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CHEVY Frédéric, ENS
DUBESSY Romain, LPL
ROBERT-DE-SAINT-VINCENT Martin, LPL
LABURTHE-TOLRA Bruno, LPL
GORCEIX Olivier, LPL

Présidente du Jury
Rapportrice
Rapporteur
Examinateur
Examinateur
Examinateur
Directeur de thèse
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Introduction

Emergent properties arise from collective systems whose whole is not reductible to

its individual components [Lew75]. Pioneering discoveries on superconductivity and

superfluidity illustrate the complexity of such systems for which experimental research

prevailed in the realm of quantum physics. The sudden vanishing resistance of mercury

at 4.2K, first observed by Heike Kamerlingh Onnes in 1911 [DK10], is an outstanding

example of collective phenomena as superconductivity was just discovered. Later, the

observation of abnormally low viscosity in ultra cold helium 4 [Kap38; AM38] marked

the discovery of superfluidity.

Degenerate quantum gases have become an ideal platform for the study of collective

phenomena. The high degree of control and tunability of lasers and magnetic fields

gives the possibility to shape arbitray potentials [GWO00; BDZ08; LZB19] and to tune

inter-atomic interactions [Chi+10; FJL00]. On the one hand, the first realization of a

Bose-Einstein condensate [And+95] paved the way for extensive research on superfluids,

from the study of the hydrodynamic oscillations in a Bose gas [Sta+98], to the real-

ization of phase coherent arrays of superfluid dropplets [Nor+21]. On the other hand,

it was also demonstrated that gases of fermions can be cooled to quantum degeneracy

[DJ99]. Following the original idea of Feynman [Fey82], proposals have suggested the

realization of quantum simulators for the Fermi-Hubbard model [Hof+02]. Repulsive

fermions in an optical lattice allow to realize an ideal and tunable version of the Hubbard

model [Hub63; Hub64], a paradigm for the multitude of strong correlation problems in

condensed matter physics. The experimental trapping of fermions in optical lattices

[Köh+05], and later entering into the strongly correlated regime [Sch+08; Jör+08], are

the first steps for the study of quantum magnetism with fermions [BDZ08].
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Active research on the Fermi-Hubbard model led to the realization of numerous

quantum simulators [BDZ08; Ess10; GB17]. Typically, two spin states of alkali fermions

such as potassium 40 [Che+15; Dre+17], or litihum 6 [Gre+16; Bol+16; Par+16], are

trapped in optical lattices in the strongly interacting regime. Most of these experiments

are suited to the analogy with spin half solid states physics, in the so-called SU(2)

symmetry in the case of spin-independent interaction properties. Spin ordering and

antiferromagnetic correlations, emerging from the collective spin system, are probed

with single site resolution using most advanced atomic microscopes [Bak+09].

Beyond spin half physics, proposals suggested the study of quantum magnetism

in enlarged SU(N) symmetry [CHU09; HGR09; Gor+10; CR14], with no solid states

analog. Involving an enhanced number of configurations due to the large spin degree

of freedom, exotic collective phenomena are expected. For instance, SU(N)-symmetric

exchange interaction shall result in frustrated spin ordering [HGR09]. Experimental re-

alizations of the SU(N) Hubbard model yielded the measurements of the antiferromag-

netic correlations [Oza+18; Tai+20] with alkaline-earth like ytterbium, and showed the

enhanced correlations compared to that ones of SU(2) spin systems. Furthermore, these

experiments with SU(N) gases show evidence of enhanced large-spin Pomeranchuck

cooling [Tai+12], which is a practical advantage to reach stronger spin-correlations at

constant entropy, and to approach singlet states [Rey+07]. Regarding ultra cold quan-

tum gases of alkaline-earth like fermions, SU(N) symmetry arises from the decoupling

of the nuclear spin with the electronic degrees of freedom [Gor+10]. Most importantly,

this symmetry results in the conservation of the nuclear spin of degree freedom. More-

over, these species have a large nuclear spin, and strontium 87, with largest nuclear

spin I = 9/2 in the atomic ground state 1S0, is an ideal candidate for the study of

magnetism in enlarged SU(N) symmetry.

Strontium 87 degenerate quantum gases were first realized in 2010 [DeS+10]. The

mHz clock transition 1S0 ↔ 3P0, associated with weak magnetic sensitivity, raised

particular interest for the realization of optical lattice clocks [Boy07],[Mic+09],[Mic10],

and proved high performances with up to 10−18 precision [Blo+14]. We are most inter-

ested in the 7.4 kHz narrow intercombination line 1S0 ↔ 3P1, with associated hyperfine
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splitting orders of magnitude larger than the linewidth. This transition offers ideal con-

ditions for the realization of spin orbit coupling schemes [GD10; LJS11] with minimal

spontaneous emission [CR14]. For instance, it has been demonstrated that spin com-

ponents can be separated using conservative spin dependent forces [SGS11]. In lattices,

strong artificial magnetic fields can be tailored at the optical wavelength scale with

light, realizing spin dependent superlattices [GB17; Sch+20]. Neutral atoms moving in

such lattices can acquire a geometric phase [Aid+11], simulating the Aharonov-Bhom

effect [AB59].

Our experiment is designed to realize the 2D Fermi-Hubbard model with strontium

87 with enlarged SU(N) symmetry. It is specificaly planned to study the dynamics of

spin entanglement. Using a spin dependent optical superlattice [Li+16; Hei+20] associ-

ated with the intercombination line, a texture of alternating spins without interactions

[Sun+18] can be prepared, realizing a Néel spin order [Née48]. By slowly reducing the

depth of the superlattice, spin dynamics are enabled by the time dependent spin orbit

coupling. It will be possible to slowly approach the regime where many-body physics

are driven by super-exchange interactions, within a spin-independent lattice. The spin

system shall, at least locally, adiabatically approach the singlet state [Sun+21]. The

(quasi-)long range spin correlations, that can result effectively in squeezing of the alter-

nate magnetization [Com+22], will be detected using the same spin dependent optical

superlattice. The goal of my PhD was to set up the tools to carry out this experi-

ment, first focusing on the SU(2) case, which is the most simple to demonstrate the

practicability of the proposed schemes.

Thesis overview

The first chapter reviews our protocol to prepare degenerate Fermi gas of strontium

87. I show that the loading of our optical dipole trap can be significantly improved by

increasing the capture volume. This is realized by superimposing another set of far off

detuned laser beams five times larger than the dipole trap used for evaporation. Twice

the number of atoms is loaded into the dipole trap, which facilites the preparation of

Fermi seas with higher phase space densities. Typically, we can produce degenerate



Contents 10

Fermi gases at T/TF ≃ 0.2 with 40 000 atoms and 10 spin components.

These degenerate gases are next loaded in lattices, made of a combination of a 1D

lattice with 2µm site spacing, with a 2D square lattice with 270 nm site spacing. I

applied the quantum magnifier scheme demonstrated in [Ast+21] to spatially separate

the different sites of the 1D lattice, and infer the number of atoms in each layer. The

obtained spatial resolution is of the order of approximately 220 nm along the lattice

eigen axis. Finally, I show that we are able to load the 2D lattice with approximately

95% strontium 87 atoms into the first Brillouin zone.

In the second chapter, I present our method to measure local densities with absorp-

tion imaging of objects smaller than the resolution limit of our imaging setup [Lit+21].

The method is based on the local Beer Lambert absorption law, and it takes into ac-

count the effect of fast local variations that are averaged by the detector (inducing

strong bias). This method is demonstrated on elongated Fermi gases, from which we

infer the unresolved transverse size, as small as one fourth of our imaging resolution

limit, and can surpass the diffraction limit, or other limits due to aberrations. Then, I

discuss an application of this method to attempt to measure the mean field interaction

energy of a SU(10) degenerate Fermi gas of 87Sr.

The next chapters focus on the implementation of the key protocols that will be

used: for the preparation of spin textures from single spin component band insulators,

for the adiabatic approach to the singlet state, and for the measurement of the alternate

magnetization.

In the third chapter, I first discuss our demonstrated method [Bat+20] to measure

the nuclear spin populations with a spin orbit coupling scheme associated with the

intercombination line [SGS11]. The robustness of our method is provided by adiabatic

following of a quasi-dark state, ensuring minimal spontaneous emission. Using the

strong difference of magnetic sensitivy of the coupled states, we selectively transfer,

with a resonant passage, well defined momentum recoils to well defined spin states,

with a simple retro-reflected laser beam. The overall efficiency is yet 85%, up to

now limited by available light power. I show then that we can selectively prepare a

polarized Fermi sea of 87Sr, without requiring sympathetic cooling by another atomic
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species [Tey+10]. A comparison with the preparation of a degenerate ten spins mixture

shows that our scheme doesn’t affect the phase space density of the evaporated gases.

Finally, I estimate that the Fermi sea is polarized with 90 ± 10% fiability accounting

for the overall efficiency of our detection scheme.

In the fourth chapter, I demonstrate an adiabatic scheme to selectively and coher-

ently manipulate the nuclear spin states of 87Sr with light. Taking advantage of the

tensor light shift associated with the narrow intercombination line, we lift the degener-

acy of the two photon Raman transitions within the 1S0 ground spin states manifold.

The spins are coherently flipped with an adiabatic passage through the resonance of a

selected Raman transition. This scheme is demonstrated in bulk gases. I then present

expectations for the fidelity of preparation of alternate spin textures, based on the same

principle. With a time dependent resolution of the Lindblad equation, I estimate that

the spin fidelity of the spin texture writting is 85% with respect to an alternate spin

pattern, in the actual conditions, and should raise to 97% with ongoing experimental

improvements.

In the fifth chapter, I focus on the loading of the lowest band of our 1D lattice

with large site spacing 2µm. We are able to prepare several independent 2D Fermi

gases with approximately 99% atoms in the lowest band and strictly positive chemical

potential. By comparing two methods, I show that the adiabatic following of the 3D

to 2D dimensionnality cross over is better ensured by maintening a sufficient collision

rate rather than by reaching very deep evaporation and low temperature prior to the

lattice loading. I also developped a thermodynamic model to analyze our time-of-flight

imaging in order to provide a proper estimate of the degeneracy parameter in each of

the 2D layers. We find an optimal µ/εF ⩾ 0.4, signaling that the 2D gases are strongly

degenerate.
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Chapter 1

Fermi gases of 87Sr in 3D optical
lattices - Experimental Setup

Ten years after the first proposal [WE89], it was demonstrated in the late 90’s, on

ytterbium first [Kuw+99] then on strontium [Kat+99; Muk+03], that it is possible

to produce colder and denser atomic clouds with narrow line laser cooling associated

with the intercombination line, than with broadband cooling. The Doppler limit is

proportionnal to the inverse lifetime of the coupled excited state allowing to reach

lower temperatures. The radiation trapping limit [WSW90; SWW91; CCL98] arising

from multiple light scattering is lower for the longer lived excited states, allowing to

reach higher densities [Ben+17]. While the use of large magnetic traps with alkali atoms

was quickly spreading to produce degenerate gases with collision assisted evaporation,

closed shell strontium with zero dipole moment in its ground state cannot be loaded in

magnetic traps. The high phase space densities reached thanks to narrow line cooling

are compatible with the use of far off resonant optical dipole traps [IIK00; GWO00], in

that the 1/e size of the magneto-optical trap is on the order of magnitude of the waist

of the lasers. Since then, the production of degenerate Fermi gases of 87Sr [DeS+10;

SGS13; SSK14; Ste13] has spread [DeS+10; Tey+10; SGS11; Son+20], but remains

difficult with few experiments worldwide.

This chapter presents an overview of our setup and experimental procedures to

prepare degenerate Fermi gases of strontium that we trap in 3D optical lattices.

13
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Atoms produced in an oven at 490 ◦C and Zeeman slowed are captured in a broad-

band magneto-optical trap (MOT) associated with the 30 MHz wide transition 1S0 ↔
1P1 at 461 nm, cooling atoms down to the Doppler limit TD ≃ 1mK. The transition

is not closed so that atoms are accumulated and magnetically trapped in metastable

state 3P2. We repump them in the ground state with the 403 nm transition 3P2 ↔ 3D2,

to begin a second MOT stage. The second MOT is associated with the 7.4 kHz nar-

row intercombination line 1S0 ↔ 3P1. This narrow MOT allows us to cool fermionic

strontium down to T ≃ 3µK, which is higher than the typical temperature T < 1µK

reached for bosonic species of strontium [SSK14]. The gas is then loaded in an optical

dipole trap to start forced evaporation, which is our last step of phase space compres-

sion to reach Fermi degeneracy, down to approximately T ≃ 0.15TF in our experiment.

Finally, atoms are adiabatically loaded in 3D optical lattices, made of the combination

of a vertical 1D lattice with large site spacing and a square 2D lattice.

I will first present the most relevant energy levels for laser cooling. Then I will focus

on the main features of each cooling stage, to ensure a sufficient understanding of the

experimental discussions in the next chapters. A complete description of the setup can

be found in Pierre Bataille’s thesis [Bat22] which reviews all technical specifications.

1.1 Cooling 87Sr to Fermi degeneracy

1.1.1 Energy levels

Strontium atom is an alkaline-earth species with four naturaly stable isotopes. Three

of them,84Sr, 86Sr, 88Sr are bosonic isotopes all with I=0 nuclear spin, and the only

fermionic isotope with 7% natural abondance 87Sr has I=9/2 large nuclear spin, which

is the largest of stable alkaline-earth species. Our platform makes use of fermionic 87Sr

only, and hence I will focus on this isotope.

The ground state 1S0 of strontium has closed-shell electronic structure [Kr]5s2,

and zero electric spin. The transition at 461 nm connects 1S0 to the singlet state 1P1

which has a very short life time 5 ns [Wer+92; Yas+06], corresponding to a broad

linewidth Γ/2π of 30 MHz, as shown on figure 1.1. This broad band transition is used
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Figure 1.1: Energy levels and optical transitions (solid double arrowed lines) associated
with electric dipoles (E1), for fermionic strontium 87. The dotted lines indicate spon-
taneous decay paths: 1P1 state has 1:20 000 probability to decay toward 1D2, and the
latter has 3:4 chance to decay to 3P1, and 1:4 chance to decay to metastable 3P2. The
three energy levels F = 7/2, 9/2, 11/2 are the three hyperfine states of 3P1. The energy
splitting and optical transitions are not to scale.

for capturing atoms out of our oven and for absorption imaging. From 1P1, 1 out of 20
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000 atoms can decay to the singlet 1D2 state , and then atoms have 1:4 probability to

decay to 3P2 or 3:4 probability to decay to 3P1.

While 3P1 triplet state can decay directly to the ground state 1S0 with electric dipole

transition (E1) at rate 7.4 kHz, the 3P2 triplet state is a long lived metastable state.

The decay paths to lower energy states require high order processes such as magnetic

quadrupole (M2) transitions, and the associated life time has been measured up to 500

s [YK04]. Hence, on experimental time scale, 1S0 ↔ 1P1 is an open cycle and with

optical excitation at 461 nm, atoms are continuously shelved from the ground state into
3P2 at rate Γshelving ≃ Γ1P1

/2× 1.25 10−5.

The total electronic spin is not conserved on singlet-triplet transitions such as the

intercombination line 1S0 ↔ 3P1, hence a one photon decay path associated with

an electron spin flip should be forbidden, and these excited states should be stable.

However, higher-order processes reduce the life-time of these excited states and may

allow for single photon electric dipole (E1) transitions. For instance, 3P1 is mixed with

broad-band 1P1 state through spin-orbit interaction (SOC), such that the life-time of 3P1

is reduced to 25µs, corresponding to linewidth Γ/2π = 7.4 kHz. This is much smaller

than typical MHz broad transitions resulting in reduced spontaneous emission, but still

large compared to clock transitions. This typically means that the intercombination

line can be used at advantage both for dissipative processes and for coherent processes

with associated reduced spontaneous emission.

1.1.2 Oven - Transverse cooling and Zeeman slower

A deposit of pure solid strontium lies inside a stainless steel reservoir. It is heated by

radiation with a network of isolated heating resistances. The strontium reservoir is then

attached to a nest of microtubes to ensure a velocity selection on the hot atomic vapor,

so that fewer atoms with large transverse velocities can leave the oven.

The temperature of the oven is set with continuous voltage control, and it is

monitored with one thermocouple probe, at contact with the external surface of the

reservoir. In our experiment, we typically set the temperature of the oven at 760 K
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with input power 110 W which corresponds to an outgoing collimated flux of atoms

Ṅ ≃ 6.1012 atoms/s, with Boltzman velocity distribution and most probable axial ve-

locity v ≃ 500m/s. With this operating mode, the estimated lifetime of the oven is

nearly 5 years in our experiment. The strontium deposit has been reloaded only once

since the experiment launch in 2014.

The hot atomic vapor is optically collimated with 2D optical molasses at the exit

of the oven [SVH05]. Two orthogonal laser beams are retroflected along the transverse

velocities of the atomic flux. Transverse cooling is ensured with anisotropic beams,

the largest dimension being along the atomic flux to ensure maximal interaction time

with the atoms, and the frequency of the lasers is set red detuned ∆ = −Γ/2 from

the 1S0 ↔ 1P1 transition. This stage ensures an increase of the number of atoms later

captured by a factor of 3 in our experiment. The axial flux of atoms in then slowed with

a 50 cm long Zeeman slower [PM82], from v ≃ 500m/s down to the capture velocity

vc ≃ 20m/s of our broadband MOT.

The frequency of the blue lasers is set from a master laser with extended cavity,

whose frequency is locked on a hot atomic flux with modulation transfer spectroscopy

[MKC08; Lee+21]. The optical light used for transverse cooling and the zeeman slower

are generated by slave laser diodes whose frequency is set and stabilized by injected

light from the master laser into the slave diode cavities [Bat22]. The same procedure

is done for a slave dedicated to the MOT.

1.1.3 1S0 ↔ 1P1 broadband MOT - 3P2 shelving

The atoms are then captured in a 3D MOT on the broad-band transition at 461 nm,

and cooled down to the Doppler limit TD ≃ 1mK. The magnetic coils in anti-Helmoltz

configuration are supplied by 170 Amper during the MOT stage, producing a magnetic

quadrupole with strong field gradient ∇B = 51G/cm. The 1S0 ↔ 1P1 transition is

not cyclic, and atoms are continuously shelved at rate Γshelving ≃ Γ1P1
/2 × 1.25 10−5

from the ground state into the state 3P2. This metastable state has a large magnetic

dipole moment, so that metastable atoms stay trapped in the magnetic quadrupole.



Chapter 1. Fermi gases of 87Sr in 3D optical lattices - Experimental Setup 18

The metastable state has long lifetime 9 min [YK04], but into the magnetic trap it

is lowered by the background collisions, down to nearly 10 s. In our experiment, we

typically set the time for loading atoms in 3P2 to 5 s, and it can be tuned from 2 to

10 seconds depending on the best balance between signal to noise ratio and time of

sequence for the on-going experiment. After 10 seconds of loading, the populations

reach steady state and no more atoms can be accumulated in 3P2. After then, the blue

MOT is turned off.

1.1.4 Repumping metastable 3P2

The temperature of the atoms accumulated in 3P2 is approximately the Doppler tem-

perature of the broadband MOT, which is too hot to be directly loaded in our optical

dipole trap. To pursue optical cooling until the gas is sufficiently cold, we use a second

narrow MOT stage, which requires that atoms are in the ground state. Hence, we use

the optical transition 3P2 ↔ 5s6d 3D2 at 403 nm [SS14] to repump atoms back in the

ground state with a two photon radiative decay through 3P1, as sketched in figure 1.1.

When shelved in metastable 3P2,
87Sr atoms are spread in different hyperfine states,

and the 3P2 ↔ 3D2 hyperfine resonances are resolved in the GHz range. Hence, to max-

imize the efficiency of the rempumping, we modulate the frequency of the repumper

laser to scan through the three most populated hyperfine resonances, and this is done

by modulating the voltage of the piezo-electric crystal of the cavity of the laser. The re-

sulting amplitude of the laser frequency modulation is 3 GHz in our experiment, which

allows to repump up to 40 million atoms after loading the metastable during 5 seconds

with oven heated at 760 K.

Although rempumping through other 5snd 3D2 states can be used, for instance

n=5 [Pol+05; SGS13] at 497 nm or n=4 [Mic+09; Aka+21] where the decay paths

are favorable to minimize atom loss, we stick to using the 403 nm line for its easier

implementation and low cost laser. It is also possible to continuously repump atoms

during the broadband MOT stage in order to reach lower temperatures, at the cost

of atom loss [SSK14]. Since the number of atoms is critical for our experiment to

produce deeply degenerate Fermi gas, we rather repump atoms to the ground state
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after turning off the blue MOT. Note that it was recently demonstrated [Aka+21]

that it is possible to take advantage of the cyclic transition 3P2 ↔ 5s4d 3D3 at 3µm

inside the magnetic quadrupole, and produce ultra-cold gas at T ≃ 200 nK with one

dimensional polarization gradient cooling.

1.1.5 1S0 ↔ 3P1 narrow MOT

The MOT

The second and most critical optical cooling stage in our experiment is associated

with the 7.4 kHz intercombination line 1S0 ↔ 3P1 at 689 nm. While the achievable

temperature is limited in a broadband MOT due to high Doppler temperature, and

the density is limited due to the effective repulsive force associated with multiple light

scattering [WSW90; SWW91; CCL98], MOT associated with the intercombination line

allows to produce much colder and denser atomic clouds [Kat+99], since the Doppler

temperature is as cold as TD = 177 nK for strontium, which is very convenient for

further loading optical dipole traps.

Within 3P1, the hyperfine states are highly resolved with ∆HFS/Γ3P1
> 100 000,

and the MOT laser beams are choosen red detuned from the 3P1, F = 11/2 hyperfine

state such that mF = ±9/2 spin states can be trapped with σ± laser beams. For this

transition the Doppler limit is TD = 177 nK while the associated recoil temperature

TR = 462 nK, defined as TR = ℏ2k2/2m where k = 2π/λ, so that MOT cooling is

limited by the recoil energy of one photon and not by the Doppler effect. This allows

to directly cool atoms in the µK range with standard MOT without using sub-Doppler

cooling techniques, which is very convenient. However, the capture velocity is limited

by the narrow linewidth, such that artificial broadening is needed to capture repumped

atoms at 1 mK, either with frequency modulation or with power broadening. Hence,

the 689 nm laser light is initially at full power, nearly 12 mW distributed over the 3

MOT axes, and its frequency is triangularly modulated over 4 MHz at rate 20 kHz.

Simultaneously, the input current of the MOT coils is lowered to 3.5 Ampers for a weak

magnetic field gradient ∇B ≃ 1G/cm. At this stage, we capture up to 40 millions

atoms at T ≃ 25µK. Then the modulation is reduced in two steps down to zero and
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the intensity down to a few Isat ≃ 3µW/cm2.

For this narrow line cooling, and any optical scheme associated with the intercom-

bination line, high laser stability and finesse are required. Hence, the frequency of our

master laser is locked onto an ultra-stable cavity using a Pound-Drever-Hall feedback

signal [Dre+83]. The laser spectrum is as narrow as 1 kHz which is sufficient for the

targeted 7.4 kHz linewidth. The optical beams used for the narrow MOT come from

slave laser diodes, whose frequency is set and stabilized by injecting light from the

master laser into the slave diode cavity [Bat+20].

Stirring laser

The narrow MOT for 87Sr requires a second laser to prevent strong atom loss [SSK14].

With high nuclear spin I = 9/2 and long lifetime τ ≃ 20µs of the excited state
3P1, atoms can remain in excited spin states transparent to light for a sufficiently

long duration such that they leave the trap. This is illustrated on figure 1.2, left.

If considering a single spin state for simplicity, here mF = 5/2, the dissipative force

is localised on the left hand side of the zero field position. Actually, this scheme is

symmetric in mF , accordingly with the Zeeman shift, and considering negative spin

states, the dissipative force is localised on the right hand side of the zero field position.

Hence, atoms would need to flip from mF to −mF when crossing the zero field to feel

a global restoring force, as shown by the average over all spin states as the blue dashed

line on the top figure. While magnetic atoms such as alkalis can flip spin when crossing

the trap center and always remain in a stable trap configuration, alkaline earth atoms

with zero magnetic moment need light assistance to change spin states.

It was then proposed [Muk+03] to use a second laser beam for the narrow MOT stage

to randomize the spin states such that every atom feels a restoring force on average,

minimizing the probability of atom loss. This second laser, so called stirring laser

for the 87Sr narrow MOT, has its setup in MOT configuration, and is actually super-

imposed to the MOT laser, and its frequency is set red detuned from the 3P1, F = 9/2

hyperfine state. Figure 1.2, right, shows the spatial dependence of the STIR saturation

parameter, here defined as:
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Figure 1.2: Instability of the narrow red MOT for large spin 87Sr isotope. Left: spatial
dependence of the restoring force (a.u.) for the narrow MOT associated with the
intercombination line |1S0⟩ ↔ |3P1, F = 11/2⟩. The ground spin state mF = 5/2 is
coupled to Zeeman shifted excited 3/2 and 7/2 spins of F = 11/2 hyperfine state with
Lande factor gF ≃ 0.36. For a given detuning (here ∆ = −4Γ), the corresponding
restoring force is plotted on the upper figure as the solid line. The restoring force
averaged over all the spin states is plotted as the dashed line. Right: spatial dependence
of the saturation parameter (a.u.) associated with σ+ and σ− excitation on the STIR
line |1S0⟩ ↔ |3P1, F = 9/2⟩ with detuning ∆ = −Γ, as solid line for the ground spin
5/2, and dashed line for the average over all ground spin states.

s(r) =
Ω2

4∆2 + Γ2
(1.1)

where ∆ = δ−mFgFµBB for atoms at rest, and Ω2 = (Γ2/2)× (I/Isat) for both σ+

and σ− excitation. Since the gF factor is 4.5 smaller than that one of 3P1, F = 11/2

state, atom-light interaction is much less localized than the MOT line so that atoms

are no more transparent to light and hence have the possibility to change spin states.

With an efficient randomization of the spin states associated with the STIR line, all

atoms feel an averaging restoring force (dashed line, upper left figure 1.2), and remain

confined into the MOT. The intensity and frequency of the stirring laser are set with the
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same conditions than the MOT laser, starting with a frequency modulation of 6 MHz

and strong intensity, and with final single frequency at a few Isat with no modulation.

In the final narrow MOT stage with field gradient ∇B ≃ 2.5G/cm and detuning

∆ ≃ Γ3P1
for both stirring and MOT lasers, the bulk gas of 87Sr extends over nearly

600µm with 7 million atoms at T ≃ 3µK. The next critical step to reach Fermi

degeneracy is to transfer trapped atoms from the narrow MOT to the optical dipole

trap to perform forced evaporation.

