e: A% — AV x A% and
the second map is () € A% ) ®e. Since e is marked right anodyne, using
lemma A.1.9, we deduce that so is j and therefore also i @ j, as desired.

O
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A.2 A note on cartesian fibrations and spaces
of lifts

In this section, we recall a useful characterization of cartesianity of a functor in
terms of contractibility of a certain space of lifts. Let p: X — S be an inner
fibration of co-categories.

Definition A.2.1 (p-cartesian edges). A morphism f: x — y in X is said to be
cartesian if the canonical map

Qf: X/f — X/y ><S/py S/Pf
is a trivial fibration.

Notation A.2.2. Given a morphism f: z — y and an object z in X, base-changing
qr along z: x — X yields a functor

q,: X/f Xx {Z} —>DZ,

where D, denotes the co-category (X/y Xs,,, S/pf> X x {z}. The fiber of ¢, at an
object u will be denoted £ and refered to as the space of lifts of u along f, leaving
the dependance on (f, z,u) implicit in the notation. The situation is summarized
in the following commutative diagram of oo-categories

L —— Xy xx {2} ———— Xy

M|
qul le - qu
* v @Z . X/y XS/py S/pf
* z X.

in which all squares are cartesian.

We will use the following equivalent description of cartesian edges, which is
essentially a rewording of Proposition 2.4.4.3 in [Lur09a] and its proof.

Lemma A.2.3. Let f: x — y be a morphism in X. Then f is p-cartesian if and
only if for all z € X, every fiber £ of q, is contractible.

Proof. By Proposition 2.1.2.1 in [Lur09al, the morphism ¢; is a right fibration,
hence so are ¢, and g,. Now note that every fiber of ¢ is of the form £ for some
choice of objects z and u. Since a right fibration is trivial if and only if each of
its fibers is contractible, we get the result. O

Remark A.2.4. The proof also shows that £ is a Kan complex, since ¢, is a
right fibration whose codomain is a Kan complex. This justifies the use of the
terminology space of lifts for £.

Definition A.2.5 (Cartesian fibrations). The functor p: X — S is a cartesian
fibration if for all y € X, every morphism T — p(y) in S admits a lift x — y
along p which is p-cartesian.
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A.3 Principal co-bundles

In this section, we recall some definitions and basic properties of groupoid
objects, oco-groups and principal bundles in higher category theory. We mostly
follow the exposition of [NSS15].

Let T be an oo-topos.

Definition A.3.1 ([Lur09a, Definition 6.1.2.7]). A groupoid object in T is a
simplicial object G4: A°® — T such that for every n € N and every partition
[k] U [K'] = [n] with [k] N [k] = {x}, the induced diagram

Gn%Gk

l l (A.2)

Gk‘/ E— GO

is a pullback in T. The full subcategory of Fun(A°P,T) on the groupoid objects
is denoted Grpd(7).

Definition A.3.g. For f: X — Y a morphism in 7, one has a associated
groupoid object C(X — Y) in T called the Cech nerve of f given in degree
n by the (n + 1)-fold fiber product

CX 5 Y)=X Xy X Xy xy X.
We say that f is an effective epimorphism if it is the colimiting cocone of its Cech
nerve, i.e. if we may write

X —C(f).
Let Eff(T) denote the full subcategory of Fun(A!,T) on the effective epimor-
phisms.

Proposition A.3.3 ([Lur09a, Corollary 6.2.3.5]). The Cech nerve construction
provides an equivalence of co-categories

C': Eff(T) ~ Grpd(T) (A.3)
whose inverse sends a groupoid Go to the colimiting cocone Gy — colim G,.

Definition A.3.4. An oo-group in T is a groupoid G, in T such that Gy ~ x*.
The corresponding full subcategory of Grpd(7) is denoted Grp(T). We usually
write G for the space G; and will often abuse notation by refering to GG as the
oo-group, leaving the rest of the simplicial structure G, implicit.

We now recall the delooping equivalence.

Proposition A.3.5 ([Lur09a, Lemma 7.2.2.11]). The loop space functor ) canon-
ically extends to a functor from the oo-category T, of pointed objects in T to
Grp(T). Its restriction to connected pointed objects yields an equivalence of co-
categories

Q: (T.)>1 ~ Grp(7): B.
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The functor B inverse to € is called the delooping, or classifying space functor.
The effective epimorphism * — BG associated to an co-group G is the colimiting
cocone

Tt GExGE — G 2 x ——— BG

induced by the simplicial object G: A°? — T.

Definition A.3.6 ([NSS15, Definition 3.1]). Let G4 € Grp(T) be a group object
and X an object in T. A G-action on X is a groupoid object (X//G)e in T of
the form

T XXxGXxG 3 XxG— X
—_— I— proj
such that the degreewise projection maps X x G™ — G™ yield a morphism of
groupoid objects (X//G)e — Go. The oo-quotient of the action is the colimit
object X//G := colim(X//G) in T.
The oo-category GAction(T) of G-actions in T is the full subcategory of
Grpd(7),¢, on G-actions.

Definition A.3.7 ([NSS15, Definition 3.4]). Let G4 € Grp(7) be a group object
and X an object in T. A G-principal co-bundle over X is a morphism Y — X in
T together with a G-action on Y, such that Y — X exhibits X as the quotient
Y//G.

The oo-category GBun(X) of G-principal co-bundles over X is the homotopy
fiber at X of the quotient functor

GAction(T) € Grpd(T) g, — Crpd(T) <% T
The following result will be useful in chapter 5.

Proposition A.3.8 ( [NSS15, Proposition 3.8] ). If G is an oco-group and X —
BG a morphism in T, then its homotopy fiber Y — X at the distinguished point
of BG carries a canonical structure of a G-principal co-bundle over X.

The G-principal co-bundle structure is obtained by considering the following
morphism of augmented simplicial objects

XY XGEGxGE —YXxXG Y — X

! R

in which all rectangle are cartesian squares.
Moreover, all principal co-bundles are obtained through this construction, as
stated in the next result.
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Theorem A.3.9 (Classification of G-principal oco-bundles, [NSS15, Theorem
3.17]). For all co-groups G € Grp(7T) and all objects X € T, there is a natu-
ral equivalence of oo-groupoids

GBun(X) ~ Maps(X, BG)

given on objects by the construction (p: X — BG) — (hofib(p) — X)) of proposi-
tion A.3.8.
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