1.1.6 Optical dipole trap loading

The transfer of atoms from the narrow MOT in our optical dipole trap (ODT) [GWO00]

is associated with a few critical difficulties. First, there is the strong difference of size

of the two traps. With simple geometry considerations, a straight volume mapping of

the narrow MOT bulk gas onto the ODT shape would mean that less than 1% of the

atoms would be transfered from one trap to the other. To increase to loading efficiency,

the MOT is further compressed [IIK00] simultaneously to loading the ODT. However,

inside the ODT, the differential light shift associated with the intercombination line

has to be managed to prevent strong atom loss. Because the ground state is more

red-shifted than the excited state 3P1, the
1S0 ↔ 3P1 transition acquires a blue shift

much stronger than Γ3P1
. Morover, the light shift varies spatially as a function of

the intensity profile of the ODT, which is much smaller than the size of the narrow

MOT. Hence, if we choose the MOT light to be slighty red detuned at the center of

the dipole trap in presence of the light shift, it is blue detuned at the edge of the ODT

and atoms are expelled. I will here first introduce the properties of the ODT and the

space dependent resonance for the intercombination line, then I will quickly describe

our method to circumvent those two major difficulties and maximize the phase space

density when loading the ODT.

Geometry: our optical dipole trap is made of two crossed far-off red detuned laser

beams at 1070 nm. The first beam is nearly horizontal with small tilt ≃ 1◦, and its

shape is elliptic with large horizontal waist ≃ 150µm and small vertical waist ≃ 80µm
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at the atoms position, for a strong vertical confinement. The second beam is nearly

vertical with angle ≃ 30◦ with respect to gravity, and its shape is isotropic with waist

≃ 80µm at the atoms position, for strong confinement in the horizontal plane. The

crossing of the two beams defines a rather spherical volume of radius ≃ 80µm, which is

nearly 500 times smaller than the size of the 600µm wide narrow MOT before loading.

The depth of initial trap at loading is 50µK at the crossing, accounting for gravity sag,

with power distribution P=9.6 W in the horizontal beam and P=4.7 W in the vertical

beam.

Differential light shift: atoms are transfered from the narrow MOT associated with

the 1S0 ↔ 3P1 transition at 689 nm, to the ODT at 1070 nm. For far-off detuned atom-

light interaction and non-resolved hyperfine structure, the light shift is determined only

by the rotationnally invariant contribution to the dynamic polarizability and reads

as the dipole potential which can be computed from resolution of the optical Bloch

equations [CDG98]:

Udip = −ℏ|Ω|2

4∆̄
(1.2)

Here, 1/∆̄ = 1/(ωL − ω0) − 1/(ωL + ω0), such that both the resonant and anti-

resonant contributions to the atom-light dipole interaction are considered. Ω is the

Rabi coupling frequency, which is easily computed from the inverse lifetime Γ and light

intensity I:

Ω2 =
Γ2

2

I

Isat
(1.3)

where Isat is the saturation intensity of the considered optical transition.

Regarding the light shift of 1S0, the contribution from 5snp 1P states, n < 11,

accounts for more than 99% according to Thomas-Reiche-Kuhn sum rule of oscilla-

tor strengths [Lud08]. The light shift can then be computed from the sum of the

relative dipole potentials Uak ∝ Aak/∆̄ak where Aak is the transition probability, ac-

cording to the known values of the transition probabilities and wavelengths [Wer+92;

SN10]. The light shift of triplet state 5s5p 3P1 can be properly defined by considering



Chapter 1. Fermi gases of 87Sr in 3D optical lattices - Experimental Setup 24

Figure 1.3: Differential light shift of the 1S0 ↔ 3P1 intercombination line during the
loading of the optical dipole trap at 1070 nm. Black solid lines indicate the energy
levels light shifted and the red solid line indicates the MOT light frequency with the
ground state space dependent offset. For this frequency, the MOT light is red detuned
at the bottom of the trap and blue detuned outside.

the triplet-triplet transitions involving excited 3S, 3P , and 3D states, with according

oscillator strengths and line wavelengths [Wer+92; SN10]. The shift δ of the transi-

tion 1S0 ↔ 3P1 is then simply the difference between the two introduced light shifts

ℏδ = Udip(
3P1) − Udip(

1S0). In our experiment, Udip(
1S0) ≃ −1.5MHz for the ground

state and Udip(
3P1) ≃ −1.2MHz, such that the intercombination line is shifted by

nearly 300 kHz to the blue at the bottom of the trap, and is spatially proportional to

the intensity shape of the dipole trap laser beams. This is shown on figure 1.3.
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ODT loading: the 1070 nm laser beams are quickly turned on after the narrow MOT

stage, and atoms in continous motion are attracted by the dipole trap of depth 50µK. In

the bottom of the ODT, the MOT resonance is so much shifted that it can be neglected

and atoms simply run their phase space trajectory for conservative dipole interaction

with no capture nor compression. Hence, we want to shift the light frequency to the

blue to get closer to resonance at the bottom of the trap. This way, atoms are slowed

down and captured, and we can obtain further phase space compression with MOT

light induced dissipation inside ODT. Note that because of the differential light shift,

atoms outside the ODT see blue detuned light. We then slowly ramp the frequency of

the MOT light by 170 kHz during 120 ms, further compressing the position selectivity

of cooling inside the differential light shift, and increasing phase space density. The

intensity of the MOT light is simultaneously and slowly turned down to zero, so that is

it as low as possible when getting close to resonance in the high atomic density region at

the bottom of the dipole trap. This way, a balance is found between dissipative cooling

and heating at the outskirts. With this method, we are able to load up to 1.4 million

atoms at 3.8µK inside the ODT, which corresponds to nearly 25% atoms transfered

from the MOT to ODT with depth to temperature ratio U/kBT ≃ 13, with density

n0 ≃ 1.15× 1020atoms.m−3.

Enhanced capture volume: with this setup, we are limited by the capture volume of

the ODT compared to the volume of the narrow MOT. To increase the number of atoms

captured, we take advantage of a later used far-off detuned optical lattice to increase the

capture volume of the dipole trap, as shown on figure 1.4. We use a 1D optical lattice at

1064nm (introduced in section 1.2.1) with larger vertical waist 100µm and horizontal

waists 170µm, such that the capture volume is more than 5 times larger. This lattice

is one dimensional with vertical eigen axis, defining layers of large 170×170µm2 dipole

traps with approximately 500 kHz depth, spaced by 2µm.

This 1D lattice is turned on quickly and simultaneously to the ODT. The combina-

tion of the ODT and lattice makes a deeper trap reaching almost 90

rmµK, and we are able to load up to 2.6 million atoms with temperature 7.2µK, which

corresponds to nearly 43% atoms transfered from the MOT to ODT with depth to tem-

perature ratio UODT/kBT ≃ 12.5. This way, twice the number of atoms are loaded,
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Figure 1.4: Enhanced capture volume of the optical dipole trap. Left: optical dipole
trap loading without 1064 nm lattice, in situ (top) and after time of flight (bottom),
absorbtion images. Middle: enhanced loading using the 1064 nm lattice. Top right:
vertical cut of the satured in situ absorbtion images, the dashed line is the in-situ density
on the satured region infered from a Boltzmann distribution and the low density wings.
Bottom right: integrated optical depth from the time of flight images (bottom) used to
measure the number of loaded atoms and temperatures with gaussian fits for Boltzmann
gases in harmonic traps.

while the density n0 ≃ 3.3× 1019 is approximately unchanged, accounting for the weak

increase of confinement ω′2 = ω2
ODT +ω

2
1064, and U/kBT 1.3 times smaller. At this step,

the collision rate is approximate one collision per atom per millisecond.

Note that the efficiency of loading could be further improved with additional lasers.

An ODT at magic wavelength 840 nm for the intercombination line [Muk+03] cir-

cumvents the differiential AC Stark shift and hence allows to have homogeneous MOT

cooling inside the dipole trap. Also, it is possible to use a transparancy beam [Son+20],

detuned by a few GHz from the 3P1 ↔ 3S1 transition, resulting in a localized light shift
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for the intercombination line. Atoms inside the transparency beam are protected from

MOT light, and the energy is dissipated through collisions to outside atoms which are

continuously optically cooled, allowing to further pass the radiation pressure limit and

reach even higher densities and lower temperatures before evaporation.

1.1.7 Forced evaporation

The gas is finally cooled down to Fermi degeneracy, see figure 1.5, with forced evapo-

ration. The 1D optical lattice used to help loading the optical dipole trap is smoothly

turned off during the first 2.5 seconds of evaporation. This way, atoms are transfered

from vertically stacked 2D harmonic traps to a three dimensional (3D) harmonic trap,

which permits a more efficient evaporation [LRW96] within higher dimensionnality. In

the meantime, the power of the horizontal ODT beam is lowered from 11.6 W to 2.4

W and from 4.7 W to 2 W for the vertical beam. This corresponds to a reduction of

the geometric mean of the trap frequency ω̄ = (ωxωyωz)
1/3 from 275 Hz to 140 Hz. The

powers of the dipole trap laser beams are then reduced much more slowly at the end

of the evaporation, the horizontal beam from 2.4 W to 1.2 W and the vertical beam

from 2 W to 0.84 W, during 5 seconds. All in all, in our experiment, forced evaporation

runs over 8 to 10 seconds, and the gas reaches degenerate regime with 10 Fermi seas at

T ≤ 0.5TF with approximately 7 500 atoms per spin state, and the phase space density

ρ ∝ Nω̄3/T 3 is increased by three orders of magnitude, with respect to the dipole trap

loading, as shown on figure 1.5. Note that our evaporation efficiency is limited by the

background collisions, with typical time τ ≃ 8 s which is approximately the duration of

evaporation.

1.2 Optical lattices

The objective of our experiment is to realize a quantum simulator for the Fermi Hubbard

model. In our experiment, this is realized by trapping spinor atoms at the sites of several

independent 2D optical lattices which are vertically stacked. The resulting 3D optical

lattice is presented in figure 1.6. It is made of a vertical 1D lattice at 1064 nm, defining

horizontal 2D layers at its maxima, and a 2D lattice at 532 nm shaping 2D square
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Figure 1.5: Forced evaporation dynamics. The temperatures and number of atoms are
measured from time of flight images, and the trapping frequencies of the dipole trap
are infered from an independent calibration of the trap geometry. At each evaporation
step, the gas thermalizes during 330 ms before time of flight. In inset, the phase space
density ρ increase with respect to the initial gas ρ0 at ODT loading, where the phase
space density is computed as Nω̄3/T 3.

lattices within each horizontal layer. The combination of the two lattices is a set of

horizontal 2D square lattices with sites spacing 256 nm separated by ≃ 2µm. The

tunneling within the 2D bravais lattices is controlled by the intensity of the 532 nm

laser beams, while the tunneling from layer to layer is separately controlled by the depth

of the 1064 nm lattice. The tunneling from layer to layer is negligible on the timescale

of to the 2D spin dynamics.

In this section, I first introduce the geometry of the vertical 1D lattice at 1064 nm,

and our method to measure the depth of the low recoil lattice. Moreover, several sites

of the 1D lattice are loaded in our experiment, typically 8 layers, and I discuss our
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Figure 1.6: Optical lattices setup. Two lasers beams at 532 nm with θ = 16◦ elevation
are retroflected to shape a 2D lattice, and the 1D lattice is made of two interfering laser
beams at 1064 nm separated by θ = 32◦ elevation. The resulting lattices are layers of
2D lattices separated by 2µm, with sites spacing of 256 nm.

application of the quantum magnifier scheme [Ast+21] to measure the distribution of

atoms in the several layers. Then, I introduce the geometry of the 2D lattice.
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1.2.1 1064 nm 1D lattice

Geometry

The 1D lattice is made from the interference of two laser beams at 1064 nm with

wavevectors k⃗1, k⃗2. In a spherical basis (r, θ, ϕ), where elevation angle θ and azimutal

angle ϕ are defined on upper left inset of figure 1.6, the wavevector k⃗ of each laser beam

is here defined as:

k⃗ =
2π

λ

cosϕ sinθsinϕ sinθ
cosθ

 (1.4)

The two laser beams at 1064 nm have same azimutal angle ϕ and elevation angle

θ = ±16◦ so that they are separated by δθ = 32◦ elevation and k⃗1 · k⃗2 = k1 k2 cos(32◦).

The stationnary wave resulting from the interference of the two laser beams is a vertical

1D lattice with eigen-axis a⃗ along k⃗1 − k⃗2, and the sites spacing is a = λ/2 sin(16◦) ≃
2µm. The two beams are controlled by the same AOM and separated right before

crossing at the position of the Fermi gas, ensuring that the phase coherence between

the interfering beams is maximally maintained.

Depth and band gap calibration of low recoil 1D lattice

Lattice depth calibration is usually done with diffraction calibration [Den+02]. In

the case of low recoil lattices, the diffraction orders cannot be resolved with time of

flight imaging since they are separated by only a few nK, 7 nK in the case of 2µm

sites spacing for 87Sr, which is much lower than the lowest momentum spread that

can be reasonable attained for degenerate Fermi gases of strontium, (≃ 20 nK with

approximately 20 000 atoms in our experiment). To circumvent this issue, we rather

observe the time evolution of the gas momentum distribution inside the lattice potential

[Huc+09] after suddenly switching it on. The low recoil lattice is pulsed on bulk gas,

long enough such that the atoms are accelerated into the lattice potential. Atoms

initially laying next to the negative interferences of the lattice will acquire maximal

acceleration when reaching the bottom of the sites. When the lattice is turned off, with

time of flight, then the atoms will expand with the kinetic energy acquired from the
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Figure 1.7: Experimental images for the depth calibration of a low recoil 1D lattice.
For each duration of the lattice pulse, in bottom axis, a time of flight image is recorded.

lattice depth. If the pulse time is long enough, then atoms must have had enough time

to explore the whole depth of the lattice sites, and then the maximal velocity measured

in time of flight maps the depth of the lattice.

Figure 1.7 shows experimental images of the scheme for different pulse times. If

the pulse time is long enough, then the atoms have explored the whole depth, which

happens from 60µs in this measurement. Figure 1.8 shows a cut of the optical depth

from figure 1.7 along the longitudinal axis for each time of flight, from which it is

possible to detect the atoms with maximal velocity. At 60µs of pulse, the maximal

separation in the imaged density is nearly dx ≃ 100 px, such that the maximal velocity

acquired is vmax = dx
2ttof

. This gives the maximum acquired kinetic energy, which gives

the measurement of the depth V0 of the lattice:

V0 =
1

2
mv2max (1.5)

From this measurement, the trap depth is 113 kHz, which corresponds to V0 =

791ER. The band gap can then be directly infered from ℏωBG = 2
√
V0ER, which is

8 kHz in this case.
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Figure 1.8: Longitudinal cut profile through the experimental images of the depth
calibration shown in figure 1.7, for each pulse time, shown in left axis. There no axis
showing the density.

Distribution of atoms in the several layers

To measure the number of atoms in each layer, I applied the quantum magnifier scheme

recently demonstrated by [Ast+21]. This scheme relies on exchanging the position and

momentum distributions of the atoms with a π/2 phase space rotation, and this is

realized in a conservative harmonic potential of period T every δt = T/4. In the

experiment, this is done by suddenly turning on and off a harmonic potential during one

fourth of the period T = 2π/ω where ω is the trapping frequency along the magnification

direction, vertical in this case, and this way, initial positions {xi} of trapped atoms

converted to initial momentums {pi}. Then, the gas is released for a time of flight

measurement. Since the measured positions map the initial momentum distribution,

this is actually a measurement of the spatial distribution of the atoms in the lattice
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Figure 1.9: Magnification of the sites of the 1D lattice using the quantum magnifier
scheme [Ast+21] along the vertical axis. Left: experimental absorption image of the
magnification of the sites, with approximately 85 × 103 atoms at T/TF ≃ 0.3 before
loading. The color bar represents the optical depth per pixel surface. Center: fit of
the integrated optical depth to measure the populations into the different 2D layers.
The relative population measured in each layer is noted as a percentage above each
peak picturing a layer, in red, big font. The bins represent a guess of the populations
with respect to the size σ of the initial gas and the sites spacing a of the lattice. Here,
σ ≃ 3.1µm and a ≃ 2µm. The relative population guessed in each layer is noted as a
percentage above each peak picturing a layer, in dark blue, small font. Righ: loading
of two layers only.

{xi} thanks to the harmonic pulse. If the eigenaxis of the harmonic pulse is perfectly

colinear with the eigenaxis of the bravais lattice, then this measurement results in a

magnification M = ωτ of the bravais lattice, where ω is the harmonic frequency and τ

the time of flight.

In our experiment, I used the horizontal laser beam used for the dipole trap with

strong trapping frequency essentially along the vertical axis, ωz ≃ 2π × 450Hz, which

is parallel to the lattice eigenaxis. With a T/4 pulse and 10 ms of time of flight, the

vertical magnification is M ≃ 30 for sites spacing a ≃ 2µm of the 1D lattice, which

correponds to approximatively 9 pixels of size 6.45µm in our camera. The resulting

experimental absorption imaging is shown in figure 1.9, left, where we can see that the

2D layers are well resolved. Figure 1.9, center shows the integrated optical depth along
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the axis of the layers, such that it is possible to measure the number of atoms in each

layer. From this data, I deduce the relative populations in each site, as noted above

the integrated density of each layer in red, big font. The measure let us know that

approximately 50% of atoms are into the 2 equally populated middle layers, and about

30% in the two next equally populated layers. This measure is compared with a guess

of the populations, infered from the size σz =
√
kBT/mω2

z of the initial Boltzmann gas

and the sites spacing a. This indicates that the atoms barely move while being loaded

into the 1D lattice, as a consequence of the long period of the potential that rapidly

kills tunneling at bar lattice depth. The initial density is sliced into bins mapped on the

lattice sites, as shown on the figure, and then the relative number of atoms are infered

from the binned density. The result, for a gas of initial size σz ≃ 3.1µm, corresponding

to an initial 3D trap with frequency ωz/2π ≃ 130Hz at temperature T ≃ 65 nK, is

texted above the bins in dark blue, small font. The guess fits very well with an average

deviation of less than 1%. In the guess, the lattice sites are shifted by a/5 to match

the asymmetry in the populations of the sites. Finally, we show that the number of

loaded layers can be tuned, as it depends on the initial extension of the 3D gas. Hence,

adiabatic compression of the gas along the lattice eigen-axis reduces the number of

lattice sites that are loaded, and figure 1.9, right, shows that we are able to load two

layers only, which moreoever have approximately the same number of atoms.

Layers independence

The layer to layer tunneling is suppressed thanks to the very low recoil, i.e. very

large sites spacing a, of the lattice. Strontium atoms in the ground state have zero

eletric dipole moment, and the magnetic dipolar interaction of the nuclei are negligeable

[Gor+10]. The 2D layers defined by the 1D lattice are then completly independent. This

is actually a very interesting feature since it allows to simultaneously run independent

quantum simulations in each layer, and hence increases the experiment capability to

acquire much data and increase the quality of statistical analysis.



35 1.2. Optical lattices

1.2.2 532 nm 2D lattice

Geometry

The 2D lattice is made of two retro-reflected laser beams with waists 150µm at the

atoms position and powers P1 and P2. The intensities are controlled with two inde-

pendent AOMs detuned by 200 MHz to prevent interferences. The azimutal angle δϕ

between the two laser beams is exactly 90◦ and both have θ = 16◦ elevation. The

spherical coordinates of the wavevectors of the two beams can then be written as

k⃗1 = (k, θ1 = +16◦, ϕ1 = ϕ) and k⃗2 = (k, θ2 = θ1, ϕ1 = ϕ + 90◦), where k = 2π/λ,

λ = 532 nm. The intensity of resulting stationnary wave is

I(r⃗) = 4P1 sin
(
k⃗1 · r⃗

)2
+ 4P2 sin

(
k⃗2 · r⃗

)2
(1.6)

Within each 2D layer defined by the maxima of the 1D lattice at 1064 nm, the

projected 2D bravais lattice can be then written as:

R⃗m,n = m
λ

2 cos θ
a⃗1 + n

λ

2 cos θ
a⃗2 (1.7)

where θ = 16◦. Here, m and n are the sites indices of the bravais lattice and a1,

a2 the eigen-axis, respective normalized projections of k1 and k2 along the (Oxy) plan

defined on figure 1.6.

Note that k1 and k2 are not orthogonal, k⃗1 · k⃗2 ∝ cos(θ)2 ̸= 0, but the projection of

the 2D lattice on the horizontal planes defined by the 1D lattice maxima is a proper

2D square lattice. Indeed, a⃗1 = (1, θ = 0, ϕ1 = ϕ) and a⃗2 = (1, θ2 = 0, ϕ1 = ϕ + 90◦)

so that a⃗1 · a⃗2 = 0. Moreover, the δ = 200MHz detuning between the two lattice arms

is negligeable with respect to the light frequency νl = c/λ, i.e. δ/νl ≃ 3 · 10−7, so that

the lattice can be considered square, with sites spacing a = 276 nm.

Ground band population

To measure the number of atoms in the ground band of the 2D lattice, I first identified

the first Brillouin zone (FBZ) with a diffraction measurement. The 2D lattice is quickly

turned on and off during a few microseconds on the bulk gas, and the diffraction orders
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Figure 1.10: Absorbtion images of atomic clouds after diffraction (a) and band mapping
(b) of the 2D lattice at 532 nm. (a) Simultaneous diffraction of the atomic cloud by

the two arms of the 2D lattice. The first Brillouin zone (FBZ) at ±1ℏk⃗R is graphically

infered from the first diffraction orders at ±2ℏk⃗ momentum recoils. The non diffracted
population is the brightest central cloud. (b) Measurement of the population in the
ground of band of the 2D lattice with 2D band mapping after adiabatic loading of the
lattice, where the FBZ is mapped from the diffraction measurement.

are identified after a time of flight. The first diffraction orders of each arm of the 2D

lattice give a measurement ±2ℏk⃗R, where k⃗R is the momentum recoil of each lattices,

which further allows to identify the FBZ. This is shown on figure 1.10, (a), where the

FBZ is identified as the white rectangle at ±1ℏk⃗R of each lattice. Then, the number

of atoms in the FBZ after adiabatic loading of the 2D lattice can be measured from a

band-mapping [Köh+05]. In our experiment, this is done by slowly turning off the 2D

lattice within 2 ms before time of flight. By mapping the FBZ identified with lattice

diffraction onto the band mapping, it is possible to count the number of atoms loaded

in the FBZ. With this measurement, I infer that 91% to 97% atoms are loaded in the

ground band of the lattice, allowing for ±1 pixel uncertainty on the identification of

the FBZ.



Chapter 2

Absorption imaging of objects
smaller than the resolution limit

In our experiment and more generally in the whole community, we study physics in cold

and ultra cold gases which are typically tiny objects not much larger than a micrometer.

Such objects are sometimes not resolved by standard imaging setups with low numerical

aperture, and we typically consider that the data provided by in-situ absorption imaging

cannot be used in that case. In this chapter, I present our method [Lit+21] to recover

the actual size of our in-situ object even when this is below our imaging resolution

limited by either low numerical aperture, pixelation, or aberrations such as out of focus

imaging. It relies on an estimate of the fraction of absorbed photons infered from two

absorption pictures, with and without atoms, which depends non-linearly on the local

density of atoms when the optical depth is large enough. By using a convenient ansatz

on the density profile, and an independant measurement of the number of atoms, we

show that the actual size of the sample can be known. We have tested our method

on absorption images of elongated gases, unresolved along the transverse axis only, in

which case a straight application of the integrated Beer-lambert law leads to strong

distorsions of the measured local density, so that even the longitudinal axis, assumed

resolved, is distorted. Our results show that we are able to measure RMS sizes as small

as one fourth of our resolution limit, and we confirm the validity of our method by

comparing our measurements to expected sizes from equi-partion of energy. Finally, I

will show that this method also permits to recover the density profile along the elongated

37
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axis. We verified this result with a comparison to expected density profiles from both

Boltzmann statistics for hot gases and Fermi statistics for degenerate gases.

2.1 Motivations

2.1.1 Measuring the interaction energy of an SU(10) degener-
ate Fermi gas

This work was first motivated by an experiment to measure the enhanced mean-field in-

teraction in the weakly interacting regime of a SU(10) degenerate Fermi gas [Son+20]

of fermionic 87Sr, which has 10 degenerate ground spin states and spin-independent

scattering length aS = 97 a0, in Bohr radius units. In a two components Fermi gas

with equal populations, the mean-field energy E
SU(2)
int /Eho ≃ kFas/3 [VS99; MPS02] is

small, where kF is the Fermi momentum, as the scattering length and Eho the oscilla-

tor energy. However, a Fermi gas with enlarged SU(N) symmetry [CHU09; Gor+10;

Tai+12] has increased interaction energy E
SU(N)
int = (N − 1)E

SU(2)
int due to reducted role

of the Pauli exclusion principle. When a trapped ultra cold quantum gas is released

by switching off the trap, the local density decreases during expansion and hence so

does the mean-field energy Eint, which is progressively converted to kinetic energy due

to energy conservation. A measurement of the velocity distribution after time of flight

provides the release energy ER [Bou04], which is the sum of the initial kinetic energy

prior to the release EK , with the mean-field energy [GPS08]. In a given direction, the

release energy is then given by

E1D
R,tof =

1

3
EK +

1

3
Eint (2.1)

In our experiment with fermionic 87Sr, we wanted to further enhance the mean-field

signal with a 1D expansion, i.e. by allowing the gas to expand along one axis only, so

that the full mean-field energy is converted to kinetic energy into this axis only. In this

case, the release energy along a given direction is then given by:

E1D
R =

1

3
EK + Eint (2.2)
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The mean field energy can finally be infered by comparing these two quantities, i.e.

the release energy measured from a 1D expansion and measured independently from a

time of flight. This method has the advantage that it is twice as sensitive as a single

time of flight measurement of the release energy to infer the mean field energy.

2.1.2 Distorsion of imaged in-situ density

We first did the measurement of the release energy with a 1D expansion. The gas,

initially trapped in a 3D harmonic potential, is suddenly released along one direction

only while it remains confined in the two other directions. After expanding along this

single direction, we take in-situ absorption images of the elongated gas inside the 2D

confinement, which is presented in figure 2.1 (a). From this measurement, we identify

several problems. First, the imaged gas is confined into the 2D trap, and figure 2.1

(b) shows that the density distribution along the short axis, which is along the 2D

confinement, is pixelated as it is spread over a few pixels only, and the negative signals

indicate imaging aberrations such as light diffraction on the atomic cloud, and out of

focus imaging. Moreover, from the imaged density of atoms n(i, j), measured from the

standard application of the Beer Lambert law on each pixel (i,j):

n(i, j) = − 1

σ0
log

I(i, j)

I0(i, j)
(2.3)

we obtain an integrated density profile along the elongated axis which shows sig-

nificant deviations from the expected gaussian distributions at temperatures T > TF

as shown in figure 2.1 (c). Here, σ0 = 3λ2/2π is the resonant atom-light absorption

cross-section, and I (I0) the recorded light intensity with (without) atoms. Finally,

the number of measured atoms on the 1D expansion measurement, N1D
at ≃ 9× 103 did

not match ones of the time of flight experiments N tof
at ≃ 14× 103, which are shown on

figure 2.1, (d). This is explained because the density profile is not resolved along the

short axis, resulting in pixelation, and the local density of atoms cannot be directly

infered from the Beer-Lambert law used for absorption imaging because of its non lin-

earity. Hence, using the Beer-Lambert law induces non-linear error on the estimated

local atomic density, which results on a distorted image, and any straigth estimate of

the release energy is mistaken, even along the a priori resolved elongated axis.
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Figure 2.1: Distorsion of optical depth with in-situ absorption imaging of an elongate
gas inside a 2D confinement. (a) Optical depth measured with absorption imaging and
the Beer Lambert law. The grey solide lines indicate horizontal, and vertical, cuts
shown on figures (b), and (c.1), respectively. (b) Each vertical bin corresponds to a
single pixel of the horizontal cut. (c.1) Vertical cut of the optical depth in solid black
line, and gaussian fit in dashed red line. The residuals of the fit, normalized by the signal
maximum amplitude, are shown on figure (c.2). (d.1) Time of flight measurement, and
(d.2) residuals of the gaussian fit from which we measure the number of atoms.

2.1.3 Incorrect estimation of the pixelated local density

The local intensity loss of a weakly saturating laser beam propagating through an

atomic cloud is proportionnal to the atom-light absorption cross section σ and the local

density of atoms n. This is the well known Beer-Lambert law, and for resonant light

propagating along Oz, it is written as:

dI

I
= −nσ0dz (2.4)

Assuming that the length of the gas along the propagation axis is smaller than the
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Rayleigh length of the imaging laser beam, diffraction effects along propagation can be

neglected, and the x,y,z intensity variations are independent. Then, the optical depth

OD(x, y) = σ0
∫
n(x, y, z)dz is defined after integration of the Beer-Lambert law along

the propagation axis:

OD(x, y) = −log I(x, y)
I0(x, y)

(2.5)

where I is the light intensity after passing through the atomic cloud, and I0 is the

light intensity without gas. The column density ñ(x, y) is then directly infered from

ñ(x, y) =
OD(x, y)

σ0
(2.6)

On experiments, the light intensity is recorded on cameras with pixel size a. The

recorded power P (i, j) on pixel (i, j) is then the light intensity integrated over the

surface a2 of a pixel at location (i,j):

P (i, j) =

∫∫
pixel(i,j)

I(x, y)dxdy (2.7)

where pixel(i, j) = [{ia, (i + 1)a} × {ja, (j + 1)a}] is the domain of integration. If

the intensity profiles vary slowly enough over the pixel length a, i.e. dI/dx ≪ I/a

and dI/dy ≪ I/a , then the double sum in equation 2.7 can be approximated to

P (i, j) ≃ a2I(ai, aj). In this case, the local density of atoms, average over pixel (i, j),

can be measured with the optical depth that is infered from the averaged local intensity

using equation 2.5

< ñ >(i,j) σ0 ≡< OD >(i,j)≃ −log P (i, j)
P0(i, j)

(2.8)

However, if the gas is too small so that the intensity profile varies quickly with

respect to the pixel size, the approximation for the Beer-Lambert in equation 2.8 doesn’t

hold. In this case, the logarithm of the averaged absorbed light is not equal to the

averaged optical depth:

log
P (i, j)

P0(i, j)
̸= 1

a2

∫∫
pixel(i,j)

log
I(x, y)

I0(x, y)
dxdy (2.9)
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which is due to the non-linearity of the logarithm. Hence, it is generally not possible

to infer the local density of atoms by using the integrated Beer-Lambert law with the

recorded light power on each pixel, and this is what we observed on the 1D expansion

measurement shown on figure 2.1. It is interesting to note here that even if only one of

the two dimensions are not resolved, it is enough to forbid the approximation 2.8 and

the data remains in the non valid case similarly to equation 2.9.

This shows that a straight use of the integrated Beer-Lambert law to measure the

optical depth is mistaken and leads to distorted density profiles in case of pixelation,

but it is also true if the resolution limit, larger than the imaged object, is due to the

diffraction limit for instance. This effect is even more signicant for large optical depths

with quickly varying profiles, but our problem is different from the total absorption

regime [Rei+07]; we consider here that there is light collected at every pixel, accordingly

to our measurement presented on figure 2.1. In this regime, the error on the measured

number of atoms can be compensated for by rescaling the absorption cross section

[Est+06], giving a first order correction on the measurement of the local density of

atoms. However, here we show that the error on the measurement of the local density

of atoms is non linear, so that it is important to consider an effective absorption cross

section which depends on the density σ0 → σ̃(ñ). I will now show how to apply this

correction.

2.2 Non-linear correction on the measurement of

the sub-resolved local density

In this section, I describe how to account for the resolution problem by making use

of the fact that when light passes through an atomic cloud, the amount of absorbed

photons depends on the density of atoms and the depth of the crossed cloud. The first

met atoms absord some quantity of light, so that the next atoms are in their shadow

and hence are not exposed to the same intensity. Hence, for a fixed number of atoms

in a given light beam, the total number of absorbed photons depends only on the size

of the atomic cloud, since the shadowing effect increases for larger densities. I will

now show that relying on this principle, it is possible to dodge the resolution limit and
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infer the local density from the number of missing photons, thanks to an independent

measurement, e.g. the total number of atoms. This way, we infer both the size of

the gas along the non resolved axis 0x, and the longitudinal density profile along the

elongated axis Oy.

2.2.1 Parametrization of the density dependent correction

We focus here on elongated gases with a slowly varying longitudinal profile, as shown

on figure 2.1, (c.1), and non-resolved density profile along the transerse axis, as shown

on figure 2.1, (b), accounting for possible light diffraction on the tighly confined axis

and defocusing. Let’s first derive an equation for the total number of absorbed photons

as a function of the local column density ñ(x, y). From two images of the imaging

beam, one with atoms and recorded power P (i, j) at pixel (i, j), and one without

atoms and recorded power P0(i, j), we define the ratio of absorbed photons (P0(i, j)−
P (i, j))/P0(i, j). Note that here, we defined the domain of integration as the pixel size

a2, similarly to equation 2.7. Let’s now define

Rph(j) =
∑
i

P0(i, j)− P (i, j)

P0(i, j)
(2.10)

the ratio of absorbed photons recorded on the camera along the elongated axis

Oy (index j) which is not problematic with respect to the imaging limitation. The

integration along a pixel line in the transverse axis Ox (index i) permits this reduction

of dimensionality, which moreover allows to not account for the light diffraction along

the short axis Ox [Arm+10]. Then, by inserting definition 2.7, one gets:

Rph(j) =
∑
i

1

P0(i, j)

∫∫
pixel(i,j)

(
I0(x, y)− I(x, y)

)
dxdy

=
∑
i

∫∫
pixel(i,j)

I0(x, y)

P0(i, j)

(
1− I(x, y)

I0(x, y)

)
dxdy

(2.11)

Even if the object is small, the imaging light beam has to be large enough such that

the light intensity is homogeneous over the surface of a pixel. In this case, P0(i, j) =
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a2I0(x, y). Then, by inserting the local column density ñ(x, y) defined in equation 2.6,

one gets:

Rph(j) =
∑
i

1

a2

∫ (a+1)i

ai

dx

∫ (a+1)j

aj

dy

(
1− exp

(
−σ0

∫
n(x, y, z)dz

))
(2.12)

Far from the cloud of atoms, no photons are absorbed, such that the sum over

the short axis
∑

i

∫ (a+1)i

ai
[...]dx can be extended to infinity

∫
R[...]dx where the ra-

tio of absorbed photons is zero. Also, in our case, the gas is very elongated along

axis Oy, and hence it is rather homogeneous over a pixel length along Oy, such that∫ (a+1)j

aj
f [n(x, y, z)]dy ≃ a f [n(x, aj, z)], where f can be any slow varying function of the

atomic density n(x, y, z). With these simplifications, equation 2.12 can be rewritten as:

Rph(j) =
1

a

∫
R

(
1− exp(−σ0ñ(x, aj))

)
dx (2.13)

Equation 2.13 is our first equation relating the ratio of absorbed photons which is

the actual data, with respect to the column density of atoms, which is what we want to

infer. Until now, the following approximation have been made. First, the atomic gas is

elongated enough along axis Oy so that the variations of the density profile along this

axis are negligeable along one pixel length. Also, we supposed that the light intensity

of the imaging beam is homogeneous over the surface of a pixel, and, the diffraction

of the probe light can be neglected over the depth of the sample along its propagation

direction.

Now, let’s parametrize the sub-resolution feature, which is the size of the cloud

along the unresolved transverse axis. To do this, we introduce an ansatz on the local

density of the gas, and it is relevant to use a gaussian ansatz for thermal gases:

ñ(x, aj) = e
− x2

2σ2
x ñ(0, aj) (2.14)

where σx is the transverse size of the cloud, and ñ(0, aj) the peak column density

along axis Oy. By inserting the gaussian ansatz in equation 2.13, and with change of

variable u = x/σx, one gets:
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Rph(j) =
σx
a

∫
R

(
1− exp

(
−σ0ñ(0, aj)e−u2/2

))
dx

≡ σx
a
F
(
σ0ñ(0, aj)

) (2.15)

which defines the transfer function F . This last equation relates the quantity Rph(j)

to the local density of atoms that we want to retrieve, parametrized by the size σx. F

is monotonous, hence it can be inverted to have a direct reading of the local density:

ñ(0, aj) =
1

σ0
F−1

( a
σx
Rph(j)

)
≡ 1

σ0
ODeff (j)

(2.16)

This highlights that the expected local density is obtained from the establishement

of an effective optical depth ODeff (j), dependent on the measurement Rph(j), and

parametrized by the size σx. Actually, this is equivalent to the establishement of an

effective absorption cross section σeff by the following transformation:

ñ(0, aj) =
1

σ0
ODeff (j) ⇒ ñ(0, aj) =

1

σeff
OD(j) (2.17)

where OD = − logP/P0 is the straight application of the Beer-Lamber law (see

figure 2.1), contrary to ODeff which is infered from our method. The expected local

density of atoms is then equivalently infered by introducing either an effective optical

depth, or an effective absorption cross-section, both dependent on the measurement

Rph(j), i.e. on the local density of atoms itself. In both cases, this correction is

parametrized by the unknown size σx, hence a supplementary constraint is required.

2.2.2 Calibration of the non-linear correction

Several constraints can be used, typically the parameters defining the statistics of a

thermal cloud, and here we choose an independent measurement of the number of

atoms. A gas is prepared in the same conditions than the 1D expansion experiment

and it is imaged after a time of flight, i.e. released along the three directions so that
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it expands enough to be resolved and equation 2.6 can be used. In this case, the total

number of atoms is obtained from a direct measurement of the optical depth as defined

in equation 2.5:

N tof
at =

a2

σ0

∑
i,j

OD3D(i, j) (2.18)

where the tof annotation refers to the independent measurement with a time of

flight. Regarding the 1D expansion experiment, the total number of atoms can be

computed from the column density ñ(0, aj) and transverse size σx, according to the

gaussian ansatz 2.14, and using equation 2.16, the number of atoms finally reads:

Nat =
√
2πσx

a

σ0

∑
j

F−1
( a
σx
Rph(j)

)
(2.19)

Here, the pixel size a appears because the number of atoms is obtained from the

discrete sum over pixels, which has to be rescaled to the physical pixel size. Equation

2.19 relates the unresolved transverse size σx to the measured number of missing pho-

tons, through the constrained number of atoms. Finally, the size σx that we measure is

obtained by matching the number of atoms indendently measured with a time of flight

and with a 1D expansion, which is done by solving:

N tof
at −

√
2πσx

a

σ0

∑
j

F−1
( a
σx
Rph(j)

)
= 0 (2.20)

The establishement of this equation concludes the method to restore the density

profiles from the distorted images of the atomic clouds. Note that the dependence

on the atom-light absorption cross-section σ0 is the same for both derivations of the

number of atoms, such that it is canceled from the cost function. Hence, the estimation

of the size σx is independent of σ0, which is an advantage because this method is then

insensitive to fluctuations which could arise, for instance from optical pumping effects

during the imaging.
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2.3 Experimental demonstration

2.3.1 Production of degenerate Fermi gases expanding along
one direction only

The gas is cooled by forced evaporation in our optical dipole trap as presented in

chapter 1. The optical dipole trap (ODT) is made of two far red-detuned laser beams,

one horizontal, and the other one makes a 30° angle with respect to gravity axis. After

the gas has reached thermal equilibrium, we let the gas expand only in one direction

by switching off the horizontal beam. The gas then falls along the mostly vertical

beam. After a certain time of expansion along one dimension, the data is taken with

absorption imaging, while the gas is still confined in the two perpendicular directions.

The imaging setup has magnification 1 with an objective of focal length f = 150mm

and diameter 2 inches, for a numerical aperture NA=0.08. The resulting diffraction

limit is 2µm, much lower than the size 6.45 × 6.45µm of the square pixels of our

camera , which is our ultimate resolution limit. Figure 2.2 shows absorption images of

the channeled expansion for different times of channeling. This procedure was done for

different final temperatures of the thermal gas before release. To measure the expected

number of atoms, we use a second set of pictures which is actually a standard time of

flight measurement. We let the gas expand in the three directions by turning off both

ODT beams, then we take an absorption image. The 3D gas is prepared in the same

conditions than the elongated gases, such that the number of atoms are the same in

both images. Our imaging setup has magnification 1 and the pixels of the camera have

dimension 6.5µm× 6.5µm.

2.3.2 Recovery of the unresolved transverse sizes σx of elon-
gated gases

For each image of the elongated gases, we retrieve the longitudinal profile of the ratio

of absorbed photons defined in equation 2.10. Then assuming a size σx, we compute

the corresponding number of atoms as defined in equation 2.19. It is possible to build

a full curve by repeating this process for different values of σx, as shown on figure 2.3.

In this figure, each one of the three curves corresponds to a single image, cooled to
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Figure 2.2: Absorption images of channeled expansion. The time of channeling before
imaging is written at the top of each image. The horizontal and vertical axis are
given in camera pixels scale, as captured during the experiment. The colorbar is the
optical depth. The dimension of one pixel is 6.5 × 6.5µm2 and the imaging setup
has magnification 1. All these images belong to a same set of data with temperature
T ≃ 0.35TF .
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Figure 2.3: Size σx, in pixel units, of the elongated gas along the non resolved dimension
Ox, with respect to the number of atoms, computed from the inverse of equation 2.19.
Each curve indicates the analysis of a single experimental image of an elongated gas,
for three different temperatures indicated in Fermi temperature units. The vertical
dotted lines indicate the number of atoms measured from the images of 3D gases, with
its uncertainty. The horizontal dashed lines indicate the corresponding size for the
unresolved elongated gases.

the indicated degeneracy. The temperature and degeneracy are infered from the 3D

gases. Using the reference measurement of N tof
at from the 3D time of flight images,

and its associated uncertainty with shot to shot fluctuations, we get the corresponding

transverse size σx and its confidence interval. This is pictured by the dashed lines on

figure 2.3. We see here the principle of the analysis: for a given number of absorbed

photons, more atoms means a smaller gas, and this is consistent with the shadowing

effect described above.

The measured transverse sizes σx are reported in figure 2.4 as a function of the time

of channeled expansion, for every temperatures after evaporation.

First we can see that σx doesn’t vary much during the channeled expansion. For
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Figure 2.4: Transverse size σx in pixel units (1 px = 6.45µm with respect to the time
of channeled expansion time, for different degeneracies T/TF , indicated in the legend.
Each point corresponds to a statistical average over nearly ten images. The errorbars
contain both the confidence interval of the infered σx for each image as well as the
standard deviation over the different experimental realizations. The solid lines link the
points of the same set of data, i.e. with same degeneracy, for visual comfort. The
degeneracy is measured on the reference images with 3D time of flight.

instance, the size of gases with temperature T ≃ 0.5TF vary within a 0.6 ± 0.05 px

window, which corresponds to nearly 10% variations, and colder gases vary as much

if not less. However, the hotest gases at T ≥ 0.7TF have their transverse sizes σx

somehow raised during the channeled expansion by nearly 10% to 15%. During the

channeled expansion, the gas falls along nearly 100µm of the guiding beam, whose

frequency for the transverse confinement evolves from 210 Hz at the initial position of

the gas, to 145 Hz after 20 ms of channeling , according to our estimations. Atoms

adiabatically follow the shape of the beam, due to the slowly varying Hamiltonian,

and the transverse size should raise by 20%. We note the robustness of our method,

considering that the measurement of the transverse sizes σx is stable with respect to the

time of channeling which correspond to different elongations along Oy. Even at 2 ms of
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Figure 2.5: Transverse size σx with respect to the kinetic energy of the gas. Each
box corresponds to a different position in the guiding beam, accordingly to the time of
channeled expansion, which is written in the top left corner of each box. Each black dot
corresponds to an average over ten images of the infered transverse sizes. The associated
errorbars contain both the confidence interval of the infered σx for each image as well
as the standard deviation over the different experimental realizations. The expected
transverse size from equi-partition of energy is plotted as solid black line for each time
of channeling.

channeling where the gas is smallest along Oy as shown on figure 2.2, the infered sizes

are consistant with the other measurements, which shows that the longitudinal profile

varies smoothly enough with respect to the pixel size and the approximation made in

equation 2.13 is correct.
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The smallest measured size (gaussian rms) is as low as one fourth of a pixel, which

corresponds to 1.6µm at the lowest measured temperatures in this experiment, T ≃
30 nK at T ≃ 0.15TF . This is is smaller than the typical distortions introduced by

diffraction of the imaging beam and out-of-focus measurements, and much smaller than

our resolution limit imposed by the 6.45µm wide camera pixels.

To verify that our measurements of σx are consistent, we compare the result of our

method to theorical predictions. Because of equi-partition of energy, we expect that
1
2
mω2σ2

x = EK , where EK ≡ 1
2
m < vx >

2, neglecting inter-atomic interactions. The

kinetic energy can be measured from the reference images of gases expanding in 3D,

and the trap frequency can be independently measured. It is then possible to have an

independent prediction of the in-situ transverse size of our elongated gases, with no free

parameter. The comparaison between our measurement and the prediction is plotted on

figure 2.5, independently for each time of channeling. At high temperatures, and long

time of expansion, there is a tendancy of overestimating σx with our method compared

to the prediction, altough both estimations remain in agreement within errorbars.

2.3.3 Recovery of the distorted longitudinal density profiles

We now are interested in the longitudinal density profile. I have shown in section 2.1.2

and 2.1.3 that absorption imaging distorts the local density of non resolved atomic

clouds. In figure 2.1, it is shown that even if only one axis (Ox) is non-resolved, the

density profile inferred from the Beer-Lambert law is wrong along the assumed-resolved

axis (Oy). However, according to equation 2.15, it is now possible to properly infer

ñ(0, aj) with our method, once the transverse size has been measured. Comparing the

recovered density profile with Boltzmann and Fermi predictions for thermal gases, at

respectively T/TF ≃ 1 and T/TF ≪ 1, further confirms the validity of our method.

Figure 2.6, left, shows the longitudinal density profile recovered with our method,

compared to the density profile directly inferred from the logarithm of the fraction of

absorbed light on every pixel, as defined in equation 2.6. With σx known, our method

gives ñ(0, aj) which is the peak column density along the elongated axis in atoms.m−2
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Figure 2.6: Left: Density profile along (Oy) for a hot thermal gas at T ≃ TF . Left:
in black dashed line, the integrated density profile obtained with equation 2.6, and
in red dashed line the corresponding Boltzman fit. The hashed region corresponds to
recovered density with our method with the associated uncertainty, and the red solide
line is the associated Boltzmann fit. Bottom: fit residuals, the top one corresponds
to the dashed lines, while the bottom one corresponds to our method. Right: Density
profile along (Oy) for a degenerate Fermi gas at T ≃ 0.15TF . The blue solid line
is the predicted density profile for a Fermi degenerate gas, with no free parameters.
The degeneracy, temperature, and trap frequencies are measured independently on the
images of 3D expanding gases. The residuals on bottom figure show the agreement
between the prediction and our method. For both left and right, the channeling time
is 18 ms.

units. It is renormalized in atoms.m−1 to be comparable with the actual data which is

the integrated density profile, i.e. for the recovered profile n1D(y) =
√
2πσxñ(0, y). In

this figure, the density profiles correspond to gases that have channeled during 18 ms,

and we expect that they reflect the momentum distribution of the gas before starting

their expansion, with initial temperature T ≃ TF . At this temperature, the Boltzmann

statistics still very well describe the momentum distribution of a thermal gas, and

our fits are done with gaussian functions. While the density infered from equation

2.6 deviates from the Boltzmann statistics, our method recovers a density profile in

agreement with the expected statistics, as shown by the bottom fit residuals on figure

2.6, left.

Further verification is done on a degenerate Fermi gas. The recovered density is
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compared to what is expected by Fermi statistics, with no free parameters. The result

is shown on figure 2.6 right. Here, the prediction is the solid blue line, and the density

measurement made with integrated Beer-Lambert law is the black dashed line, which is

obvsiously wrong. The density profile recovered by our method is plotted as the hashed

region, and it matches with the prediction, as shown by the residuals, plotted at the

bottom.

Note that the channeled expansion is performed along a laser beam that makes an

angle with the imaging plane (see appendix D), our measurement of the elongated gas

is affected by parallax. Also, the divergence of the laser beam results in a position de-

pendent force felt by the atoms as an anti-confinement. For the analysis shown in figure

2.6, the parallax and anticonfinement are compensated for with a single multiplicative

correction parameter C to the cloud size for a given expansion time. More details for

the analysis of the parallax and anticonfinement can be found in appendix D.

For both hot gas and degenerate gas, the residuals are small but there remains

strong pixel to pixel density fluctuations after the correction, particularly at the lowest

momenta. This is due to the non-linearity of the density dependent correction: at

higher local densities, small variations of the light absorption result in strong variations

of the density, because of the previously introduced shadowing effect.

To conclude, this demonstrates that with our method it is possible to measure

the size of atomic clouds as low as one fourth of our resolution limit. This method

also gives the possibility to recover density profiles initially distorted by pixelation,

diffraction and out of focus imaging, associated with absorption imaging. Here, we

used a gaussian ansatz on the cloud shape, and an independant measurement of the

total number of atoms to calibrate the effective optical depth that let us infer the

local density. Other ansatz are of course possible, however no unexpected features can

be retrieved from this method, since different shapes can lead to the same number

of absorbed photons. I also applied this method with a Fermi ansatz for the density

distribution along the transverse axis. The procedure is exactly the same except that

it necessitates independent calibration of the chemical potential and degeneracy, which

is easily done from the reference images of 3D expanding gases, and the results are also

in good agreement with different predictions. Note that although our method allows
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to retrieve features below the imaging resolution, its fundamental limit is the imaging

light wavelength λ as it sets the scattering cross section of light by the atoms. Finally,

we expect that with this method, features smaller than the imaging resolution within

clouds otherwise larger than the imaging resolution can be measured. For example,

using the appropriate ansatz, it could be generalized to measure the size of vortex

cores within a superfluid, that are typically below the imaging resolution, or other

hydrodynamic structures, such as solitons.

2.4 Measurement attempt of the mean field inter-

action energy in a SU(10) degenerate Fermi gas

First motivated by the measurement of the mean-field interaction energy in SU(10)

degenerate Fermi gas of fermionic 87Sr in the weakly interacting regime, we want to

enhance the mean-field signal of an expanding degenerate gas by allowing the gas to

expand along one direction only. As shown earlier in section 2.1.1 the release energy

along one axis of a 3D expansion is given by:

E3D
R =

1

3
EK +

1

3
Eint (2.21)

and the release energy of the gases expanding along one direction only is given by:

E1D
R =

1

3
EK + Eint (2.22)

which leads to a stronger impact from the interactions to the release energy than

in 3D. The release energy is infered from the measurement of the RMS radius σy of

the expanding clouds in ballistic expansion σ2(t) = σ(0)2 + a2t2, where a2 = 2ER/m.

Regarding the 1D expansion and the pixelated absorption images, the measurement of

the RMS radius of the cloud can now be realized, after the recovery of the density profile

of the elongated gases which is discussed in previous section. Figure 2.7, left, reports

the measurement of the longitudinal size σ along Oy (see figure 2.1) with respect to the

time of expansion, both for the channeling gases and the gases released in 3D, and for

different degeneracies. Here, all the corrections have been applied for the channeling

gases, i.e. the recovery of the density profiles, as well as accounting for the parallax and
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Figure 2.7: Measurement of the release energy of expanding gases. Left: RMS size σy
in pixel unit (1 px = 6.45µm) of the gases along the longitudinal axis Oy, with respect
to the time of expansion. Dashed lines are ballistic fits σ(t)2 = σ(0)2 + a2t2 for the
expansion of the reference gases imaged after time of flight, and solid line for the 1D
channeled expansions. Every σy of the channeled expansions are rescaled by a single
multiplicative correction of the parallax and anticonfinement (see appendix D). Right:
fitted release energies ER from the ballistic expansion, with respect to T/TF . In inset:
ratio of the release enegies E1D

R /E3D
R .

anti-confinement (see appendix D) with a single multiplicative correction parameter.

The release energy is then infered from the slope of the expansion, given that we measure

the sizes after a long enough time so that σ(0)2 ≪ a2t2, and the result is reported on

figure 2.7. The inset compares the release energies along the longitudinal axis Oy (see

figure 2.1) for the 1D and 3D expansions, and it shows that E1D
R is smaller than that of

the 3D measurement for low T/TF . This is not expected since the mean field interaction

should significantly increase the release energy in 1D compared to 3D, particularly at

the smallest temperatures.

We finally infer the kinetic energy and mean-field interaction energy which are
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completly determined from the measurement of the release energies in 1D and 3D

expansions,

Eint =
3

2
(E1D

R − E3D
R )

EK =
3

2
(3E3D

R − E1D
R )

(2.23)

and figure 2.8, (a) presents the result of our measurement of Eint/EK with respect

to T/TF . Our result shows a decrease of the interaction energy at low T/TF , which

is not in agreement with the expected behavior. In the weakly interacting regime,

the strength of the mean-field interactions for a SU(N) Fermi gas can be numerically

computed from [MPS02]:

E
SU(N)
int = (N − 1)

g

4

∫
d3r n2(r) (2.24)

and

EK =

∫
d3p

p2

2m
n(p) (2.25)

and the prediction, shown on figure 2.8, (a), solid line, confirms that we expect a

raise of Eint/Ek at low T/TF .

The statistical noise of our result is as large as the signal we are looking for, and the

tendancy is in contradiction with the prediction. This result is not conclusive, and we

suspect imperfect thermalization when the gases reach T < 0.5TF . This asumption is

verified with an analysis of the aspect ratio of the gases expanding in 3D, as shown on

figure 2.8 (b.1), with respect to the time of flight duration, for different degeneracies.

A non-interacting Fermi gas with T ≃ 0.75TF has isotropic velocity distribution and

the aspect ratio σx/σy of the expanding gas is 1 [BR97], as shown on figure 2.8, (b.1),

similarly to a classical gas. Then, according to our measurement, the aspect ratio for

a degenerate gas at T ≃ 0.17TF is inverted at tof ≃ 4ms and finally converges to

approximately 1.12. This was observed in [Son+20] with approximately 50 000 atoms

per spin state as a signature of the mean field interactions [OHa+02; PGS03; JPS04].
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Figure 2.8: (a) Measurement attempt of the interaction energy with 1D channeled
expansions, infered from equations 2.23 and our measurement of the release energies
presented on figure 2.7, in function of T/TF . Solid lines show predictions of the mean
field energy from numerical resolution of equations 2.24, 2.25. (b.1) Inversion of the
aspect ratio σx/σy of the gases expanding in 3D with respect to the duration of the
expansion and (b.2) increase of the aspect ratio with decreasing T/TF . On figure (b.2),
the aspect ratio is measured at fixed tof = 20ms.

However, from simulations based on [MPS02], we predict that with approximately 2 000

atoms per spin state in a trap of geometric mean frequency 160 Hz, which is our case,

the aspect ratio shouldn’t exceed 1%. Finally, figure 2.8, (b.2) shows our measurement

of the aspect ratio as a function of T/TF at fixed tof = 20ms, and it exceeds 1%

for all measurements at T < 0.5TF . This indicates that in this data, thermalization

is imperfect at the end of evaporation for the most degenerate gases, and no reliable

measurement of the mean-field interaction energy could be realized.



Chapter 3

Preparation and measurement of
the spin populations in a Fermi gas
of 87Sr

The narrow intercombination line of strontium 87 offers ideal conditions for the realiza-

tion of spin orbit coupling schemes [GD10; LJS11], with minimal spontaneous emission

[CR14]. Associated with spin resolved transitions, it is possible to measure and manip-

ulate the spin populations. For instance, a well established technique named Optical

Stern-Gerlach (OSG) [Sle+92] makes use of the spin-dependent dipole force associated

with the hyperfine structure of the intercombination line to spatially separate spin

components of alkaline-earth like atoms. It has been demonstrated on both strontium

[SGS11] and ytterbium [Tai+10], to measure the populations in each spin state. The

ground state 1S0 of fermionic 87Sr has an electronic closed-shell i.e. J = 0, hence the

electronic sensitivity to magnetic fields is zero, and there only remains the magnetic

sensitivity of the nucleus which is as low as the electron to proton mass ratio relatively

to the electronic g-factor. It is then not practical to use magnetic fields to manipulate

the 10 degenerate ground spin states.

Excited triplet states such as 3P1 with non zero momentum have a much stronger

magnetic susceptibility than the ground state 1S0. Regarding 3P1 state with Γ/2π =

7.4 kHz, the degeneracy lift of the excited spin states is easily larger than the linewidth:

with g-factor gJ ≃ 0.27, on can reach MHz Zeeman shifts with modest magnetic fields

59
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of a few Gauss. In this case, the resonnances of the 1S0 ↔ 3P1 intercombination

line acquire a spin dependence, which enables spin selective optical transitions. The

number of spin components can then be tuned with standard optical pumping schemes

[Tey+10; Pag+14; Son+20], further enabling the study of SU(N) many-body physics

with tunable N. Although narrow MOT cooling may induce spontaneous polarization

of a SU(N) Fermi gas, as demonstrated with erbium [Fri+12], specific schemes allow to

selectively prepare polarized Fermi gases either with dissipative blast [He+20] only or

associated with spin dependent light shifts [Son+20].

In this chapter, I first discuss our demonstrated method [Bat+20] to measure the

nuclear spin populations with a spin orbit coupling scheme associated with the in-

tercombination line [SGS11]. The robustness of our method is provided by adiabatic

following of a quasi-dark state, ensuring minimal spontaneous emission. Using the

strong difference of magnetic sensitivy of the coupled states, we selectively transfer,

with a resonant passage, well defined momentum recoils to well defined spin states,

with a simple retro-reflected laser beam. The overall efficiency is yet 85%, up to now

limited by available light power. I will then show how we are able to tune the number

of spin components in our Fermi gas of 87Sr. Using the high spin sensitivity of the ex-

cited state 3P1 associated with optical pumping [Tey+10; Oza+18; He+20], we prepare

SU(N) fermi gas with tunable N, which leads to our preparation of a polarized Fermi

sea with a spin selective blast. Finally, I estimate that the Fermi sea is polarized with

90± 10% fiability accounting for the overall efficiency of our detection scheme.

3.1 Measurement of the spin populations

This spin dependent momentum transfer scheme inherently relies on spin-orbit coupling

(SOC) [GD10; LJS11] enabled by a polarization lattice. With a zeeman degeneracy lift

of the 1S0 ↔ 3P1, F = 11/2 spin spin transitions, two highly saturating counter-

propagating laser beams with same frequency and well defined σ+ and σ− resonantly

couple two selected ground spin states with an excited state, ensuring a strong spin

sensitivity. The atoms in the selected spins are connected to a form a quasi-dark

state |ΨC⟩, ensuring reduced spontaneous emission. The dark state is adiabatically



61 3.1. Measurement of the spin populations

rotated by ramping the frequency of the lasers, ensuring robustness. In the end, the

final states have acquired exactly two momentum recoils by absorption of one photon

from one beam and emission of one photon into the other beam. Ideally, the perfect

correlation between the momentum and the polarization of the laser beams ensures that

the two selected spins are diffracted in opposite directions, and after a time of flight,

the diffracted spin states are separated from the rest of the cloud, and their populations

can be measured with absorption imaging.

In this section, I first present our experimental demonstration of this scheme, and I

will then discuss the adiabatic rotation of the quasi-dark state |Ψc⟩ in the dressed-states

picture. With a focus on the possible spin sensitivity loss due to defects on the lasers

polarization, we demonstrate the reliability of our measurement, which we verified on

all the spins of the SU(10) ground state manyfold. I will then show that our scheme

can be generalized to simultaneously measure the populations of more than two spin

states with a proper sequence of adiabatic rotations. Finally, we further increased the

probability of success of the momentum transfer by improving the connection to the

quasi-dark state |Ψc⟩, which we practically do with a Blackman-like intensity window

simultaneously to the frequency.

3.1.1 Experimental procedure

After preparing a degenerate Fermi gas (see chapter 1), we first lift the degeneracy of the
3P1, F = 11/2 Zeeman sub-levels with a homogeneous magnetic field of amplitude |B| =
16G, as shown on figure 3.1, (a). The excited spin states, with magnetic susceptibility

380 kHz/G are then separated by gFµB|B| ≃ 6MHz, which is three orders of magnitude

larger than the linewidth Γ3P1
/2π = 7.4 kHz. The ground spin states are barely affected

with magnetic susceptibility as low as 0.2 kHz/G [Boy07],[Bat+20]. Here, gF is the g-

factor of the hyperfine state F = 11/2, and µB the Bohr magneton. The 1S0 ↔
3P1, F = 11/2 optical transitions are then spin resolved. Two highly saturating counter-

propagating laser beams with same frequency and well defined polarizations σ+ and σ−

are turned on, shaping a polarization lattice, with I ≃ 1000Isat, Isat ≃ 3µW/cm2.

For this, we use the vertical red MOT beams. Our measurement of the circularity of
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Figure 3.1: Spin dependent momentum transfer to measure the spin populations in a
SU(N) degenerate gas. (a) The degeneracy of the hyperfine excited state 3P1, F = 11/2
is lifted by 6MHz with a 16G homogneous magnetic field, with is much larger than
the 7.4 kHz linewidth. Two counter-propagating laser beams with same frequency and
well defined polarization σ− and σ+ selectively couple two ground spin states |mF − 1⟩
and |mF + 1⟩ to the excited state |mF ⟩. The frequency of the light excitation is ramped
through resonance at rate δ̇ to realize the momentum transfer. (b) Integrated optical
depth, from absorption image, of the selected spin states |mF ± 1⟩ which are separated
from the rest of the could after time of flight.
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the laser beams is 99 % in intensity. With appropriate near-resonant frequency, two

selected ground spin states |1S0,mF − 1⟩ and |1S0,mF + 1⟩ are coupled to the excited

state |3P1, F = 11/2,mF ⟩, defining an isolated three level system in Λ configuration, as

shown in figure 3.1 (a). The magnetic field used to lift the degeneracy of the 1S0 ↔
3P1, F = 11/2 spin spin transitions combined with optical couplings with well defined

σ± polarizations ensures the strong spin selectivity. Then, w perform a frequency sweep

through the resonance from δ ≃ +700 kHz to δ ≃ −700 kHz during 200µs. Here, δ =

ω − ω0 is the detuning to the excited state. Atoms in |1S0,mF − 1⟩ absorb one photon

from the σ+ laser beam and re-emit one photon into the counter propagating σ− laser

beam, acquiring exactly two photon momentum recoils +2ℏk⃗R. The opposite happens

for atoms initially in |1S0,mF + 1⟩, acquiring exactly minus two photon momentum

recoils −2ℏk⃗R. During the momentum transfer, atoms are held against gravity with

our horizontal beam for ODT. The selected spin states |1S0,mF ∓ 1⟩ with acquired

±2ℏk⃗R momentum recoils are then separated from the rest of the cloud after time of

flight, and the populations in each spin state are measured from absorption images, as

shown on figure 3.1, (b).

The momentum transfer is ensured by adiabatic following of a quasi dark state |ΨC⟩.
Its rotation from the initial state

∣∣∣mF ∓ 1, 0ℏk⃗
〉

to the final state
∣∣∣mF ± 1,±2ℏk⃗

〉
is

realized by the frequency ramp, which crosses the resonance with the excited state. I

will now discuss the conditions for success of the adiabatic following of the quasi dark

state and the associated reduced spontaneous emission, despite the resonant coupling.

3.1.2 Adiabatic following - Dressed-states picture

It is convenient to look at this three level system in Λ configuration in the dressed states

picture [DC85]. The initial ground state |1⟩ =
∣∣∣1S0,mF − 1, 0ℏk⃗

〉
with approximately

zero momentum is coupled to excited state |2⟩ =
∣∣∣3P1, F = 11/2,mF , 1ℏk⃗

〉
with one

momentum recoil by σ+ excitation with associated rabi frequency Ω+. The excited

state is coupled to the final ground state |3⟩ =
∣∣∣1S0,mF + 1, 2ℏk⃗

〉
with two momentum

recoils by σ− excitation with associated rabi frequency Ω−. In this dressed states basis

{|1⟩ , |2⟩ , |3⟩}, shown on figure 3.2, (a), the hamiltonian can be written as:
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Figure 3.2: Dressed atom picture for the spin dependent momentum transfer scheme.
(a): dressed states spectrum, where ∆ = ℏk2/2m is the photon recoil frequency, δ =
ω − ω0 is the detuning, and Ω± the rabi frequencies associated with σ± excitations.
(b): the dashed lines are the energies of the dressed states |1⟩ , |2⟩ , |3⟩, and solid lines
the eigen energies of hamiltonian defined in equation 3.1, with respect to the detuning
δ. Eigenstate |ΨC⟩ is defined in equation 3.2. (c): |ΨC⟩ populations along the three
dressed states |1⟩ , |2⟩ , ket3. For figures (b) and (c), parameters used are ∆ = 4.8 kHz
and Ω± = 55 kHz.

Ĥ(δ) = ℏ

 0 Ω+/2 0
Ω∗

+/2 δ −∆ Ω−/2
0 Ω∗

−/2 4∆

 (3.1)

where δ = ω − ω0 is the light detuning with respect to the resonance with the

excited state in this three spins manyfold, and ∆ = ℏk2/2m is the recoil frequency.

The light coupling between those three dressed states gives rise to three eigenstates,

whose spectrum is shown on figure 3.2, (b). We are mainly interested in the eigen-state,

here named |ΨC⟩, that connects to initial state |1⟩ and final state |3⟩. With first-order

perturbative expansion ∆ ≪ Ω from hamiltonian 3.1 at δ = 0, it can be shown that:

|ΨC(δ = 0)⟩ = 1√
Ω2

+ + Ω2
−
(Ω− |1⟩ − Ω+ |3⟩)− Ω+Ω−

Ω2

8∆

Ω
|2⟩ (3.2)

The rate of spontaneous emission, infered from the population in the excited state

| ⟨2|ΨC⟩ |2, reads:
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Γs.e. ≃ Γ3P1
(2
√
2
∆

Ω̃
)2 (3.3)

where Ω̃2 = Ω+Ω−. With experimental parameters, Ω ± /2π ≃ CG±220 kHz and

∆/2π ≃ 4.8 kHz, where the CG± are the Clebsch-Gordan coefficients associated with

σ± transitions. For a 200µs ramp duration, equation 3.3 gives an upper-bound of

spontaneous emission between 15% and 30%, depending on the selected spins for the

momentum transfer. Most importantly, equation 3.3 shows that spontaneous emission

is reduced by the light excitation, and hence, stronger resonant coupling results in less

light scattering.

Far from resonance when |δ| ≫ Ω±, the excited state can be eliminated, and the

hamiltonian 3.1 is then reduced to:

Ĥ(δ) = ℏ
(

0 Ω∗
+Ω−/2δ

Ω+Ω
∗
−/2δ 4∆

)
(3.4)

in |1⟩ , |3⟩ basis. In this perturbative regime, diagonalization of this hamiltonian

shows that two eigen-states |+⟩ , |−⟩ read:

|+⟩ ≃ |3⟩+ Ω+Ω−

4δ∆
|1⟩

|−⟩ ≃ − |1⟩+ Ω+Ω−

4δ∆
|3⟩

(3.5)

We want the atoms to connect to |ΨC⟩. The phase relation between |1⟩ and |3⟩
imposes that for large positive detunings, |−⟩ ≃ |ΨC⟩ ≃ |1⟩ and for large negative

detunings, |+⟩ ≃ |ΨC⟩ ≃ |3⟩. Hence, the adiatic connection to the dark-state is possible

if the initial and final detunings |δi,f | are large enough such that they respect the

condition:

Ω+Ω−

4|δi,f |∆
≪ 1 (3.6)

so that the initial and final states are almost identical to |ΨC⟩. Figure 3.2, (c),

shows that | ⟨3|ΨC⟩ |2 ≃ 1 for δ << 0 and | ⟨1|ΨC⟩ |2 ≃ 1 for δ >> 0. Moreover, this
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shows that the detuning has to be ramped from positive to negative such that the

selected atoms initially at rest acquire two momentum recoils. With a detuning ramp

in the other direction, it can be shown with the same method that atoms initially at

rest follow a bright state which leads to the excited state and the momentum transfer

fails.

Adiabatic following is ensured if the speed of rotation of |ΨC⟩ determined by the

speed of the detuning ramp, is much lower than the coupling strength, which reads:

δ̇ ≪ Ω2 (3.7)

This criterion can be understood in the frame of nuclear magnetic resonance. A

spin in precession will stay colinear to a rotating magnetic field if the rotation speed

is slow with respect to the larmor frequency, such that the axis of precession stays in

phase with the magnetic field. This condition is analog to δ̇ ≪ Ω2 regarding Raman

adiabatic passage, so that the basis rotation is slow enough and the atoms stay in phase

with the followed eigen-state rotating from one spin state to the other. The success of

the adiabatic passage is ensured by fulfilling conditions 3.6 and 3.7.

Transfer dynamics and spontaneous emission: the dynamics of the transfer are com-

pared to numerical simulations of the master equation including spontaneous emission.

Figure 3.3 shows the experimental efficiency for the
∣∣∣−3/2, 0ℏk⃗

〉
→
∣∣∣1/2, 2ℏk⃗〉 momen-

tum transfer (black dots), as a function of the duration of the detuning ramp. While

the simulation is in agreement with our experiment and verifies that a 200µs ramp

duration fulfills the Landau-Zener condition for adiabatic following defined in equation

3.7, it also shows that spontaneous emission (red solid line) limits the efficiency of the

transfer, compared to no spontaneous emission (black solid line). The probability of

success of the adiabatic following as a function of the detuning sweep rate δ̇ is finally

compared to the Landau-Zener scaling (dashed-line on figure 3.3) PLZ(Ω+)× PLZ(Ω−)

[CH86] for the two-photons Λ scheme, resulting from the relative values of Ω+, Ω−, and

∆, where PLZ is defined as:
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Figure 3.3: Efficiency of the adiabatic passage in function of the duration of the de-

tuning ramp, for spin dependent momentum transfer from
∣∣∣−3/2, 0ℏk⃗

〉
to
∣∣∣1/2, 2ℏk⃗〉,

with a detuning ramp over 1.4MHz, assuming an initial 10% population in −3/2. The
experimental result (black dots) is compared to numerical simulations (solid lines) with
no free parameters of the master equation including spontaneous emission (red), ne-
glecting spontaneous emission (black), and to the Landau-Zener scaling (dashed line)
PLZ(Ω+)× PLZ(Ω−).

PLZ(Ω) ≃ 1− exp

(
−2π

Ω2

4δ̇

)
(3.8)

The lower Clebsch-Gordan thus gives the higher limit on the detuning sweep rate.

If this limit is exceeded, different consequences arise depending on which arm of the

momentum transfer has the lowest CG: associated with the first absorbed photon, atoms

fail the transfer and stay at rest, while large spontaneous emission results from low CG

associated with the second emitted photon.

At 200µs, approximately 10 to 15% atoms fail the coherent momentum transfer,

according to both equation 3.3 and numerical simulation. Our experimental limit to
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achieve better transfer efficiency is set by the light intensity, limited by the large waist

of the MOT beams, as large as approximately 1 cm. An increase of the Rabi coupling

by a factor 2 would reduce spontaneous emission to 5% and increase the efficiency of

the coherent transfer up to 95%. This would require to increase the light intensity by

a factor 4 and the width of the detuning ramp as much, according to the conditions

for adiabatic transfer defined in equation 3.6. Ensuring spin selectivity requires then to

increase the degeneracy lift of the excited state manifold 3P1, F = 11/2 by increasing the

magnetic field to |B| ≃ 60G. Although weakly sensitive, the zeeman lift of the ground

state with susceptibility 185Hz/G would then exceed the recoil energy associated with

the momentum transfer. If not compensated for, for instance with a doppler shift

associated with a short free fall in our vertical scheme, this would result in an asymetry

of the central frequency of the detuning ramp for the momentum transfer of selected

|mF − 1⟩ and |mF + 1⟩ spin states.

3.1.3 Spin sensitivity

The spin sensitivity is ensured by the association of the degeneracy lift of the 1S0 ↔
3P1, F = 11/2 spin transitions, to the well defined wavectors ±k⃗ and σ± polarizations

of the couplings. Hence, there are two possible sources of sensitivity loss, either from

defects on the circularity of the laser beams polarization, or from misalignement of the

counter-propagating laser beams and the magnetic field, which harms the correlation

between the initial spin state and the direction of the momentum transfer. In the first

case, spin states may be diffracted in the opposite direction to that assumed, while in

the second case, the emergence of π couplings allows the diffraction to spin states that

should not be diffracted. To estimate the consequences of the polarization defects, we

consider that the Rabi frequency resulting from a circularity defect ε ≃ 0.1 (measured

99 % circularity in intensity) scales as εΩ and from a magnetic field misalignement

θ ≃ 6◦ as θΩ. A helpful approach is to considered separatly the possible absorption

processes for the unintended momentum transfers, and infer their probalities of success

from a Landau-Zener scaling PLZ(εΩ) and PLZ(θΩ), as defined in equation 3.8, with

respective Rabi Frequencies. With a sweep rate satisfying 95% probability of success

for the intended momentum transfer (with ε = 0 and θ = 0), the unintended transfers
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Figure 3.4: Measurement of the spin sensitivity with optical pumping prior to spin-
dependent momentum transfer on the |1/2⟩ ↔ |−3/2⟩ diffraction line. (a): pumping of
1/2 and -3/2 spin states to verify π defects in polarization. (b): pumping of -3/2 only,
to verify defects in circularity.

are reduced to approximately 3% accounting for the non zero polarization defects.

To verify the spin sensitivity, we use an optical pumping scheme to empty the

populations of selected spin states (see section 3.2) prior to the momentum transfer.

Then, we realize a momentum transfer targeting at the emptied spin states. If atoms

are separated from the cloud after time of flight, they were initially populating non

targeted spin states, and they have acquired momentum because of the polarization

defects.

To evaluate the π defect associated with the alignement of the magnetic field, we

empty the populations of both spin states 1/2 and -3/2, and we realize a momentum

transfer on the associated |1/2⟩ ↔ |−3/2⟩ diffraction line. Then, we measure the atomic

density at the expected locations of the separated clouds after time of flight, as shown

on figure 3.4, (a.1), (a.2). The measured populations are zero, which is consistent with

the prior pumping. Furthermore, no atoms from -1/2 spin state are diffracted, which

verifies that defects on π polarization can be neglected.

We also verify the quality of the circularity by selectively pumping one of the two
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Figure 3.5: Spectrum for spin dependent momentum transfer over 1S0 manyfold. Each
point corresponds to diffracted fraction of atoms with respect to the central frequency
of the detuning ramp which is 1.4MHz wide, with duration 330µs. Top figure shows
the lower diffracted cloud with −2ℏk momentum trasnfer (see figure 3.1), while bottom
figure shows upper diffracted cloud with associated +2ℏk momentum transfer. The
blue filled regions correspond to measurable asymetry higher than 1MHz in the optimal
central frequency for the two diffracted spin populations.

targeted spin states prior to the diffraction measurement. Figure 3.4, (b.1), shows

the measurement of the |1/2⟩ ↔ |−3/2⟩ diffraction line after pumping -3/2. The

measurement of the populations, see figure (b.2), shows that one cloud only is separated

from the rest of the atomic gas. This shows that the momentum acquired by targeted

spin state 1/2 is well defined, and verifies that defects in circularity can be neglected.

These two measurements hence verify our estimations on the σ+ and π polarization

defects, and show that our spin sensitivity is robust.

3.1.4 Spin dependent momentum transfer in SU(10) manifold

With a complete spectrum of the spin dependent momentum transfer over the SU(10)

manifold of the 1S0 ground state, shown on figure 3.5, we find the optimal central
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frequency of the detuning ramps and the corresponding measured spin populations

N(mF ) for every spin state. A total of 8 diffraction lines are identified in this spectrum,

each of them diffracting two spin states |mF − 1⟩, |mF + 1⟩, in opposite directions.

From the sum over all spin states of the diffracted atoms at optimal central frequencies,

we infer that a total of approximately 85% atoms are diffracted. This result is consistent

with an average 10 to 15% momentum transfer fail due to spontaneous emission, as

discussed in 3.1.2 , and that all spin states are equally populated with approximately

10% atoms per spin state.

This estimation neglects the |−9/2⟩ ↔ |−5/2⟩ diffraction line, which peaks at 4%

diffracted atoms. We consider this measurement irregular because of two arguments.

First, the non-repetability of the measurement of the |−5/2⟩ population compared to

the |−5/2⟩ ↔ |−1/2⟩ diffraction line shows an anomaly. Moreover, while the strong

asymetry in the Clebsch-Gordan associated with σ+ and σ− couplings, see figure 3.6,

for this diffraction line could explain a low efficiency of the momentum transfer, it is not

observed in the |+9/2⟩ ↔ |+5/2⟩ diffraction line, which encounters the same asymetry.

Also, the measurement of the |+5/2⟩ spin population is repeatable compared to the

|+5/2⟩ ↔ |+1/2⟩ line, showing that the asymetry in Clebsch-Gordan coefficients is

not responsible for the anomaly in the |−9/2⟩ ↔ |−5/2⟩ diffraction line. Hence, this

measurement is not yet understood, but we suspect a lately spotted hardware failure

(heating of direct digital synthesizers (DDS)) which can be responsible for the lowered

efficiency and that has yet to be confirmed after repair. Until then, the sensitivity of

the measure remains satisfying for a reliable estimation of the spin populations for all

states but |−9/2⟩.

Asymetric Clebsch-Gordan coefficients: The diffraction line |+9/2⟩ ↔ |+5/2⟩ shows
that a strong asymetry in the Clebsch-Gordan coefficients (CG) associated with the two

arms of the momentum transfer, here as high as CG+/CG− ≃ 6, is not detrimental

to the sensitivity on the populations measurement, as long as the timescale for adia-

batic passage is respected for the lowest CG. However, consequences arise regarding

the optimal detuning ramp. The blue regions on figure 3.5 highlight the measured

diffraction lines with strong asymetry in the CGs. Here, we observe that the maximum
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Figure 3.6: Clebsch Gordan coefficients squared associated with the 1S0 ↔3 P1, F =
11/2 transitions. Top, transition associated with +1 orbital momentum, on middle
0 orbital momentum, and bottom -1 orbital momentum. The width of the lines are
directly proportional to the Clebsch Gordan coefficients, which are noted squared aside
each line.
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efficiency of the momentum transfer for each of the two targeted spin states correspond

to significantly different detunings. For instance, the optimal central frequencies for the

diffraction of states |7/2⟩ and |3/2⟩ are approximately 14.5MHz and 16MHz, which is

comparable to the width of the detuning ramp. Figure 3.7, (a.1) shows the strong

asymetry in the CGs in the Λ scheme associated with the |+9/2⟩ ↔ |+5/2⟩ diffrac-

tion line. The energy of the followed eigen-state, (red solid line on figures 3.7 (a.2)

and (a.3)), is consequently displaced asymetricaly for each direction of the momentum

transfer. This suggests that given the optimal center for the detuning ramp cannot be

the same in both cases. Moreover, the |+9/2⟩ spin state with associated weak CG is

in an electromagnetically induced transparency (EIT) [Fri+12] configuration, such that

the quasi-dark state |ΨC⟩ is mostly along |+9/2⟩ at δ = 0:

|ΨC⟩ =
1√

Ω2
+ + Ω2

−
(Ω− |+5/2⟩ − Ω+ |+9/2⟩) (3.9)

where Ω+/Ω− ≃ 6. This suggests that the rotation of |ΨC⟩ is either finished

at δ = 0, either not yet begun, and hence it cannot be center around the reso-

nance. More precisely, equation 3.9 imposes that |ΨC⟩ rotates from
∣∣∣+9/2, 0ℏk⃗

〉
to∣∣∣+5/2, 2ℏk⃗

〉
when δ < 0, accounting for the positive to negative detunings ramp δ̇ < 0,

whereas the opposite rotation for the opposite momentum transfer from
∣∣∣+5/2, 0ℏk⃗

〉
to
∣∣∣+9/2, 2ℏk⃗

〉
occurs when δ > 0. Figure 3.7, (a.4), shows that the central frequency

of the detuning ramp for the adiabatic passage, that I here define as δcenter so that

|ΨC(δcenter)⟩ ≃ 1/
√
2(|mF ∓ 1⟩ − |mF ± 1⟩), is strongly shifted from the resonance

δ = 0. Regarding the |+9/2⟩ ↔ |+5/2⟩ diffraction line, The numerical computation

with experimal parameters shown on figure 3.7, (a.4), shows the separation of the cen-

tral frequency for each direction of the momentum transfer is 900 kHz, in agreement to

the measured spectrum (see figure 3.5), and most importantly, it is almost as large as

the detuning ramp which is 1.4MHz. Hence, the adiabatic connexion of the initial and

final spin states to the followed eigen-state |ΨC⟩ cannot be insured for both directions of

the momentum transfer, which explains the asymetry of the optimal central frequency

for the detuning ramp.
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Figure 3.7: Focus on the asymetry of the Clebsch-Gordan (CG) coefficients associated
with the spin dependent momentum transfer. (a.1) Λ scheme for the |+9/2⟩ ↔ |+5/2⟩
transfer with strong asymetric CGs, respectively 0.14 and 0.84. (a.2.3): Momentum

transfer in the eigen-energies picture, from
∣∣∣+5/2, 0ℏk⃗

〉
→

∣∣∣+9/2, 2ℏk⃗
〉

(a.2) and∣∣∣+9/2, 0ℏk⃗
〉

→
∣∣∣+5/2, 2ℏk⃗

〉
(a.3), with respect to the same detuning ramp. The

energy displacement of the followed eigen-state |ΨC⟩ (red solid line) with respect to
the dressed states (dashed lines) is highly asymetric around the central frequency of
the detuning ramp, as a result of the CGs asymetry. (b) Momentum transfer for the
|+1/2⟩ ↔ |−3/2⟩ line with aproximately equal CGs, respectively 0.54 and 0.44. (a.4)
and (b.4): projections of |ΨC⟩ along the dressed-states for each momentum transfer,
as a function of δ, here centered around the resonance with the zeeman shifted excited
state.

This feature can be compared to the case Ω− ≃ Ω+ where the followed eigen-state is

in a balanced superposition of the two spin states |ΨC⟩ ≃ 1/
√
2(|1⟩− |3⟩), at resonance
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δ = 0. In this case, the central frequency of the rotation is obviously close enough to the

resonance such that both directions of the momentum transfer are efficient for the same

detuning ramp of 1.4MHz. Figure 3.7, (b), shows that the for the |+1/2⟩ ↔ |−3/2⟩
diffraction line with balanced CGs 0.54 and 0.44, the energy displacement of |ΨC⟩ is

negligeable over the detuning ramp, and the seperation of central frequencies for each

direction of the transfer is only 10% of the detuning ramp. Hence, both directions of

the momentum transfer are optimaly realized with the same detuning ramp.

3.1.5 Simultaneous measurement of four spin populations

We demonstrated a generalization of our scheme to simultaneously measure more than

two spin populations. Figure 3.8 shows an experimental measurement of four spin

populations, −7/2, −3/2, +1/2, and +5/2, with a single realization. This is done by

transfering four different momenta to each one of the selected spin states, respectively

+2ℏk⃗, +4ℏk⃗, −4ℏk⃗, and −2ℏk⃗, such that they are all separated after time of flight. For

this measurement, we realize a sequence of three adiabatic passages, shown on figure

3.8, (a). The first passage on diffraction line |−3/2⟩ ↔ |+1/2⟩ is the same as introduced

before:

∣∣∣−3/2, 0ℏk⃗
〉
→
∣∣∣+1/2,+2ℏk⃗

〉
∣∣∣+1/2, 0ℏk⃗

〉
→
∣∣∣−3/2,−2ℏk⃗

〉 (3.10)

while the second passage |+1/2⟩ ↔ |+5/2⟩ transfers two more momentum recoils

to the final states of the first passage:

∣∣∣+1/2,+2ℏk⃗
〉
→
∣∣∣+5/2,+4ℏk⃗

〉
∣∣∣+5/2, 0ℏk⃗

〉
→
∣∣∣+1/2,−2ℏk⃗

〉 (3.11)

as well as the third passage on diffraction line |−7/2⟩ ↔ |−3/2⟩:

∣∣∣−3/2,−2ℏk⃗
〉
→
∣∣∣−7/2,−4ℏk⃗

〉
∣∣∣−7/2, 0ℏk⃗

〉
→
∣∣∣−3/2,+2ℏk⃗

〉 (3.12)
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Figure 3.8: Simultaneous measurement of four spin populations with the spin dependent
momentum transfer scheme. (a) Sequence of adiabatic passages. The second and third
passages transfer two momentum recoils to the final states of the first passage, such
that they final states have acquired a total of four momentum recoils, with associated
recoil frequency 16∆. (b) Absorption image after time of flight of the four diffracted
spin states. (c) Integrated optical depth from the absorbtion image (b) to measure the
spin populations. The red and blue solid lines are fits of the diffracted atomic clouds
with a Boltzmann distribution.

From absorption images of the diffracted spin states, we measure the number of

atoms in each selected spin state, as shown on figures 3.8, (b) and (c). The first obser-

vation is that the population of atoms which have experienced two adiabatic passages,

i.e. |+1/2⟩ and |−3/2⟩ is weaker than the populations associated with ±2ℏk⃗ recoils.

Obviously, the probability of success of two consecutive adiabatic passages, which scales

as the product of each individual probability of success, is lower than for one single pas-

sage. Moreover, the eigen-state |ΨC⟩ associated with the transfer to the final states with

acquired four recoil momenta and 16 recoil energy must have a larger rate of sponta-

neous emission according to equation 3.9, further reducing the probability of success of

the second adiabatic passage. Hence, diffracted clouds at ±2ℏk⃗ are contaminated by

the populations that failed passage to ±4ℏk⃗.

Although having limited efficiency, this measurement that can yet be optimized

demonstrates the possibility to simultaneously measure the populations and associated
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resolved momentum distributions of four different spin states. Further improvements

may enable the simultaneous measurement of the populations of the ten spin states,

matching the performances of OSG [SGS11; Tai+10].

3.1.6 Intensity window for improved adiabaticity

While the realization of an efficient adiabatic passage requires a slow enough rotation of

the eigen-basis with respect to the coupling intensities, the initial and final parameters

of the passage have to be chosen so that atoms properly connect to the eigen-state of

interest |ΨC⟩. In the case of the spin dependent momentum transfer, those conditions,

defined in equations 3.6 and 3.7, are written as:

δ̇ ≪ Ω2 (3.13)

|δi,f | ≫
Ω2

4∆
(3.14)

In the ideal case, respecting both conditions can be done with a very slow sweep

rate and a large detuning ramp. While the speed is limited by processes realized at

longer time scales such as unintended momentum transfers from polarization defects,

and spontaneous emission, the span of the detuning ramp is limited by the neighboring

resonances. With Ω/2π = 220 kHz and ∆/2π = 4.8 kHz, the detuning ramp should start

much farther than approximately 1.5MHz from the resonance, accounting for the CGs,

while the excited spin states are separated by 6MHz. Hence, preserving spin selectivity

with a narrower detuning ramp is preferable, and it is actually not incompatible with a

proper connection to the eigen-state of interest, which can be done by slowly increasing

the Rabi coupling.

In the spin-dependent momentum transfer picture, the basis rotation is induced by

the variation of the detuning. However, a variation of the Rabi coupling rotates the

basis as well, starting from the atomic states at zero coupling. Consequently, a slow

increase of the Rabi coupling at the begining of the ramp, and slow decrease at the

end, maximizes the connection of the atoms to |ΨC⟩. We increased the efficiency of

the adiabatic passage by approximately 5%, as shown on figure 3.9, by superimposing

an intensity window over the detuning ramp. We compare the measurement of the
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Figure 3.9: Intensity window to enhance the efficiency of the adiabatic following. (a)
|1/2⟩ ↔ |−3/2⟩ diffraction line with squared intensity window, and (b) with an inverted
parabolic intensity window. The intensity ramps are shown on the upper insets, the
black solid is the measured intensity during the frequency ramp, the red dashed line is
an inverted parabola ∝ −(t − t0)

2/∆t2 with ∆t = 36µs. Each image (a.1) and (b.1)
are averages over 7 measurements.

populations of the diffracted clouds with a squared intensity ramp, shown on figure (a),

and with a smoothed intensity ramp, shown on figure (b), which practically corresponds

to an inverted parabola. Averaged over 7 measurements for each case, we measure

that the efficiency of the momentum transfer is then increased by approximatly 5%,

confirming the improvement on the connection to the followed eigenstate.

In this section I presented our method to selectively measure the population in every

spin state of the 1S0 manifold with a spin dependent momentum transfer scheme. This

tool permits us to monitor manipulation schemes of the spin populations that I present

in the next section, and which we ultimately use to prepare polarized Fermi seas of
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87Sr.

3.2 Selective preparation of polarized Fermi sea of
87Sr

We apply a magnetic field to produce a Zeeman degeneracy lift of the 3P1, F = 11/2

Zeeman states. We thus can resonantly couple a selected ground spin state to an

excited state with a pulse of light with well defined σ− polarization to realize spin

selective optical pumpings [Tey+10; Pag+14; Oza+18; Son+20]. First, I discuss our

method to empty the population of one spin state and the associated heating, and then

the preparation of two components Fermi mixtures. Finally, I will show how we can

prepare polarized Fermi seas with this method.

3.2.1 Optical pumping

Experimental procedure

After loading the optical dipole trap, and before forced evaporation (see chapter 1),

we lift the degeneracy of the 3P1, F = 11/2 Zeeman sub-levels with a homogeneous

magnetic field of amplitude |B| = 6.8G, as shown on figure 3.10, top. The excited

spin states, with magnetic susceptibility 380 kHz/G are then separated by gFµB|B| ≃
2.6MHz. The 1S0 ↔ 3P1, F = 11/2 optical transitions are spin resolved, and we pulse

a strongly saturating laser beam, I ≃ 70Isat with Isat ≃ 3µW/cm2, with well defined

polarization σ−, resonant with a |1S0,mF ⟩ ↔ |3P1,mF − 1⟩ transition, to pump the

population out of the targeted |mF ⟩ spin state. Figure 3.10, middle, shows the depletion

of the each pumped spin population, measured with the spin dependent momentum

transfer scheme, with respect to the frequency of the pump, with pulse duration 30ms.

This spectrum lets us infer the resonance of every |1S0,mF ⟩ ↔ |3P1,mF − 1⟩ transition
with a Lorentz fit:

L(f) = N0

(
1− 1

1 + (f−f0
Γ/2

)2

)
(3.15)

of the populations depletion. Here, y0 is the baseline, f the frequency of the pump
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and f0 the resonance. The measured resonances f0 are reported on figure 3.10, bottom,

for every spin state, as well as the width of the depletion. The resonances are sepa-

rated by 2.6MHz which is in agreement with the expected Zeeman degeneracy lift with

magnetic field |B| = 6.8G.

This measurement shows that we are able to empty the population of any selected

spin state of the ground state manyfold with a pulse of well polarized σ− light at

appropriate frequency. Due to spontaneous emission, the population of the targeted

|mF ⟩ spin state is transfered to |mF − 1⟩ and |mF − 2⟩ spin states, and the emission

of one spontaneous emission with π or σ+ polarization is enough to flip the spin of the

atom. Once an atom populates a new spin state, it will not see the excitation anymore

because of the degeneracy lift and the light polarization, and thus will remain stable in

the new spin state. Note that the σ− excitation on −9/2 is cyclic, such that atoms in

|3P1, F = 11/2,mF = −11/2⟩ cannot de-excite anywhere but back on −9/2. Note that

transfering this spin population would require to reverse the magnetic field.

Frequency and polarization sensitivity

While experiencing Rabi oscillations between the ground and the excited nuclear spin

states, an atom has a probability to spontaneously emit a photon with random polar-

ization and relax to any of the connected ground states, and the excitation has to be

applied for a long enough duration such that the probability of spontaneous emission

increases and the spin flip is realized. Figure 3.11 reports our measurements of the

+9/2, +7/2, -1/2, and -7/2, spin population depletion (black dots, indicated at bottom

right corner of each figure) with respect to the duration of the σ− light pulse. The

population depletions are fit with exponential decays exp(−t/τ) (dashed lines) and the

infered decay times τ are all in the order of one millisecond (written at bottom left cor-

ner of each figure). The data is compared to numerical time integration of the Lindblad

equation shown by the solid black lines, accounting for possible detuning and circularity

defect that will be discussed in the following.

Frequency sensitivity: in the saturating regime I ≃ 70 Isat, one would expect that the

rate of spontaneous emission governs the timescale of optical pumping, which would
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Figure 3.10: Experimental population transfer within the nuclear ground spin states
manifold. Top: optical pumping scheme with σ− resonant coupling, where ω3P1

is
the 3P1, F = 11/2 ↔ 1S0 resonance for all spin states without magnetic field. Middle:
spectroscopy for σ− excitation in the saturating regime for all spin states. The depletion
of the population of each spin is measured with respect to the frequency of the pump.
The black solid line is a lorentzian fit as defined in 3.15 to measure the optical pumping
resonance ωop, assuming 10% initial population. Bottom: resonances (black circles) for
every nuclear spin states.

be (Γ3P1
/2)−1, i.e. tens of microseconds for Γ3P1

= 7.4 kHz, which is much faster

than our measurement. This scaling is correct in the case Ω ≫ Γ, δ such that the
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Figure 3.11: Spin populations depletion with respect to the duration of the σ− light
pulse. We measure the number of atoms remaining in the target spin state (black dots),
respectively +9/2, +7/2, -1/2, and -7/2, from top to bottom figure, and the associated
spins with the spin-dependent momentum transfer scheme, respectively +5/2, +3/2,
+3/2, -3/2 (white dots). Each spin population depletion is fit with an exponential
decay exp(−t/τ) (dashed line), and the fitted decay time τ is noted on the bottom left
corner of each figure. Black solid lines: numerical integration of the Lindblad equation
with experimental parameteral I = 70 Isat accounting for a global perturbative defect
in light circularity (2.5× 10−3 × I) for all spin states, and tunable detuning.

probability for each atom to the populate the excited state is close to 1/2. However, if

the light excitation is detuned from resonance, the amplitude of the Rabi oscillation is

reduced, hence is the population of the excited state, which reads in the rotating wave
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approximation (RWA) [MS99]:

Pe =
1

2

s

1 + s
(3.16)

where s is the saturation parameter defined as:

s =
2Ω2

Γ2 + 4δ2
(3.17)

The radiative decay time in the non-resonant case can be directly infered, and it

reads, in units of the resonant radiative decay time:

τ(δ)

τ0
= 1 +

(
2δ

Γ′

)2

(3.18)

where Γ′ = Γ3P1

√
1 + CG2I/Isat is the power broadened linewidth of the transition,

with associated Clebsch-Gordan (CG), and τ0 ≃ 70µs. If considering the depletion of

mF = +9/2, with I ≃ 70 Isat and CG ≃ 0.135, a detuning δ = 4Γ3P1
increases the

decay rate to approximately 2.2ms, which is in good agreement with the measured

decay time, and numerical time integration of the Lindblad equation, accounting for

the detuning, confirms this result, as shown by black solid lines on figure 3.11. The

increase of decay time of the pumping of the other spin states +7/2, -1/2, and -7/2, is

similarly explaing with respective detunings 7 Γ3P1
, 8 Γ3P1

, and 8 Γ3P1
. Regarding our

measurement, those detunings are relevant since we calibrated the optimal pumping

frequency with a 100 kHz ≃ 13 Γ3P1
/2π step. This also confirms that pumping is robust

against frequency drifts which only extends the duration of the light pulse to a few

milliseconds, and hence can be easily compensated for. Another possibility is to sweep

the frequency of the optical pumping, and this gives the same results than extended

pulse durations.

Polarization sensitivity: the number of atoms are measured with the spin-dependent

momentum transfer scheme, hence a second spin population is measured simultaneously,

as shown by the white dots (indicated top right corner of each figure). The pumping of

spin states +9/2 and +7/2 are measured with the diffraction lines +9/2 ↔ +5/2 and

+7/2 ↔ +3/2, which means that one of the two final states is measured simultaneously
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with the depletion of initial state. However, the pumping of spin states -1/2 and -7/2 are

measured with the diffraction lines −1/2 ↔ +3/2 and −7/2 ↔ −3/2, and the second

measured state cannot be a final state of σ− optical puming, and the measurement

of these populations, which is stable all over the duration of the pulse, confirms the

robustness in spin sensitvity.

The first two measurements show that the populations of +5/2 and +3/2 are in-

creased simultaneously with the depletion of +9/2 and +7/2, respectively, which is

expected for optical pumping. However, for longer pulse duration, higher than 10ms,

the populations of final states +5/2 and +3/2 start decreasing. In our case, we explain

this decay by the imperfection of the circularity of the light. Let’s consider the pumping

of +9/2 with σ− excitation. A negligeable fraction of σ+ light is enough to excite +5/2,

and in a two level picture, the associated rate of spontaneous emission reads:

Γse = Γ3P1

s

2
(3.19)

where s≪ 1 is defined in 3.17, accounting for the polarization defect ε along σ+ so

that:

Ω2 =
Γ2

2
ε2

I

Isat
(3.20)

and a defect as small as ε2 = 2.5 × 10−3, i.e. Iσ+/Iσ− = ε2, which is hardly

measurable with a powermeter, is enough to be responsible for a depletion of the +5/2

population with associated decay time τ ≃ 12.5ms. On figure 3.11, the time integration

of the Lindblad equation, shown by the black solid lines, accounts for this circularity

defect ε2 = 2.5× 10−3, and is enough to explain the population depletion of +5/2 and

+3/2 that we measure, as small as it is. This shows that pumping is very sensitive to

the polarization, indeed a 1% defect in intensity, 5 times larger than we infer, would be

enough to lower the decay time of |+5/2⟩ to 3ms, and would break the spin sensitivity

at our time scales. It is then critical that the polarization is optimized on the non-

depletion of mF − 2 population for σ− optical pumping.

Another possible explanation would be that these states are also excited by the σ−
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pulse, but the 2.6MHz zeeman degeneracy lift of the excited states ensures the spin

selectivity, and the verified equation 3.18 confirms that with such a detuning as large

as the degeneracy lift, the associated decay time is as large as hundreds of milliseconds,

which would not be observable on the measured time scales. Note that a defect in π

polarization could not explain the depletion of spin states |+5/2⟩ and |+3/2⟩ because
of the Zeeman degeneracy lift, and considering the non-zero σ+ defect, the stationnary

state of the three coupled ground states would obviously have non zero population in

the target state. Even if we don’t reach a stationnary state, as shown by the populations

of +5/3 and +3/2, our measurement shows that the target state is completly depleted,

which shows that a defect in π polarization is completly negligeable, and this confirms

a good alignement of the magnetic field with the propagation of the light.

Associated heating

Since this scheme relies on spontaneous emission, the atoms obviously heat during the

process. When experiencing the Rabi oscillations, atoms can relax to any of the con-

nected ground states, including the initial state. This means that the atoms may need

to emit more than one spontaneous photon before changing spin state. The proba-

bilities for relaxation are exactly the square of the Clebsch-Gordan coefficients (CG),

which are definied as Ckq
j1q1,j2q2

= ⟨j1q1, j2q2|kq⟩, where |j1q1⟩ = |3P1, F = 11/2,mF e⟩
and |kq⟩ = |1S0, F = 9/2,mF i⟩. For each spontaneously emitted photon, let’s define

pfail = CmFi
mFe ,1−1

2
(3.21)

the probability for the atom to relax in the initial state, and

psuccess = 1− pfail (3.22)

the probability to relax in one of the two possible final states. This is a binomial

process, with associated probabilities for success psuccess and fail pfail, and then the aver-

age number of tries for first success, here changing spin population, is simply 1/psuccess,

which is exactly the average number of spontaneously emitted photon needed to change

spin population < Nsp.em. >= 1/psuccess.
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Let’s now discuss the heating associated with optical pumping and resulting from the

multiple momentum exchanges, say n, between an atom and the photons from the light

excitation. An isolated atom at rest realizes a Brownian motion in the momentum space,

consequently to the n consecutive momentum recoils acquired with the absorption -

spontaneous emission process. It results in an acceleration along the light propagation

with acquired n2ER 1D kinetic energy, where ER = ℏ2k2/2m is the recoil energy, and

a three dimensional diffusion in momentum resulting from the spontaneously emitted

photons with acquired nER 3D kinetic energy. Let’s quickly give a proof of this well

known result. The momentum variation δk⃗ associated with multiple processes of one

absorption of a photon from the excitation with momentum ℏk⃗L and one spontaneous

emission with momentum ℏk⃗se,i and random direction i reads:

δk⃗ = nk⃗L +
n∑

i=1

k⃗se,i (3.23)

Regarding this energetic consideration, the relevant quantity is the momentum

spread, which reads as the quadratic momentum variation averaged over the realiza-

tions:

< δk⃗2 > =< n2k2L +

( n∑
i=1

k⃗se,i

)2

+ 2n
n∑

i=1

k⃗se,i · k⃗L >

= n2 < k2L > +n < k2se >

(3.24)

This results from the independence between the absorption and emission process, so

that the momentum of the absorbed photon is not correlated with the momentum of the

spontaneous photon, and < k⃗L · k⃗se >=< k⃗L >< k⃗se >. Similarly, every spontaneous

emission is inpendant so that < k⃗se,i · k⃗se,j >=< k⃗se,i >< k⃗se,j >. Since the momentum

of spontaneously emitted photons is random, < k⃗se >= 0⃗, which cancels both products.

Now, the recoil energy ER = ℏ2k2R/2/m associated with the intercombination line can

be inserted to define the average energy acquired:

< δE >= n2ER + nER (3.25)
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which shows the quadratic dependence on n of the energy acquired from the 1D

acceleration and the linear dependence on n of the 3D momentum diffusion resulting

from the spontaneous emission.

In our experiment, the decay time associated with optical pumping of a spin state is

approximately between 1 and 2 ms (see figure 3.11), while the collision rate is slightly

lower than 1 collision per atom per millisecond. Considering that the gas necessitates

several collisions to thermalize, and the pumping duration is smaller than the dipole

trap period, it is then reasonnable to consider that an atom is approximately isolated

when it is pumped into another spin state. The estimated average energy acquired by

the atom is:

< δE >= n2ER + nER (3.26)

The associated heating for a 3D thermal gas in a harmonic trap with total energy

Etot = 3kBT finally reads:

δT =
1

3
n(n+ 1)TR (3.27)

Where the recoil temperature associated with the intercombination line of 87Sr is

TR = ER/kB = 230 nK. Considering that the heating associated with one spin flip

is redistributed to the whole gas after thermalization, the heating associated with the

total depletion of a spin population can finally be predicted from:

δT =
Ni

Ntot

1

3
n(n+ 1)TR (3.28)

where is the initial number of atoms in the pumped spin state and Ntot the total

number of atoms in the gas, and n = 1/psuccess the average number of spontaneous

emissions needed to change spin population, where psuccess is defined in equation 3.22.

For instance, considering that the gas is initially unpolarized with 10% atoms per spin

state, atoms in -3/2 have 0.5 probability to change spin state, so that emptying the

population of -3/2 heats the gas by approximately 115 nK. Note that the populations

of the low negative mF spin states, with strong CGs associated with σ− relaxation, see
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figure 3.6, need to experience more spontaneous emission than the positive spin states

to be transfered, for instance −3/2 spins are heaten twice as much as 9/2.

Optical pumping is best realized on a hot gas in a deep trap, rather than on an

ultra-cold gas in a shallow trap which would consequently strongly heat the atoms and

might blast them out of the trap. For this reason, the spin populations are emptied

just after loading the dipole trap which is 90µK deep, while the gas is unpolarized

with approximately 10% atoms per spin state (see section 3.1) at 7.2µK (see section

1.1.6 of chapter 1). In this case, the heating associated with the pumping of one spin

population is hardly measurable.

3.2.2 Controlling the number of spin components from 1 to 10

In the previous section, I presented our method to empty the population of a mF spin

state and transfer it to mF − 1 and mF − 2. I will now explain how we can tune the

number of spin components in the Fermi gas of 87Sr from 10 to 1. To prepare a selective

spin mixture, we rely on the pure polarization of the laser, such that consecutive spin

states can be emptied in descending mF order, while never bringing back atoms in

previously emptied spin states. Considering the preparation of a Fermi gas with 2 spin

components with initially all 10 spin states populated, we sequentially empty all mF

states with decreasing mF , but one spin state that we volontary skip, say -5/2, and

-9/2 that cannot be pumped with σ− excitation, so that all spin states are emptied,

but −5/2 and −9/2.

Figure 3.12 shows absorption image after time of flight of a SU(2) 87Sr thermal gas

(right) after a pumping sequence to prepare a {−9/2,−1/2} mixture, and a SU(10) gas

(left) with no prior optical pumping. We compare the temperature of the gas after the

pumping sequence and after allowing for 500 ms thermalization, to the initial temper-

ature of the gas prior to pumping, as well as the number of atoms. The increase of

temperature is reported on figure 3.12, (a), for the {−9/2,−1/2} preparation, as well

as other preparations, {−9/2, 3/2}, {−9/2,−3/2}, and {−9/2,−7/2}. We measure

an increase of 1µK after thermalization of the {−9/2,−7/2} preparation, and smaller
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Figure 3.12: Measurement of the heating and atom loss associated with the preparation
of a 2 component Fermi gas of 87Sr with a pumping sequence. Top figures, absorption
images after time of flight of a SU(10) gas (left) and SU(2) gas with remaining -9/2 and
-1/2 spin states. The number of atoms and temperatures and infered from a Gaussian
fit (white dashed line) of the integrated optical depths (black solid lines). (a): heating
of δT = TSU(10) − TSU(2), infered from a simulated pumping sequence (black dots),
neglecting evaporation, and measurement with associated fit uncertainty. (b) density
of the remaining spin component, here defined as ∝ NmF

/T 3, infered from a simulation
(black dots) and measurement (empty squares), where the population in mF is infered
from the measured number of atoms and the predicted population balance after the
pumping sequence. (c) Prediction of the ratio of atoms in mF after preparation of a
−9/2,mF two component gas, using Clebsch-Gordan coefficients.

increase of approximately 800 nK for the other preparations, and it is compared to

simulations of the associated pumping sequences using only the Clebsch-Gordan coeffi-

cients, and equations 3.22 and 3.28. Our measurement shows that heating is less spin

dependent contrary to the prediction and moreover it is generally lower. A possible

explanation is that during thermalization, the two component gas continues evapora-
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tion, attenuating the heating from the pumping sequence, and our measurement of the

number of atoms N
SU(2)
at ≃ 106 for all preparations confirms that one third of the atoms

are lost after thermalization. We assume that thermalization is homogeneous for all

spin states, and that there is no spin exchange due to the SU(N) symmetry of the

collision properties [Gor+10]. Then, the population in the remaining mF component

can be infered from the total number of atoms measured and the predicted population

imbalance after the pumping sequence, shown on figure 3.12, (c). This way, we deduce

the density of atoms in the remaining mF component, as shown on figure 3.12, (b).

On figure 3.13, we compare the final state of several gases after evaporation, depend-

ing on spins mixture preparation prior to evaporation. The initial mixtures are either

a SU(10) gas with no optical pumping prior to evaporation, or a SU(2) gas prepared

in {−9/2,−7/2}, {−9/2,−3/2}, {−9/2,−1/2}, or {−9/2,+3/2} (these preparations

are the ones discussed on figure 3.12). After the evaporations, all realized from initial

trap frequency 330 Hz ramped down to 85 Hz during 5 seconds, we compare the den-

sities and degeneracies of each preparation, accounting for the predicted balance of the

population, see figure 3.12.

This measurement first shows that a SU(10) gas of 87Sr has four times more atoms

than a SU(2), and thermalizes at a temperature lower by 20%, for this evaporation

depth. Accounting for the fact that initially SU(10) gas has approximately 30% more

atoms, this shows that relatively more atoms are evaporated in SU(2) preparations.

This is consistent with previous observations that the collision rate of a SU(2) gas is

lowered compared to that one of a SU(10) gas [Son+20]. However, accounting for the

number of atoms per spin state, the phase space density Nmf/T
3 of the most populated

spin state of the SU(2) preparations {−9/2,−7/2} and {−9/2,−5/2} is equal to that

one of the SU(10) preparation, as well as the degeneracy T/TF . The {−9/2,−1/2} and

{−9/2, 3/2} preparations, with less atoms in the selected spin states, are consequently

less degenerate. This shows that the manipulation of the spins populations is viable

for the preparation of ultra cold gases of 87Sr with tunable N. Moreover, we are not

interested into the choice of the spin mixture regarding the latter study of the Heisenberg

model in enlarged SU(N) symmetry, since the collision properties of 87Sr do not depend

on the spin states. It is then reasonnable to select the most favorable spin mixture
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Figure 3.13: Final state of different spin mixtures after evaporation. Top: absorption
images after 12 milliseconds of time of flight of the different mixtures, SU(10) on left,
and SU(2) preparations. From the measured number of atoms and temperatures, we
infer the density per spin state NmF

/T 3 for each preparation, and degeneracy T/TF ,
using predicted populations per spin states. The final trap frequency of evaporation is
indicated at top rigth corner.

regarding only the production of degenerate gases.



Chapter 3. Preparation and measurement of the spin populations in a Fermi gas of
87Sr 92

Collision rate for unbalanced mixtures. The preparation of the SU(2) mixtures in-

duces populations imbalances between the remaining spin states. It is then interesting

to investigate the consequences regarding the efficiency of evaporation, that depends

on collisions. Symmetry rules forbid s-wave collisions between two identical fermions,

so that collisions are inhibited in the degenerate regime and the efficiency of the evap-

oration decreases when T → 0 [DeS+10]. In case of population imbalance between the

colliding fermions, the collision rate per atom will be lowered for the most populated

spin state, mF in our case. Indeed, the less populated has more partners to collide with,

and Pauli exclusion principle forbids collisions for which the arrival state is already oc-

cupied by a fermion of the same specie, so that at thermal equilibrium between the two

spin states, the most populated state has more occupied states in the arrival state for

the collision, inhibiting the probability for this collision. It is possible to numerically

predict the inhibition of collisions due to a population imbalance in a two components

fermi mixture. The collision rate of two colliding species α and β can be computed

thanks to the collisional integral [LRW96; Geh+03]:

ρ(ε4)ḟα(ε4) =
Mσ

π2ℏ3

∫ ∞

0

dε1dε2dε3ρ(εmin)δ(dε1 + dε2 − dε3 − dε4)

(1− fα(ε1)(1− fβ(ε2)fα(ε3)fβ(ε4)

Γαβ
collNα =

∫ ∞

0

dε4ρ(ε4)ḟα(ε4)

(3.29)

where M is the mass, σ = 4πas
2 the low energy s-wave collisions cross-section with

as the scattering length, and ℏ the reduced Planck constant. ρ(ε) = ε2/2(ℏω̄)3 stands

for the density of states, in a harmonic trap of geometric mean frequency ω. The Pauli

exclusion principle is taken into account by the (1 − f(ε)) non-occupation number,

where f(ε) is the Fermi-Dirac occupation number:

fFD(ε, T, µ) =
1

eβ(ε−µ) + 1
(3.30)

Here, β = 1/kBT and the chemical potential µ is defined as the Fermi energy at

zero temperature µ(T = 0) = εF = kBTF , TF the Fermi temperature. When solving

equation 3.29, it is important to take into account the fact that the two unbalanced
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Figure 3.14: Inhibition of the collision rate per atom for unbalanced populations in the
two colliding Fermi components α and β. The numbers above each curve indicates the
ratio of atoms pα in the considered state α with respect to the total number of atoms
Ntot = Nα + Nβ, i.e. Nα = pαNtot. The calculation has been made for trap frequency
ω̄ = 120Hz and Ntot = 105, representative of our trap after after evaporation.

populations have different Fermi energy εF α = ℏω̄(6Nα)
1/3 and hence Fermi tempera-

ture and chemical potential. So the occupation numbers fα and fβ are not the same

for the two species. The details for the computation can be found in appendix A. In

figure 3.14 are presented different collision rates per atom in state mF sel with respect

to T/TF α and populations inbalance, for fixed Ntot and ω̄. If the two spin states are

equally populated, Nα = Nβ = Ntot/2, then collision rate per atom is maximal, and

the forced evaporation efficiency optimal. Then if the state mF sel starts to be more

populated, i.e. pα = Nα/Ntot > pβ, the collision rate drops quickly, from -20% for

pα = 0.6 with respect to equally populated states (pα = pβ = 0.5) to approximately

-80% for pα = 0.9.

This shows that unbalanced mixtures suffer from inhibition of the collisions, which

results in a less efficient evaporation. This is consistent with our measurement of the
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number of atoms after evaporation presented on figure 3.13, which indicates that the

most unbalanced mixture {−9/2,−7/2} is slightly lower than the other SU(2) prepa-

rations. However, it is not significant, as T/TF is smaller. Regarding the preparation

of SU(2) degenerate Fermi gases with forced evaporation, the best mixtures are hence

-9/2 with either -7/2 or -5/2, according to our measurement.

A spin mixture with more than two components can be prepared exactly the same

way, except that anothermF spin has to be skipped during the pumping sequence. Note

that the preparation of the Fermi gas with tunable number of spin components is real-

ized in the deep dipole trap prior to evaporation because of the heating associated with

optical pumping, so it is mandatory to keep at least two spin components to authorize

forced-evaporation assisted by s-wave collisions. For this reason, our preparations of

polarized Fermi seas have to be done after evaporation, which I will now discuss.

3.2.3 Spin purification to prepare a polarized Fermi sea

To prepare a polarized Fermi sea from a two components degenerate Fermi gas, we

selectively blast one spin state out of the trap after evaporation. This is done by

realizing our optical pumping scheme on spin state -9/2, i.e. with a long pulse of

saturating σ− light resonant with the |1S0,−9/2⟩ ↔ |3P1, F = 11/2,−11/2⟩ transition.
This transitions is cyclic, and atoms absorb photons from the laser and emit spontaneous

photons until they acquire enough energy to leave trap. Then, there remains only the

other spin state and the Fermi gas is spin polarized.

Figure 3.15 shows our experimental realization of the blast to prepare a polarized

Fermi gas in mF = −1/2, from an evaporated gas previously prepared in a −9/2,−1/2

spins mixture with optical pumping. Right figure shows absorption images of the

|−1/2⟩ ↔ |+3/2⟩ diffraction line, with respect to the duration of the σ− pulse, and the

corresponding longitudinal integrated optical depths are superimposed for each blast

duration. The population in the non diffracted cloud, which corresponds to atoms in -

9/2, and centered on pixel 30, is progressively reduced with longer pulses until it reaches

a minimum while the population in -1/2 seems not affected, and the absence of a second
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Figure 3.15: Preparation of a polarized Fermi gas in mF = −1/2 by blasting atoms
in mF = −9/2 out of a two components trapped Fermi gas. (a) Depletion of the -9/2
population, and relative increase of the -1/2 population, with respect to the frequency
of the blast with fixed duration 5 ms. (b) Ratio of atoms in mF = −1/2 with respect to
the blast duration. It is fit with an exponential decay of the -9/2 population e−t/τ , with
fitted decay time τ = 97± 14µs, and the ratio of atoms in −1/2 saturates at approxi-
mately 66% in this measurement. (c) Measured number of atoms and temperature of
the diffracted cloud associated with -1/2 population, with respect to the duration of
the blast. Right figure: absorption images of the |−1/2⟩ ↔ |+3/2⟩ diffraction line, with
respect to the duration of the resonant blast with saturating σ− excitation, I ≃ 70 Isat,
used for the measurements on figures (b) and (c).



Chapter 3. Preparation and measurement of the spin populations in a Fermi gas of
87Sr 96

diffracted cloud confirms that the population in +3/2 is zero. From this measurement,

we infer the ratio of atoms in -1/2 with respect to the blast duration, shown on figure

(b), which raises consequently to the exponential decay of the population in -9/2, with

fitted decay time τ = 97±14µs. We observe here that the population in -1/2 saturates

close to 70%, and this is also observed on a scan of the optimal frequency of the blast

with 5 ms of pulse, shown on figure (a), with a plateau of the depletion in -9/2 over 150

kHz of scan. This poor efficiency of the blast was due to a hardware failure damaging

the efficiency of the spin-dependent momentum transfer, so that atoms in -1/2 were

not diffracted for this specific data. This failure was later corrected.

Nevertheless, our measurement shows that during the blast of atoms in -9/2, atoms

in -1/2 remain unaffected, as the diffracted cloud has an approximately constant number

of atoms, and the temperature remains stable compared to the temperature of the initial

gas Ti ≃ 45 nK, as shown on figure 3.15, (c). This is consistant with the fitted decay

rate γ = 1/τ ≃ 2π × 1.5 kHz of the -9/2 population, which is much higher than the

collision rate and the trap frequency. Atoms in -9/2 leave the trap before colliding with

atoms in -1/2, and the Zeeman degeneracy lift of the excited state ensures that there

is no possible light scattering from atoms in -1/2 on those timescales.

3.2.4 Polarized Fermi sea

We measure the fiability of our preparation of a polarized Fermi sea of 87Sr in mF =

−7/2, by measuring the number of atoms in every spin state with the spin-dependent

momentum transfer scheme. Figure 3.16 shows the results of our preparation with

absorption images of each diffraction line (see section 3.1.4). From the diffraction line

|−7/2⟩ ↔ |−3/2⟩ (see (a)), we measure 75± 3% diffracted atoms from −7/2.

The signal in the non diffracted cloud, in both the absorbtion image (top) and the

integrated optical depth (a), shows that atoms at rest prior to the momentum transfer,

at the center of the gas, are better diffracted than atoms with non zero velocity away

from the center. This is a systematic effect that leads to an underestimate of the number

of atoms from −7/2. The feature is taken into account in figure (b). The inset shows the

velocity dependence of the efficiency of the momentum transfer, which is infered from
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Figure 3.16: Measurement of the spin polarization after preparation of a polarized
Fermi sea in mF = −7/2. Top: absorption images of each diffraction line, the labels
correspond to the spins expected at location indicated by the dashed circles. (a) Fit
of the |−7/2⟩ ↔ |−3/2⟩ diffraction line (solid line) with the sum of gaussian distribu-
tions. Insets: residuals of thermal (left) and degenerate (right) fits of a non diffracted
polarized Fermi sea. (b) Expected density profile (dashed-line), accounting for the
velocity v dependent efficiency P (v) of the spin-dependent momentum transfer (see in-
set). (c) Integrated optical depths of the other diffraction lines with indicated fraction
of diffracted atoms. (d) Measured number of atoms in −7/2 (empty square), accounting
for the velocity dependent efficiency (empty circle), and calibrated by the total fraction
of diffracted atoms (filled square and circle).
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numerical integration of hamiltonian 3.1 accounting for an opposite doppler shift on

the σ+ and σ− photons. The number of atoms in −7/2 is then measured by accounting

only for atoms at rest, i.e. the peak density of the diffracted cloud, and the density

at v = 0 for the non diffracted cloud. On figure (b), the dashed line indicates the

expected density profile by neglecting the velocity dependence. With this correction,

we infer 81± 3% diffracted atoms from −7/2. These two results are finally calibrated

by taking into accounts the atoms detected in the other spin states (see figure (c)), and

we find 89.5 ± 10%. Figure (d) reports the result of our measurements: accounting

only for the detected atoms in −7/2 (empty square), with the correction of the velocity

sensitivity (empty circle), and calibrated by the efficiency of the diffraction measurement

(respectively filled square and circle).

Finally, the degeneracy of the gas is measured from a non diffracted gas prepared

in the same conditions, with a fit of the absorption images with a degenerate density

distribution [KZ08] (see residuals and fit result in inset of figure 3.16, (a)), and we

measure T ≃ 0.25TF , TF ≃ 250 nK with approximately 20 000 atoms.

This finally shows that we are able to prepare a degenerate polarized Fermi gas of
87Sr at T/TF ≃ 0.25 with 20× 103 atoms, and we estimate that 89.5± 10% atoms are

in the same spin state |−7/2⟩. Therefore our measurement is compatible with a 99%

SU(1) degenerate Fermi gas.



Chapter 4

Coherent manipulation of the
nuclear spin states of 87Sr

The ground state 1S0 of fermionic 87Sr has an electronic closed-shell. As mentionned

in chapter 3, it is not practical to use magnetic fields to manipulate the 10 degenerate

ground spin states. In the prospect of studying the Heisenberg model in enlarged

SU(N) symmetry, we rely on spin-orbit coupling and spin resolved Raman transitions

to coherently probe and manipulate the spins with light. To do this, we take advantage

of spin dependent light shifts.

The bosonic isotopes of strontium have zero nuclear spin and J=0 in the ground

state, and hence no hyperfine structure. However, one of the most interesting properties

of fermionic 87Sr is the hyperfine coupling between total momentum J and the large

nuclear spin I = 9/2 in excited states. For instance, the excited state 3P1 with non-zero

momentum J is split into 3 hyperfine states F = 7/2, 9/2, 11/2, which are all separated

by more than 1 GHz. These three hyperfine states are highly resolved compared to the

narrow linewidth Γ/2π = 7.4 kHz of the optical transitions. Therefore, the dynamic

polarizability associated with the intercombination line can acquire a significant and

tunable spin dependence [Shi+15], so called tensor polarizability [MOR86], with low

spontaneous emission. While experiments for optical lattice clocks take specific care

of minimizing spin dependent light shifts [Boy07; Lud08] on alkaline earth species to

prevent perturbations on the clock frequencies, degenerate gases experiments can take

99
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advantage of the tensor polarizability. It has been demonstrated on both strontium

[SGS11] and ytterbium [Tai+10] that spin components can be separated using conser-

vative spin dependent forces, enhancing the study potential of many-body physics in

enlarged SU(N) symmetry [CHU09; Gor+10; Tai+12].

In our experiment, we use a dressing laser beam that realizes spin dependent light

shifts associated with the intercombination line of 87Sr, so that the degeneracy of Raman

transitions within the ground state spin manifold is lifted. Then, we selectively and

coherently flip chosen nuclear spin states with two photon Raman process, with one

photon from the dressing beam, and a one photon from another laser, that I call Raman

beam in this chapter, and whose frequency is adiabatically sweeped through the selected

Raman resonnance. Designed as a dipolar optical lattices, the spin dependent light

shifts are then associated with a spatial selectivity that can be taylored at the optical

wavelength scale. Therefore, the Raman process acquire a site dependence, that can be

used to prepare, and detect, spin textures into lattices. In the prospect of the realization

of a quantum simulator for Heisenberg model, this scheme enables the possibility to

probe long range spin ordering, and to detect spin entanglement [Tai+20; Sun+21].

The basics of the tensor polarizability and the derivation of the quadratic light shift,

as well as the associated scattering rate, are well known results that are first recalled

in this chapter. We measured the quadratic light shift with Raman spectroscopy, and

results are compared to predictions. Then, I show how we manipulate the ground spin

states, taking advantage of the tensor polarizability to engineer spin selective adiabatic

passages within the 10 spins ground state manifold of 87Sr. Finally I discuss the short-

term prospect of associating spatial selectivity to the spin dependent light shift, to

prepare spin textures into lattices with site dependent adiabatic passages.
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4.1 Degeneracy lift associated with spin dependent

light shift

4.1.1 Tensor dynamic polarizability

The rotational invariance of AC Stark shift can be broken for atoms which have fine

and hyperfine structures, and in this case, the polarizability can acquire a dependence

on the zeeman sub-levels mF . Here, I will focus on the main steps to summarize the

derivation of the irreducible tensor components of the atomic polarizability α in order

to expand the spin-dependant light shifts in terms of a scalar component, indepen-

dent on mF , a vector component, linearly dependent on mF , and a tensor component,

quadratically dependent on mF . This well-known result can already be found in sev-

eral publications and pedagogical contents. [MOR86; Ovs+06; Shi+15] . A clear and

interesting introduction to the angular momentum algebra and spherical tensors can be

found in [Wal21], which are explicitly used for the following derivations.

The interaction between the atom electric dipole D̂ and the classic monochromatic

light field E of angular frequency ωl, E = 1
2
ϵ|E|ei(ωlt−ϕ)+c.c, is described by the electric

dipole potential operator Ûdip:

Ûdip = −1

4
α̂|E|2 (4.1)

where α is the polarizability operator. We are interested in the magnetic dependence

of the polarizability ⟨m1| α̂ |m2⟩, where |m1⟩ and |m2⟩ are Zeeman sub-levels of the

ground state 1S0. In second order perturbation theory, α reads:

α̂ =
1

ℏ
∑
|ϕ′⟩

ϵ∗ · D̂ |ϕ′⟩ ⟨ϕ′| ϵ · D̂
ωϕ′ − ωl

+
ϵ · D̂ |ϕ′⟩ ⟨ϕ′| ϵ∗ · D̂

ωϕ′ + ωl

(4.2)

where ℏ is the reduced Planck constant. Here, |ϕ′⟩ = |n′L′S ′J ′F ′m′⟩ are the excited
states, and ϵ is the polarization of the electric field. In the spherical basis of unit vectors

u∗
q, defined as u±1 = ∓(x ± iy)/

√
2, u0 = z, with uq = (−1)qu∗

−q, the electric dipole

operator D̂ = −eR̂ can be expended as a linear combination of spherical harmonics
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Ym
l [Wal21]:

D̂ =
∑
q

−e|r|
√

4π

3
Yq

1u
∗
q (4.3)

This is enough to show that D̂ is a spherical tensor T k of rank k = 1, with three

standard components Tkq, q = 0,±1. It is then possible to apply the Wigner-Eckart

theorem on the electric dipoles D1(|m1⟩ , |ϕ′⟩) = ⟨m1| ϵ∗ · D̂ |ϕ′⟩ and D2(|ϕ′⟩ , |m2⟩) =

⟨ϕ′| ϵ · D̂ |m2⟩:

D1(m1, ϕ
′) =

∑
q1

(ϵ∗ · u∗
q1
)(−1)F1−m1 ⟨F1| |D| |F ′⟩

(
F1 1 F ′

−m1 q1 m′

)
D2(ϕ

′,m2) =
∑
q2

(ϵ · u∗
q2
)(−1)F2−1+m′ ⟨F ′| |D| |F2⟩

(
F2 1 F ′

m2 q2 −m′

) (4.4)

where the angular dependence is contained into the Wigner-3j symbols. Here, Fi

and F ′ are the hyperfine states associated with the |mi⟩, i = 1, 2, Zeeman sub-levels and

the excited state |ϕ′⟩. The double bar matrix elements ⟨F1| |D| |F ′⟩ and ⟨F ′| |D| |F2⟩
are the reduced dipole matrix elements which do not depend on m1, m2 or m′.

The product of the two spherical tensors D1 and D2 of rank k1 and k2 can be

expanded as the sum of irreducible tensor operators of integer ranks |k1 − k2| ⩽ k ⩽

k1 + k2. This can be done either by expanding the product of Wigner-3j symbols over

m′ using sum rules for angular momentum, or by identically expanding the product

of the two uncoupled spherical tensors in a direct sum of irreducible tensors [Wal21].

Practically, these irreducible tensor operators have rank k = 0, 1, 2 in the case of the

combination of two electric dipole operators. The result of the expansion takes the

simple form [MOR86; Ovs+06; Shi+15]:

⟨m1| α̂ |m2⟩ =
2∑

k=0

αk(ωl)
k∑

q=−k

(−1)qCFm1
Fm2,kq

{ϵ⊗ ϵ∗}kq (4.5)

where {ϵ⊗ ϵ∗}kq =
∑

Ckq
1q1,1q2

ϵq1ϵ
∗
q2

[MOR86], and ϵq = u∗
q · ϵ. Here, q1 and q2 are

the projections in the spherical basis of the standard components of the electric dipole

operator, as defined in equation 4.3. The C symbols are the Clebsch-Gordan coefficients
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definied as Ckq
j1q1,j2q2

= ⟨j1q1, j2q2|kq⟩. This approach allows to isolate the contributions

from the different physical components. Indeed, the polarization dependence is entirely

contained in the tensor {ϵ ⊗ ϵ∗}kq, the magnetic dependence in the Clebsch-Gordan

coefficient CFm1
Fm2,kq

, and the light angular frequency in the tensor component αk(ωl) of

the dynamic polarizability, which reads [MOR86; Ovs+06; Shi+15]:

αk(ωl) =
1

ℏ

√
2k + 1

2F + 1

∑
n′

F+1∑
F ′=F−1

(−1)k−F−F ′
( 1

ωϕ′ − ωl

+
(−1)k

ωϕ′ + ωl

){F F k
1 1 F ′

}
| ⟨nF | |D| |n′F ′⟩ |2

(4.6)

where the bracket symbols are the Wigner-6j symbols. Two useful examples with

purely polarized light illustrate the efficiency of this approach.

If the light is π (linearly) polarized, such that ϵ = u∗
0 = ϵ∗, then {ϵ⊗ ϵ∗}kq is non

zero only if q = 0. In this case the momentum conservation rules impose m1 = m2 = m,

which makes sense for purely polarized light, and parity rules impose that k is even,

else Ck0
10,10 = 0. Thus, the polarizability matrix elements can be written as following

[MOR86; Shi+15]:

⟨m| α̂ |m⟩
∣∣
π
= CFm

Fm00C00
1010α0(ωl) + CFm

Fm20C20
1010α2(ωl) (4.7)

⟨m| α̂ |m⟩
∣∣
π
= − 1√

3
α0(ωl)−

√
2

3

3m2 − F (F + 1)√
F (F + 1)(2F − 1)(2F + 3)

α2(ωl) (4.8)

The polarizability matrix elements are now reduced to a sum of two terms, as seen on

the right hand side. The first term is independent of the magnetic sub-levels, depending

only on the scalar component of the dynamic polarizability, while the second term is

quadratically dependent on the magnetic sublevels. This first result shows that if the

tensor component of rank 2 α2(ωl) is non zero, then the dynamic polarizibility acquires

a dependence in the magnetic sub-levels, and for pure π polarized electric field, this

dependence is quadratic.

If the light is σ± (circularly) polarized, such that ϵ = u∗
±1, i.e. ϵ∗±1 = −ϵ∓1, then

again {ϵ⊗ ϵ∗}kq is non zero only if q = 0, and momentum conservation rules impose
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m1 = m2 = m. But k only needs to respect triangle inequality in Ck0
1±1,1∓1, such that

rank 1 irreducible tensor of polarizability expansion is not obvisouly zero. In this case,

the polarizability matrix elements read:

⟨m| α̂ |m⟩
∣∣
σ±

= CFm
Fm00C00

1±1,1∓1α0(ωl)+CFm
Fm10C10

1±1,1∓1α0(ωl)+CFm
Fm20C20

1±1,1∓1α2(ωl) (4.9)

⟨m| α̂ |m⟩
∣∣
σ±

=
1√
3
α0(ωl)∓α1(ωl)m

1√
2F (F + 1)

+
1

2

√
2

3

3m2 − F (F + 1)√
F (F + 1)(2F − 1)(2F + 3)

α2(ωl)

(4.10)

Finally, let’s consider an electric field with mixed polarizations, for instance π+σ+,

i.e. ϵ = (u∗
0 + u∗

+)
√
2 and ϵ∗ = (u0 − u−)

√
2. In this case, {ϵ⊗ ϵ∗}kq can be non zero

for all four possible 2 photon process involving π and σ+ photons, which corresponds

to (q1, q2) pairs (0, 0), (1,−1), (1, 0) and (0,−1). The two first possibilities correspond

to absorbtion and reemission of a photon with same polarization, which is exactly

the two first introduced examples with pure polarized light. However, the (1, 0) and

(0,−1) pairs respectively correspond to absorption of a π(σ+) photon and reemission of

a σ+(π) photon. This coupling is actually a Raman two photon coupling, which is non

diagonal in the Zeeman sub-levels basis and hence involves a basis rotation. The tensor

polarizability acquires non diagonal components ⟨m− 1| α̂ |m⟩ for (q1 = 1, q2 = 0) and

⟨m+ 1| α̂ |m⟩ for (q1 = 0, q2 = −1), and selection rules respectively impose that q = 1

or q = −1 and hence k > 0. Finally, the new non-diagonal matrix elements of the

tensor polarizability read:

⟨m− 1| α̂ |m⟩
∣∣
π+σ+

= (CFm−1
Fm11 C

11
11,10α1(ωl) + CFm−1

Fm21 C
21
11,10α2(ωl))/2 (4.11)

⟨m+ 1| α̂ |m⟩
∣∣
π+σ+

= (CFm+1
Fm1−1C

1−1
10,1−1α1(ωl) + CFm+1

Fm2−1C
2−1
10,1−1α2(ωl))/2 (4.12)

Tensor polarizability is then completly defined from equations 4.7, 4.9, 4.11, and

4.12. Note that a factor 1/2 has to be added to the diagonal elements when summing
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the π, π and σ+, σ+ contributions, which comes from the 1/
√
2 normalization of the

unit polarization of the electric field.

This shows that the polarizability matrix elements can be completely defined by

Clebsch-Gordan coefficients and three parameters, which are commonly defined as the

scalar αS, vector αV and tensor αT irreducible components of the polarizability, and

usually obtained by rescaling α0, α1, α2 [MOR86; Shi+15]:

αS = α0
1√
3

αV = α1

√
2F

F + 1

αT = α2

√
2F (2F − 1)

3(F + 1)(2F + 3)

(4.13)

One has to know the transition strength D2
ϕϕ′ = | ⟨nF | |D| |n′F ′⟩ |2 to fully compute

the dynamic polarizability. Extensive research on the characterization of the transition

rates for atomic spectra has yielded an affluent database on atomic spectroscopy, for

instance [SN10] and more recently [HS22] regarding strontium 87. It is then possible to

determine the transition strength element from the transition angular frequencies ωϕϕ′ ,

oscillator strengths fϕϕ′ [Lud08] and transition rates Γϕϕ′ :

Γϕϕ′ =
ω3
ϕϕ′

3πℏε0c3
D2

ϕϕ′

fϕϕ′ =
2

3
ω3
ϕϕ′

m

ℏe2
D2

ϕϕ′

(4.14)

where m and e are the electron mass and charge.

4.1.2 Scattering rate

The scattering of photons can be modeled by the absorption of a photon from the laser

field with angular frequency ωL, and the spontaneous emission of another photon. This

two photon process connects to the continum energy many-fold, which can be described

by the Fermi golden rule to derive the scattering rate:
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Γmi→mj
=

2π

ℏ
| ⟨mj| Ŵ |mi⟩ |2ρ(E = ℏωL) (4.15)

where Ŵ is the coupling between the ground states |mi⟩ and |mj⟩ with energies

Emj
= Emi

, and ρ(E) the density of states of energy E. If the excited state connecting

|mi⟩ and |mj⟩ is weakly populated, then the two photon effective coupling Ŵ reads in

second order perturbation theory:

Ŵ =
1

2
|EL||Ev|

1

ℏ
∑
|ϕ′⟩

ϵ∗v · D̂ |ϕ′⟩ ⟨ϕ′| ϵL · D̂
ωϕ′ − ωL

+
ϵv · D̂ |ϕ′⟩ ⟨ϕ′| ϵ∗L · D̂

ωϕ′ + ωL

(4.16)

Here, Ev(EL) stands for the electric field of the vaccum (laser) of polarization ϵv

(ϵL). Note that here we consider that the polarization of the excitation is π, so that

the polarization of the spontaneous photon is well defined for a considered arrival state

mj. Injecting the effective two photon coupling into Fermi golden rule finally gives,

after neglecting the anti-resonant term:

Γmi→mj
=

3πϵ0ℏc3

ω3

|EL|2

4

Γ2
nat

ℏ2

∣∣∣∣∣∑
|ϕ′⟩

(2F ′ + 1)

ωϕ′ − ωL

(
F 1 F ′

mj m′ −mj −m′

)(
F 1 F ′

mi 0 −m′

) ∣∣∣∣∣
2

(4.17)

which can be rewritten with the Clebsch-Gordan coefficients

Γmi→mj
=

3πϵ0ℏc3

ω3

|EL|2

4

Γ2
nat

ℏ2

∣∣∣∣∣∑
|ϕ′⟩

CF ′m′

Fmj ,1m′−mj
CF ′m′
Fmi,10

ωϕ′ − ωL

∣∣∣∣∣
2

(4.18)

This result for the scattering rate associated with small population of the excited

state is actually known as the Kramers-Heisenberg formula [RF99]. In our case, the

polarisation of the laser electric field is pure π, i.e. ϵL = u0, and Γnat is the inverse life

time of the excited states |ϕ′⟩.
The decay to the final state depends on the polarisation of the spontaneous emitted

photon, such that the total scattering rate Γi =
∑

j Γi→j from the initial spin state |mi⟩
can be decomposed over the scattering to the three possible final states |mi⟩ (|mi ± 1⟩)
for a π (σ∓) emitted photon. Scattering rate of mF = +3/2 for each polarization of the
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Figure 4.1: Calculated scattering rate as a function of the light frequency spanned
within the hyperfine structure F=7/2,9/2,11/2 of the 1S0 ↔3 P1 transition. The scat-
tering rate is calculated using experimental light parameters, which is a 6mW gaussian
laser beam with a waist of 180µm and polarization π. Left: scattering rate from
mF = +3/2, for each polarization of the spontaneously emitted photon, in dashed
lines. The total scattering rate is plotted in solid black line. Right: total scattering
rate for each zeeman sub-level. Here, only positive spin states are represented because
Γtot is symmetric in mF . On both figures, the red vertical solid lines are the hyperfine
resonances.

spontaneous photon is plotted on figure 4.1, left, as well as the resulting total scattering

rate. In this figure, the calculation is made with a π polarized light excitation, and the

intercombination line 1S0 ↔ 3P1, F = 9/2 only is considered for the calculation.

As expected, the spin dependent scattering rate is maximum closer to resonance.

There exist detuning values δ such that the scattering process towards a specific final

state, i.e. emitted photon polarisation, is canceled, as it can be seen when the scattering

rate reaches zero. The sum over the hyperfine states F ′ = 7/2, F ′ = 9/2, and F ′ = 11/2,

accounts for the different paths through those excited states leading from the initial

state to the final state, and the probability for a scattering event to happen results from

the interference between these different possible paths. This can be seen in equation
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(4.18) from the sum over the excited states of CjCi/δ which can be zero for specific δ,

depending on the coupling strengths CjCi, i.e. on |mj⟩ and |mi⟩. However, this doesn’t
mean that the light scattering is canceled. Indeed, the total light scattering accounts

for all possible scattering paths.

Since the polarization of the excitation is well defined, the final states associated

with scattering are distinguishable and there are no inteferences involved into the total

scattering from one mF , i.e. Γi =
∑

j Γi→j. The total light scattering from each spin

state is plotted on figure 4.1, right, and it can be seen that indeed it is never zero for

any frequency of the light excitation.

4.1.3 Tensor light shift associated with the intercombination
line

Tensor light shifts can be easily computed numerically from equation 4.5, given that

the transition strength defined in equation 4.14 is known. If the transition is not closed,

e.g. if the lower state has fine or hyperfine structure, then the branching ratios of the

transitions have to be taken into account [Lud08; Shi+15]. Regarding the intercombi-

nation line of 87Sr, the excited state 3P1 can decay only to the ground state 1S0. Hence,

the radiative decay rate of the excited state Γ3P1
gives the L− L′ transition strength:

Γ3P1
=

ω3
0

3πℏε0c3
D2

L,L′ (4.19)

where L = 0 and L′ = 1. Here, the hyperfine structure is not accounted for, and the

branching ratios are needed to write the transition strength in the hyperfine coupled

basis [MS99; Wal21]:

D2
F,F ′ = (2L′ + 1)(2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)

{
J ′ 1 J
L S L′

}{
F ′ 1 F
J I J ′

}
D2

L,L′

(4.20)

and it finally reads:

| ⟨F | |D| |F ′⟩ |2 = Γ3P1

3πℏε0c3

ω3
0

(2L′+1)(2F+1)(2F ′+1)(2J+1)(2J ′+1)

{
J ′ 1 J
L S L′

}{
F ′ 1 F
J I J ′

}
(4.21)
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Figure 4.2: (a) Calculated light shifts as a function of the light frequency spanned
within the hyperfine structure F=7/2,9/2,11/2 of the 1S0 ↔3 P1 transition, for each
spin state of the ground state manifold. The mF spin states are noted above the cor-
responding solid lines. The spin dependent light shift is calculated using experimental
light parameters, which is a 6mW gaussian laser beam with a waist of 180µm and
polarization π. (b) Degeneracy lift of the mF ↔ mF ± 1 raman resonances within the
ground state manifold, computed as Udip(mF )−Udip(mF ± 1). The corresponding spin
states are noted above the curves. On both figures, the red vertical solid lines are the
hyperfine resonances.

Now, the tensor polarizability associated with the intercombination line can be

computed for a defined polarization of the electric field, from equations 4.5, 4.6 and

4.21. Figure 4.2 (a) shows a numerical computation of spin dependent light shifts

within the ground state manifold 1S0 with π light, with respect to the detuning to the
1S0 ↔ 3P1, F = 9/2 transition, within second order perturbation theory. Because the

approximation δ ≫ Γ3P1
has been made, the calculated light shifts diverge close to the

resonance with each hyperfine state. However, it is interesting to see that for every spin

state, the dipole force goes from attractive to positive, when the light frequency goes

from the F = 9/2 to F = 11/2 resonance. Moreover, a light detuned at approximately

−700MHz from F = 9/2 highlights the spin dependence of the dipole potential, where

half the spins are attracted and the other half expelled by the potential. Practially,

figure 4.2 (a) shows that with those parameters, it is possible to expell all spin states
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but +9/2 and −9/2 with ωl −ω9/2 ≃ −1.1GHz, effectively preparing a SU(2) 87Sr gas,

similarly to [Son+20]. The opposite can also be realized by setting the light frequency

at ωl − ω9/2 ≃ +1GHz, preparing a SU(8) gas. The resulting energy splits between

the mF ground states are plotted with respect to the angular frequency of the light

on figure 4.2 (b). The energy differences are rather uniform when the light frequency

is tuned in the middle of two hyperfine states, while close to resonance the spectral

resolution diverges for all the |mF ⟩ ↔ |mF + 1⟩ opened gaps.

Most importantly, we see here that because of the spin-dependent light shift, the

ground state manifold acquires spectrally resolved |mF ⟩ ↔ |mF ± 1⟩ transitions. With

only a scalar or linear dependence on the Zeeman sub-levels, all the transitions would

be resonant. This means that only thanks to the quadratic spin dependence of the

tensor light shift, two photon Raman transitions can be used to selectively couple two

ground spins states. For pure π polarized light, this lifted degeneracy can be easily

written as :

α(mF + 1)− α(mF ) =
−3αT

F (2F − 1)
(2mF + 1) (4.22)

according to equations 4.8 and 4.13, where α(mF ) = ⟨mF | α̂ |mF ⟩. Hence, a quadratic
spin dependent light shift results in linear spin dependent |mF ⟩ ↔ |mF ± 1⟩ Raman

resonances. Increasing the spectral resolution of the Raman resonances by tuning the

light close to resonance also increases the scattering rate as shown in figure 4.1, not only

heating the atoms but also enhancing spin relaxation and decoherence. It should be

noticed that close to the F = 9/2 resonance, stretched states have highest polarizabil-

ity, resulting in maximal light scattering and energy shifts for these spin states, while

close to the F = 11/2 resonance, the minimaly magnetic spins, i.e. minimal |mF |, are
the most shifted and scattering spin states. The competition between light shift and

light scattering thus has non trivial spin dependence. This competition can be looked

at by comparing the energy difference between two successive spin states, to the mean

of the scattering rate of these two states. The ratio of these two quantities is plotted

in figure 4.3, and it shows that optimal light frequency tuning might exist to maximize

the degeneracy light while minimizing scattering rate, and this result highly depends
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Figure 4.3: Calculated degeneracy lift of Raman resonances within the 1S0 manifold,
over spin dependent scattering rate, computed as the mean over the two connected
spin states, as a function of the frequency of near resonant light field spanned within
the hyperfine structure of the 3P1 state. The red vertical solid lines are the hyperfine
resonances. This calculation is made with our experimental parameters

on the spin-spin transitions. This has non negligible consequences on the choices of

experimental schemes to realize spin swaps by efficient adiabatic passages.

The predictions for the tensor light shift associated with the intercombination line

of 87Sr are well characterized, as well as for the associated scattering rate. We are now

interested in the experimental realization and measurements of the tensor light shifts

associated with the intercombination line of 87Sr.
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4.2 Engineering the degeneracy lift of 87Sr ground

state manifold

4.2.1 Experimental design

To realize spin dependent light shifts on the experiment, we use a dedicated laser setup

presented in figure 4.4. The laser head is made of a diode with extended cavity, and it

is beat-locked onto our Master red laser. By setting the frequency for the beat signal,

it is possible to tune the frequency of the laser beam within a 1 GHz wide frequency

window centered on the F = 9/2 hyperfine resonnance. For the experiment, we use

two double pass accousto-optical modulators, such that we can tune independently the

frequencies of two laser beams. The RF frequencies for the two AOMs derive from two

direct digital synthetizers (DDS) which share the same clock and are therefore phase

coherent. The first one is used to realize the spin dependent light shift, which I will

call dressing beam for simplicity. The second beam is used to flip the spins with a two

photon process together with the first beam, and I will call this laser beam Raman beam.

Before interacting with the atoms, the dressing and Raman beams are superimposed

with a beam-splitter, and the outgoing electric fields of the two beams are orthogonal.

The quantization axis can be chosen collinear with the dressing beam wave vector, such

that in this frame the electric field of the Raman laser is σ+ + σ− polarized. To do

this, we set the power of the Raman beam one thousand time weaker than the dressing

beam. This way, it is possible to realize well defined |mF ⟩ ↔ |mF ± 1⟩ two photon

Raman transitions with one π photon from the dressing beam, and one σ± photon from

the Raman beam. The Raman beam has the same waist than the dressing beam, i.e.

180µm, at the location of the atoms. In this case, the relative intensities are equal to

the relative powers.

4.2.2 Measurement of the spin dependent light shifts

We characterize the spin-dependent light shift by measuring the energy difference be-

tween two consecutive spins of the ground state manifold. This is done with a Raman

spectroscopy after the tensor light shift is turned on, and our measurement shows that

the resonances are separated by a quadratic light shift.
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Figure 4.4: Dedicated laser setup for the spin dependent light shift and spin selective
spin flips. This scheme is simplified for easy reading, only the main components are
presented. Two accousto-optical modulators (AOM) in double passe configuration are
used to independently tune the frequencies of the dressing beam and the Raman beam.
A third path is used for beat lock onto the Master laser. The Raman and dressing
beam are finally recombined before the vacuum chamber.

The measurement proceeds as follows. The gas is prepared in a spin polarized

state, as presented in section 3.2.3 of chapter 3, after forced evaporation. Then, the

homogeneous magnetic field is slowly rotated such that it is aligned with the linear

polarization of the electric field of the dressing beam. This way, the polarization of

the light is well defined and it is purely π. Then, the dressing beam is slowly turned

to its maximum power P = 6mW within 2 ms. Now, the degeneracy of the ground

state is lifted by the quadratic light shift. We then rely on Raman spectroscopy to

find the |mF ⟩ ↔ |mF ± 1⟩ resonances by pulsing the Raman laser beam at different

frequencies. The power of the Raman beam is set as low as possible, here 5µW, in

order to narrow the measurement of the resonances, and the time of pulse at fixed

frequency long enough, here 10ms, to maximize the frequency resolution of the Raman

spectroscopy.

The result of the experiment is shown on figure 4.5. Atoms are initially in mF =

−5/2, and the Raman detuning is scanned to find the |−5/2⟩ ↔ |−3/2⟩ and |−5/2⟩ ↔
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Figure 4.5: Left: Raman spectroscopy of the |−5/2⟩ ↔ |−5/2± 1⟩ resonances, after
degeneracy lift with quadratric light shift. Atoms are initially in mF = −5/2, and
the population transfer to mF = −7/2 and mF = −3/2 are measured with spin-
dependent momentum transfer (see chapter 3). The solid lines are fits of each resonance
with Lorentz functions (see equation 4.23). In this experiment, the dressing beam has
measured power 6mW and waist 185± 5µm at the location of the polarized fermi sea,
and the Raman beam has measured power 5µW and same waist. The filled regions
correspond to the resonances prediction with experimental parameters and associated
uncertainty on the waist 185 ± 5µm. Right: calculated degeneracy lift of the ground
state manifold with experimental parameters, and the two photon Raman transitions
correspond to the ones measured.

|−7/2⟩ resonances. The populations of the coupled spin states after the pulse are

measured with the spin dependent momentum transfer technique presented on chapter

3. The populations are fitted with Lorentz functions:

L(f, A, f0,Γ) =
A

1 + (f−f0
Γ/2

)2
(4.23)

and their centers f0 is found at −11.5± 0.3 kHz for the |−5/2⟩ ↔ |−3/2⟩ resonance
and −16.5 ± 0.3 kHz for the |−5/2⟩ ↔ |−7/2⟩ resonance. This measurement confirms

that the energy difference between two consecutive spin states is as expected for a

quadratic light shift, see equation 4.22.
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This result is compared to numerical prediction with experimental parameters, in-

cluding the uncertainty on the waist measurement 180 ± 5µm, which is shown as the

filled region on the same figure, for each resonance. The computation predicts compati-

ble resonances, −11.2±0.6 kHz for the |−5/2⟩ ↔ |−3/2⟩ transition and−16.80±0.9 kHz

for the |−5/2⟩ ↔ |−7/2⟩ transition. The uncertainty comes only from the measurement

of waist of the dressing beam. The degeneracy lift of the ground state manifold, numeri-

cally calculated, is plotted on figure 4.5, right, where we can see both the quadratic light

shift, as well as the spin dependence of the energy gaps between two consecutive spin

states. The whole spectrum is numerically computed with experimental parameters, as

it can easily be infered from the measurement of αT .

4.2.3 Measurement of the scattering rate

We are interested in the light scattering associated with the spin dependent light shift,

as it is a limitation to the conservative spin manipulations. On the experiment, the

scattering rate is characterized by measuring the heating rate associated with the spin

dependent light shift. After preparing a cold gas of strontium with ten spin compo-

nents, the dipole trap is recompressed to its maximum depth Udip ≃ 65µK and either

the dressing beam or the Raman are pulsed, with detuning ∆ = −400MHz from the
3P1, F = 9/2 hyperfine state, and with respective powers PD = 6mW and PR = 6mW.

Atoms acquire kT of heating energy during the light pulse, and the deep trap with

Udip ≫ kT ensures that they don’t leave the trap, so that all the energy acquired by

the uncoherent scattering events is maintained into the gas. For each duration of pulse,

the temperature of the gas is then measured after a time of flight, and the result of

the experiment is shown on figure 4.6, left. It is compared to a witness heating rate

measurement, which is done by realizing the same sequence without ever turning on the

dressing nore the Raman beam, and that I call here residual heating. We suppose that

this heating is due to mechanical vibrations of the optical dipole trap in which atoms

are trapped during the measurement. Right figure shows the heating slope after remov-

ing the residual heating signal, and the heating rate associated with the spin dependent

light shift is measured between 220±10 nK.s−1.mW−1 and 255±12 nK.s−1.mW−1 from

the dressing beam and Raman beam respectively, assuming the same waist. Note that
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Figure 4.6: Measurement of the heating rate associated with the spin dependent light
shift. For this measure, the detuning is set at ∆ = −400MHz from the 3P1, F =
9/2 hyperfine state. The heating rate of the Raman (empty squares) and dressing
(empty dots) beams are compared to the residual heating (black dots), and to the same
measurement after spectral mode filtering of the laser (blue filled dots). Left figure
shows the straight measure of the gas temperature, with PR = 6mW, PD = 6mW
and Pcav = 2.5mW. Right figure shows the same data normalized to the respective
beam powers, and the slope of the residual heating has been removed. The prediction
(hatched region) is computed according to equation 4.26 with waist 185± 5µm.

the uncertainty doesn’t take into account the power and waists measurements of the

laser beams, only the fit covariance is given. Since the trap is recompressed, atoms are

hot and dense enough such that the collision rate is much bigger than the scattering

rate, so we can assume that the gas is always at equilibrium, hence the scattering rate

can be infered from heating rate as follows.

When an atom scatters photons, a two step process happens. The atom absorbs the

photon of momentum ℏk⃗1 from the coherent laser beam, then randomly emits another

photon of momentum ℏk⃗2 in any direction. The exchange of momenta between the

atoms and the photons after a scattering event can be written as δ⃗p = ℏk⃗2 − ℏk⃗1.
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Assuming that the trapped 3D gas is at equilibrium < δ⃗p >= 0 with temperature T ,

and no other process can be responsible for energy variations, then the time evolution

of the kinetic energy of the gas EK = 3kBT/2, where kB is the Boltzmann constant, is

only due to the exchange of momenta δ⃗p happening at rate γscatt, and it reads

dEK

dt
= γscatt

< δp2 >

2m
⇔ 3

2

dkBT

dt
= γscatt

< δp2 >

2m
(4.24)

wherem is the mass of an atom. The spontaneous emission of a photon with random

momentum < k⃗se >= 0 implies that the absorbtion-emission processes are independant

< k⃗1k⃗2 >=< k⃗1 >< k⃗2 >= 0, such that < δ⃗p
2
>= 2(ℏkR)2 where ℏkR is the recoil

momentum of a 689 nm photon. Therefore, the heating rate associated with the light

scattering reads:

dkBT

dt
=

2

3
γscatER (4.25)

where ER = ℏ2k2/2m is the recoil energy of a photon absorbed or emitted by a

strontium atom. Finally the scattering rate can be deduced from the heating rate that

is experimentally measured:

γscat =
3

2

d

dt

(
kBT

ER

)
(4.26)

From the measured heating, we infer a scattering rate 1.4± 0.06 s−1 for the Raman

beam and 1.7±0.08 s−1 for the dressing beam, per 1mW, i.e. approximately 2.9W/cm2.

With the experimental parameters, the prediction of the scattering rate from equation

4.18, averaged over the 10 spin states, gives < γscatt >mF
≃ 0.54 s−1, which is three times

lower than our measurement. We explain our measurement of enlarged scattering by

spectral imperfections of the diode generating the laser beam, resulting in amplified

spontaneous emission (ASE) [SGS13].

To circumvent this issue, we added a Fabry-Perot cavity to our setup. After

filtering the spectral mode of the laser diode, we measure a heating rate lowered

to 60 ± 20 nK.s−1.mW−1, as shown on 4.6, corresponding to scattering rate 0.39 ±
0.12 s−1.mW−1. This result is in agreement with the prediction at the upper limit of
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the uncertainty, which embeds only the fit covariance. This measurement is enough

to show that the spectral mode of the laser is broadened, and after cavity filtering,

the scattering rate associated with the tensor light shift is properly understood and

predicted. Note that the cavity was not further used because of instability issues, and

is presently being upgraded for persistent use.

4.2.4 Spin depolarization

Our setup to engineer the spin dependent light shifts involves spin dependent couplings,

notably the dressing beam and the quantization field. Hence, attention has to be paid

to possible second order spin-spin couplings, which would allow spin rotations, and in

the case of a polarized Fermi sea, result in depolarization. For instance, the electric-

dipole operator resulting from the interaction of atoms with a dressing beam with not

pure π polarization allows |mF ⟩ ↔ |mF ± 1⟩ couplings, as shown in equations 4.11 and

4.12. In this case, the spin eigenbasis is SU(N) rotated and the definition of the new

eigenstates is not trivial, which is unwanted for proper understanding of our schemes.

To avoid these complications, it is possible to physically rotate the magnetic field

such that the polarization of the electric field of dressing beam is well defined and

purely π, σ+ or σ−. Is it particularly true if the dressing beam is linearly polarized

and the magnetic field aligned with the direction of the polarization and in this case,

the eigenstates are the same with or without dressing beam. In our experiment, we

optimized the alignement of the magnetic field with the π polarized electric field as

follows: we prepare a polarized Fermi sea, and for each rotation of the quantization

field the dressing beam is pulsed at maximum power, then we measure the number of

atoms remaining in the initial spin state.

4.3 Selective global manipulation of the spin states

In this section, I present our scheme to selectively and coherently flip the ground spin

states of strontium 87. After lifting the degeneracy of the ground state manifold with

a quadratic light shift, we take advantage of the resolved |mF ⟩ ↔ |mF ± 1⟩ transitions
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to engineer selective adiabatic passages. With minimal spontaneous emission, we flip

the spin of the atoms from their initial state to a well determined final spin state. With

a measurement of the spin populations we infer 80% efficiency for the preliminary

experiments. We finally compare our results with simulations.

4.3.1 Scheme overview

In our setup, the spin flips are induced by two photon adiabatic Raman passages. One

photon of the Raman process comes from the dressing beam, with π polarization, while

the second photon comes from the Raman beam, with either σ+ or σ− polarization.

Raman transitions can be engineered either with π + σ− photons, or with π + σ+

photons, as presented on figure 4.7. Because of the quadratic degeneracy lift and

selection rules, only one of the two polarizations of the Raman beam crosses a Raman

resonance for one Raman detuning δ = ωD − ωR. Hence, for each Raman transition, it

is possible to choose either π + σ+ or π + σ− two photon transition. Since we usually

work with negative spin states because of our optical pumping scheme (see chapter 3),

and since Clebsch-Gordan coefficients associated with σ− transitions are stronger for

negative spin states, we focus on the π+ σ− case only. Indeed, stronger Rabi couplings

allow faster passages, which means that the time needed to engineer spin flips is lowered

compared to typical time for light scattering, which is strongly favorable in presence of

noise. In this case, the Raman resonances are crossed for δ > 0 for negative spin states

and δ < 0 for positive spin states, as shown on figure 4.7.

4.3.2 Spectrum of the Raman transitions in the 1S0 manifold

Now, I will discuss adiabatic passages in Λ scheme in the large spin states manifold.

Let’s consider the ground state manifold of 87Sr and its 10 spin states, coupled to two

photon fieldsEπ, Eσ− with π and σ− polarizations. To write the associated Hamiltonian,

it is conveniant to define the dressed state basis |mF + n⟩ ≡ |mF + n,Nπ − n,Nσ + n⟩,
where Nπ (Nσ) is the number of photons in the field Eπ (Eσ−), and n is integer. Each

spin state |mF ⟩ is connected to |mF ± 1⟩ states by the π + σ− two photon Raman

process, with associated Raman detuning δ = ωπ − ωσ− . Hence, in the absence of the

quadratic degeneracy lift, each dressed state |mF + n⟩ has energy nδ.
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Figure 4.7: Scheme of Raman two photon couplings within the spin states manifold
after quadratric degeneracy lift, within mF < 0 spin states. R and D letters above Rabi
frequencies stand for Raman beam, σ++σ− polarized, and Dressing beam, π polarized.
Left: positive detuning δ = ωD − ωR > 0, such that negative spin states are coupled
with π + σ− photons. Right: negative detuning δ = ωD − ωR < 0, such that negative
spin states are coupled with π + σ+ photons.

Then, the off-diagonal couplings of the dressed Hamiltonian are effective two photon

Raman couplings which can be computed from second order perturbation theory:

ℏΩmF 2
mF 1

2
= |Eπ||Eσ−|

∑
|e⟩

⟨mF 2| ϵ∗π · D̂ |e⟩ ⟨e| ϵσ− · D̂ |mF 1⟩
∆e

(4.27)

where ∆e ≃ ωe − ωπ ≃ ωe − ωσ− . This approximation holds since the Raman

detuning is in the order of the kHz, while the detuning from the excited state is

in the MHz range. After applying the Wigner-Eckart theorem, the summed terms

µmF ,e = ⟨e| ε · D̂ |mF ⟩ can be written as:

µmF ,e = (−1)1+L′+S+J+J ′+I−m′
F

(
F 1 F ′

mF q −m′
F

)
DF,F ′ (4.28)

where ′ symbol stands for the excited state |e⟩, and DF,F ′ has been defined in
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equation 4.21 with branching ratios. The effective two photon Raman couplings are

then completly defined for any |mF ⟩ ↔ |mF ± 1⟩ transition.

Taking into account the quadratic degeneracy lift of the ground state manifold by

Eπ as a diagonal operator ⟨mF | Ĥq |mF ⟩ = −1/4 ⟨mF | α̂ |mF ⟩ |Eπ|2, where ⟨mF | α̂ |mF ⟩
is defined in equation 4.8, the effective tridiagonal hamiltonian in the dressed state basis

finally reads:

Ĥ(δ) =
ℏ
2



−9δ Ω
−7/2
−9/2 0 . . . 0 0 0

Ω
−7/2∗
−9/2 −7δ Ω

−5/2
−7/2 . . . 0 0 0

0 Ω
−5/2∗
−7/2 −5δ

. . . 0 0 0
...

...
. . . . . . . . .

...
...

0 0 0
. . . 5δ Ω

7/2
5/2 0

0 0 0 . . . Ω
7/2∗
5/2 7δ Ω

9/2
7/2

0 0 0 . . . 0 Ω
9/2∗
7/2 9δ


+ Ĥq (4.29)

This approach to write the effective hamiltonian gives the same result as obtained

with the standard components of the tensor polarizability in the case of an electric

field with polarizations π+σ− treated in section 4.1.1, with amplitudes |Eπ| and |Eσ−|.
The spectrum of hamiltonian 4.29, giving the energy crossings and hence light induced

spin-spin transitions, can be obtained by direct diagonalization. The result of the diag-

onalization, is plotted in figure 4.8, and it is calculated with experimental parameters

(see caption).

The spectrum within mF < 0 manifold only is shown here for better visibility.

This spectrum shows that the energy crossings between |mF ⟩ and |mF ± 1⟩ states are
avoided, authorizing two photon transitions, and those are the transitions that we use

to selectively flip the spins. The insets of figure 4.8 show that crossings between |mF ⟩
and |mF ± 2⟩ states are also avoided, authorizing transitions involving the exchange

of four photons. To make sure that the four photon transitions do not damage the

selectivity of the spin flips that we realize with the two photon transitions, it is relevant

to investigate on the relative strength of the two process.
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Figure 4.8: Spectrum of Hamiltonian defined in equation 4.29 with π + σ− two photon
couplings, with respect to Raman detuning δ. For this computation, experimental
parameters are used: detuning of the dressing beam ∆/2π = −700MHz from the
hyperfine state 3P1, F = 9/2 and intensity ID ≃ 9.3W/cm2, and much lower intensity
of the Raman beam IR ≃ 5.1mW/cm2. Top: eigenergies with respect to Raman
detuning δ = ωπ − ωσ− , where the solid lines are the eigenenergies, while the dashed
lines indicate the energy of the dressed states. Two photon transitions are annoted in
red, and four photon transitions are annoted in grey. Upper insets zoom in respective
four photon transitions. Bottom : states mixing, defined in 4.30 as a function of the
two photon Raman detuning δ. The solide (dashed) line indicates two (four) photon
transitions, and the respective Rabi couplings, defined in equation 4.27 (4.32) are given
by the half width at 1/

√
2 of the states mixing.

The strength of the transitions, given by the Rabi frequency Ω, can be graphically

evaluated by the size of the gap at the avoided crossings, and figure 4.8, top, indicate
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the the two photon transitions are stronger. It is also convenient to look at the states

mixing [MS99]:

sin(2θ) =
Ω2√

Ω2 + (δ − ωR)2
(4.30)

as a function of the detuning δ−ωR with respect to the resonance ωR of the consid-

ered transition. The states mixing is shown on figure 4.8, bottom, for every resonances.

Here, θ is the mixing angle [MS99; FIM05], which defines the coherent superposition

of the atom |Ψ⟩ over the two spin states |mF ⟩ and |m′
F ⟩ involved into the transition,

which can read:

|Ψ⟩ = cos(θ) |mF ⟩+ sin(θ) |m′
F ⟩ (4.31)

At resonance δ − ωR = 0, the states mixing is maximal sin(2θ) = 1, i.e. |Ψ⟩ =

(|mF ⟩ + |m′
F ⟩)/

√
2. The half-width of the resonances at sin(2θ)/

√
2, for both two

and four photons transitions, is then given by the Rabi frequency Ω, and 4.8, bottom,

illustrates again that with the experimental parameters, the two photon transitions are

much stronger than the four photon transitions.

From the dressed states point of view, which is schemed on figure 4.9, the four

photon transitions are very similar to standard two photon Raman transitions. At

resonance, the effective coupling between |mF ⟩ and |mF ± 2⟩ is simply Ω4 = Ω∗
2Ω2/2∆,

where ∆ = δ − (εmF+1 − εmF
) is the detuning with respect to the intermediate state,

which is actually the detuning to the two photon transition. Hence, the effective four

photon couplings read:

ΩmF+2
mF

=
ΩmF+1

mF
ΩmF+2

mF+1

2∆
(4.32)

At resonance with the four photon transition, δ = (εmF+2 − εmF
)/2. Hence, ∆ is

simply the difference between with the four photon and two photon resonances. It is

very interesting to note here that both resonances depend on the quadratic light shift

which is proportional to the intensity of the dressing beam, and then ∆ ∝ ID. Since

the two photon Rabi couplings are proportional to
√
IDIR, then ΩmF+2

mF
∝ IR, which
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Figure 4.9: Four photon transitions in the dressed states point of view. Left: energy
levels with quadratic degeneracy lift, and example of a four photon transition with
associated resonance (ε−5/2 − ε−9/2)/2 and Raman detuning δ. Right: dressed state
picture of 2 and 4 photons couplings, where ∆2 ph = δ − (ε−7/2 − ε−9/2) is the detuning
with respect to the 2 photons transition, and ∆4 ph = 2δ − (ε−5/2 − ε−9/2) to the 4
photons transition. Nπ and Nσ− are the number of photons in respective photon fields
Eπ and Eσ− .

first shows that the four photon transitions are much weaker than the two photon. And

most importantly, the relative strength of the effective couplings finally scale as:

Ω4

Ω2

∝
√
IR
ID

(4.33)

This shows that the relative strength of the four photon couplings is strongly reduced

with an approriate setting of the Raman and dressing beams intensities. In this example

shown on figure 4.8, the laser intensity into the Raman beam is 500 times smaller than

that of the dressing beam. It is sufficient to strongly displace the eigenenergies, enabling

the avoided crossing that we use for adiabatic passages, while the relative strength of

the four photon couplings is as low as Ω4/Ω2 ≃ 5%.

Note that all this derivation is done in the |Eπ| ≫ |Eσ−| regime. In the opposite

case, where the dressing beam is σ− polarized and the Raman beam π polarized, the
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degeneracy lift of the ground state manyfold should be derived for a σ− excitation, as

presented in 4.1.1, with the main difference that the polarizability acquires a linear

dependence in mF . Regarding the Raman transitions, it has no consequences, and

hence the previous estimation of the relative strength of the two photon and four photon

couplings remains valid.

In the intermediate regime ID ≃ IR, the tensor polarizability accounts for the com-

bination of the two laser and associated polarizations, and the ground state manifold

is rotated from the |mF ⟩ ↔ |mF ± 1⟩ couplings defined in equations 4.11 and 4.12 as

presented in section 4.1.1. This means that spin flips can be better realized with a

STIRAP sequence [BVS15; Vit+01; MSB96], i.e. a sequence of pulses sequence by

varying the laser intensities with respect to time rather than the Raman detuning.

In our experiment, we manipulate the spins in the |Eπ| ≫ |Eσ−| regime that we

considered here, and this is the case that I will also consider in the following discussions.

4.3.3 Engineering selective spin flips

In the frame presented on figure 4.8, a selected spin can be flipped to a target spin with

adiabatic passage by ramping the Raman detuning through the corresponding Raman

resonance. With proper parameters to center the ramp on the resonance and with

initial and final detunings such that no other resonances are crossed, the success of the

adiabatic passage presents no difficulty. However, it is possible to take advantage of

the conditions for adiabatic passage to facilitate experimental engineering of the spin

flips. Indeed, I have shown in the previous section that, accordingly to equation 4.33,

the relative strength of the four photon couplings can be dramatically minimized by

lowering the power of the Raman beam or increasing the power of the Dressing beam.

Regarding adiabatic passages, a four photon transition has much lower probability of

success than a two photon transition considering a fixed duration of ramp of the Raman

detuning. It is then possible to engineer a spin flip with a ramp crossing multiple four

photon transitions.

To realize selective spin flips on the experiment, we first prepare a spin polarized

gas in spin state mF = −7/2, as presented in section 3.2.3 of chapter 3. Then, the
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magnetic field is slowly rotated such that it is aligned with the linear polarization of

the electric field of the dressing beam. This way, the polarization of the light is well

defined and it is purely linear. Then, the dressing beam, π polarized, is slowly turned

to its maximum intensity ID ≃ 9.3W/cm2 within 2 ms, with detuning ∆ = −700MHz

from the 3P1, F = 9/2 hyperfine state. Now, the degeneracy of the ground state 1S0 is

lifted by the quadratic light shift, and the spin-spin transitions are well resolved. At

this step, the experiment is ready for adiabatic passage.

After slowly turning on the Raman beam up to IR ≃ 5.1mW/cm2 within 2.5ms,

ensuring smooth connection to the eigenstates (see annexe C), the frequency of the

Raman beam is ramped such that the Raman detuning δ = ωπ − ωσ− is spanned from

5KHz to 13 kHz, for different durations of the frequency ramp. Then, the Raman beam

is turned off within 2.5ms, and the populations in the spin states are measured with

the spin dependent momentum transfer scheme (see chapter 3). The result of this spin

flip experiment is presented on figure 4.10, left. The top figure shows the frequency

ramp through the Raman resonances, and the bottom figures shows the measurement

of the spin populations, which are shown as round dots with associated errorbars and

rescaled by the 80% efficiency of the populations measurement, for different durations

of the detuning ramp. Note that not all atoms are detected during the populations

measurement. This is shown by the total percentage of detected atoms in gray dots in

bottom plots of figure 4.10, which is not constantly 100% and even goes as low as 80%.

Initially, approximately 90% atoms are in −7/2 and 10% in −5/2. For fast ramps,

atoms remain in the initial state −7/2 and all transitions fail. For slow enough ramp

with duration ≃ 20ms, 80% spins have flipped to −5/2, while the population in −3/2

has raised to 10%, and approximately 10% atoms remain in −7/2. To evaluate the

efficiency of the adiabatic passage, it is convenient to realize a back passage. From the

final state of the forth passage, the same procedure is done with a reversed ramp from

δ = 13 kHz to δ = 5kHz, and the Raman beam is turned off between the two passages.

The back passage is shown on right figures. For slow enough ramp with duration

≃ 20ms, we detect 60% atoms in −7/2, and nearly 10% atoms are in both −5/2 and

−3/2. With this experiment, we infer that approximately 65% out of the 90% atoms

initially in −7/2 have successfully realized the back and forth adiabatic passage, which
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Figure 4.10: Experimental back and forth adiabatic passages from −7/2 to −5/2, with
∆ = −700MHz, ID ≃ 9.3W/cm2, and IR ≃ 5.1mW/cm2. Left: forth passage from
−7/2 to −5/2 with ramp of the Raman detuning δ = ωπ − ωσ− from 5 kHz to 13 kHz.
Right: consecutive back passage from −5/2 to −7/2 with ramp of the Raman detuning
from 13 kHz to 5 kHz. The Raman beam is turned off between the two passages. Ramps
through the spectrum of the two and four photon transitions are shown on top figures.
The measured populations, with associated errorbars and rescaled by the 20% efficiency
of the measurement, in the different spin states are shown in bottom figures, with
respect to the duration of the ramp. The gray large points correspond to the total
percentage of measured atoms. On both figures, solid and dashed lines are results from
time integration of the Lindblad equation, including respectively predicted scattering
rate and four times the predicted scattering rate.
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results in 80% efficiency for a one way adiabatic spin transfer. This experiment verifies

the applicability, and robustness, of this adiabatic spin transfer scheme. Even if the

detuning ramp crosses multiple two and four photon resonnances, there is an optimal

duration of the frequency ramp such that the four photon transitions are avoided while

the adiabatic followings are ensured for two photon transitions. With proper choice of

the direction of the frequency ramp, it is then possible to ensure a reliable selectivity

on the spin transfer |mF ⟩ ↔ |mF ± 1⟩, depending only on the initial spin state.

The result of the experiment is compared to numerical time integration of Lindblad

equation [Man20]:

dρ̂

dt
=

1

iℏ
[Ĥ, ρ̂] +

∑
k

γk

(
L̂ikρ̂L̂i

†
k −

1

2
{L̂ikL̂ik

†
, ρ̂}
)

(4.34)

where the hamiltonian is defined in equation 4.29, ρ̂ is the density matrix, and the

L̂ik’s are the jump operators, i.e.
∣∣mF f

〉
⟨mF i| projectors [DCM92] for mF i → mF f

transitions, associated with rate γk. Here, {A,B} = AB + BA is the anticommutator

operator for A and B. The sum runs over all the possible spin projections, in our

case set by Raman scattering defined in equation 4.18. Note that the elastic Rayleigh

scattering ΓmF→mF
is taken into account, even if it doesn’t change the spin state, as it

is a source of spin decoherence and hence it can decrease the efficiency of the coherent

adiabatic passage. Also, no atom loss is considered here, since the measured heating

rate is low enough so that the atoms cannot be blasted from the trap, according to our

measurement presented on figure 4.6.

The prediction with experimental parameters (intensities and detuning) and no

other adjustable parameter is plotted on figure 4.10, bottom left and right, as thick solid

line, and it shows that the efficiency of the adiabatic passage should be significantly

higher than measured, as high as 95%. Because the measurement of the scattering

rate showed that it is much higher than predicted (see section 4.2.3), it is relevant to

artificialy enlarge the scattering rate as high as measured to compare prediction with

the spin flip measurement. This is shown by the thin dashed line on 4.10, bottom

left and right, where the scattering rate is four times higher than predicted, according
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to the measurement. While the expected populations in −7/2 and −3/2 are higher

by a few percents to what is measured, this second simulation seems to be in good

agreement with the experimental results, accounting for the non 100% total percentage

of detected atoms. Hence, this simulation shows that our experiment is only limited

by spontaneous emission due to the enlarged light scattering, that can be corrected by

filtering the spectral mode of the laser with a Fabry-Perot cavity. Then, we expect that

the adiabatic passage scheme to selectively flip spin state should reach 90% efficiency.

Note that a cavity has been set and used to measure the scattering rate (see section

4.2.3), however its sensitivity to vibrations has prevented us from using it for a spin flip

experiment. The cavity is presently being upgraded for future use.

4.4 Site selective adiabatic passage to prepare spin

textures - Outlook

Previous experiments have demonstrated experimental realizations of patterns of atoms

selectively placed at the sites of optical lattices, using an optical super lattice [Pei+03],

or site selective light shifts [Gri+06]. More recently, experiments have shown that

patterns can be assembled atom by atom using optical tweezers [Bar+16; Kum+18].

In this section, I present our scheme to prepare alternate spin textures [Li+16]. Using

a spin dependent optical super-lattice [Man+03; Hei+20] and a homogeneous Raman

laser, we will selectively flip half the spins of a single component band insulator.

4.4.1 General Idea

Starting from a polarized Fermi gas loaded in the ground band of a 2D lattice, half the

spins are selectively flipped to prepare a Neel order [Sun+21], i.e. an alternate pattern

of up and down spins, as shown on figure 4.11. This is done with a space dependent

tensor light shift [Hei+20] which varies at the micrometer scale, and it is engineered

by retro-reflecting the laser beam responsible for the spin dependent light shifts. Since

the resonances of the lifted spin spin Raman transitions are proportionnal to the local

laser intensity, it is possible to realize a chirp of Raman detuning that crosses the

resonances at sites with maximal depth of the spin dependent potential only, using
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Figure 4.11: Scheme for writing spin textures. Left: the spin dependent lattice (red
background) is superimposed to a 2D spin polarized lattice. A cut of the potential
(horizontal green solide line) is presented on the middle figure. Middle: spin dependent
potential (red solide line) along an eigenaxis of the 2D lattice. Each spin (blue dots)
localized at the sites of the 2D lattice (x axis) feels a different light shift which is
proportional to the light intensity (yaxis). The chirp of the raman detuning is shown by
the black arrow and crosses the Raman resonnances (see figure 4.10) of the maximally
shifted sites only, which are flipped from blue spin to red spin. The resulting spin
texture is shown on right figure.

an homogeneous Raman beam. Then, our demonstrated scheme to coherently flip the

nuclear spin states acquires a well defined site dependence, enabling the possibility to

handwrite a predictable spin texture.

4.4.2 Geometry of the lattices

The geometry of the laser setup used to engineer the spin dependent lattice is presented

on figure 4.12. The dressing beam at 689 nm is retro-reflected to shape a 1D lattice, that

I will call for simplicity dressing lattice, and the azimutal angle between the dressing

beam and the 532 nm beams is 45◦, such that the dressing lattice is along the diagonals

of the 2D trapping lattice. With elevation angle 16◦, the projection of the dressing

lattice on the 2D layers has site spacing a689 ≃ 360 nm, which is smaller by less than

10% than the diagonal of the 2D lattice a532
√
2 ≃ 390 nm(i.e. the distance between

neighbours at 45◦ of the main lattice axis). Neglecting the 10% difference in first
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Figure 4.12: Experimental design of the setup for lattices. The retro-reflected 1D spin
dependent lattice is nearly colinear with one arm of the 1064 nm lattice, with azimutal
angle 45◦ with each arm of the 2D lattice at 532 nm and 16◦ elevation angle.

approximation (see figure 4.13, (a)), it means that the spin dependent light shift is

maximum one out of two diagonals of the 2D lattice, and hence the depth of the spin

dependent potential would alternate along an eigen-axis of the 2D lattice. In this case,

a chirp of a Raman detuning crossing only the maximally shifted resonances to flip

half the spins would realize exactly a Neel order. If considering the 10% difference,

Figure 4.13 (b.1) shows that trapped atoms actually see 11 sites periodic pattern of

alternate maximum and minimum depth of the spin dependent potential. This pattern

has maximum contrast at the center over about 7 sites and is blured at the edges over

about 4 sites, and this results in alternate pattern for the Raman resonances between

higher and lower frequencies, see figure 4.13 (b.2), over 11 sites.
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Figure 4.13: Spatial and spin dependence of the tensor light shift associated with the
intercombination line. (a) The eigenaxis of the 689 nm 1D lattice is along the diagonal of
the trapping 2D lattice, considering a689 = a532

√
2. (b.1) Considering the experimental

situation with sites spacing a689 ≃ 360 nm, which is 90% of the diagonal of the 2D
lattice, this is the projection along one eigenaxis of the 2D square lattice at 532 nm
of the trapping (dashed lines) and spin dependent (solid lines) potentials, for each
spin state. (b.2) Projection along one eigenaxis of the 2D square lattice of the raman
resonances defined as U689(mF )− U689(mF + 1), where U is the dipole potential.
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Figure 4.14: Site dependent Raman resonances. The 532 nm lattice is sketched as
the green solid line, and the target two photon |−7/2⟩ ↔ |−5/2⟩ transition (Red) is
sketched for each site, as well as the other Raman resonances subtitled at the central
site. The ramp of Raman detuning from δi to δf , sketched by the black arrow, crosses
the resonance one over two sites only, as shown by the blue filled region. The initial
frequency is chosen as 90% of the less shifted |−7/2⟩ ↔ |−5/2⟩ resonance among
selected sites, and the final frequency as 110% of the most shifted resonance, which
corresponds to the lattice depth.

4.4.3 Site dependent Raman resonances

The Raman resonances of the spin spin transitions, with acquired site dependence, are

presented on figure 4.14 along 11 sites of an eigen-axis of the 2D lattice at 532 nm. The

Raman resonances, proportional to the local intensity of the dressing lattice, are then

site resolved.

One every two sites, say odd sites, the resonances are maximally shifted, so that

chirp of the Raman detuning with appropriate initial and final frequencies can cross the

resonance of a target two photon resonance on these sites only, while it is not crossed on

the other half sites, say even sites. This way, it is possible to realize an adiabatic spin
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flip on the odd sites, while atoms at the even sites are not affected by the frequency

chirp. It is pictured by the black arrow between an initial δi and final δf detunings,

and δi is chosen such that the |−9/2⟩ ↔ |−7/2⟩ two photon resonances of the avoided

sites are not crossed by the ramp, for instance on sites -5 and 5 on figure 4.14.

4.4.4 Predicted texture writing

The frequency chirp presented on figure 4.14 is simulated by numerical integration of

the Lindblad equation defined in equation 4.34 for each one of the 11 sites, and the

result is shown on figure 4.15. For this simulation, the intensities are ID ≃ 11W/cm2

and IR ≃ 6mW/cm2, where ID (IR) is the intensity of the dressing (Raman) beam,

with detuning ∆ = −700MHz from the excited hyperfine state |3P1, F = 9/2⟩. The

Raman detuning δ = ωD − ωR is ramped from 63% to 110% of the maximally shifted

|−7/2⟩ ↔ |−5/2⟩ target resonance (site 0 of figure 4.14) during 5 ms. The amplitude of

the Raman beam is ramped up (down) during 2.5 ms before (after) the frequency ramp,

as shown by the red filled background, to improve the connection to the followed eigen-

states. The left column, considering predicted spontaneous emission, shows the spins

populations dynamics during a transfer from the initial spin state −7/2 to the final

spin state −5/2. Sites with deeper tensor light shift (Udip/Umax > 0.5) are flipped with

90% chance of success, while the avoided sites (Udip/Umax < 0.5) have less than 3%

chance of success, and on this 11 sites sample, the fidelity of the spin texture writting,

here defined as the average of the final −5/2 populations in target sites and final −7/2

in avoided sites, can be estimated as high as 97%. If taking into account the measured

spontaneous emission which is four times higher than the prediction (see section 4.2.3),

the result of the simulation is shown on the right figure, and the estimated fidelity of

the spin texture writing is lowered to 85%.

The conditions for adiabatic passage have to be carefuly looked at for every site.

Indeed, the spin dependent light shift is not the same for all selected sites, and hence

the Landau-Zener (LZ) condition for adiabatic following (see appendix C) varies ac-

cordingly. It is therefore important to focus on the site dependence of the adiabatic

following. First, let’s recall that the Landau-Zener probability of success for an adia-
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Figure 4.15: Simulation of the frequency chirp presented on figure 4.14 with numerical
integration of the Lindblad equation (4.34) for each one of the 11 sites, to flip spins
from −7/2 to −5/2. The success of passage is indicated in big black font, and the final
populations in -9/2 and -3/2 are indicated in small red font. The simulation parameters
are detailed in section 4.4.4. In left column, the simulation is realized with predicted
scattering rate, while right column takes into account measured scattering which is four
times larger.
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batic following is defined as:

PLZ(Ω
2, δ̇) = 1− exp

(
−2π

Ω2

4δ̇

)
(4.35)

where Ω2 is the coupling strength and δ̇ is the speed of the detuning ramp. Consid-

ering that the intensity of the Raman beam is homogeneous over the whole lattice, and

that the detuning ramp is linear in time, then the chance of success is lowered at sites

with lower spin dependent light shift, since Ω2 ∝ ID. However, the scattering rate asso-

ciated with the tensor ligth shift is obviously higher at sites with stronger intensity of

the dressing lattice. Finally, the probability of success for four photon transitions does

not depend on the depth of the tensor light shift. This means that there exists optimal

conditions for adiabatic passage, which corresponds to a chirp duration slow enough to

maximize the relative chance of success of the targeted two photon transitions on the

less shifted sites with respect to the avoided four photon transitions, and fast enough

to minimize spontaneous emission on the most shifted sites.



Chapter 5

2D Fermi gases in the lowest band
of a low recoil 1D lattice

The objective of our experiment is to realize a Fermi Hubbard model with 2D lattices

[BDZ08; GB17]. Such experiments require the preparation of ultra cold Fermi gases,

that are trapped into the lowest Bloch band of optical lattices with minimal entropy

[MD11]. Practically, it requires to circumvent the difficulties associated with the ma-

nipulation of ultra cold gases of fermions [Ess10]. For instance, atoms are typically

cooled to quantum degeneracy with forced evaporation assisted by collisions [GWO00;

LRW96], that are inhibited for ultra-cold fermions [DeS+10]. Yet, active research on

the Fermi Hubbard Model led to the realization of numerous quantum simulators, typ-

ically using alkali fermions such as potassium 40 [Sch+08; Che+15; Dre+17] or litihum

6 [Gre+16; Bol+16; Par+16]. Regarding alkali atoms, Feshbach resonances [Chi+10]

can be used to tune the scattering length as, which helps prepare ultra-cold gases, and

at the realization of isentropic transformations assisted by collisions, such as lattice

loading. Inside lattices, entropy can be further reduced, for instance with Raman side

band cooling [Ham+98; GWO00; Ker+00; Tho+13], or by filtering of atoms populating

the excited bands [Arn+19].

In our experiment, ultra cold strontium 87 shall be trapped in a 3D optical lattice,

that is made of the combination of a 1D lattice with large site spacing [Huc+09] and

negligible tunneling, with a 2D lattice where the spin dynamics takes place (see chapter

137
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1). The 1D lattice, that is first loaded, has site spacing 2µm, so that prior to the

loading the gas extends over approximately 8 sites. The large spacing of the lattice

permits that the inter site tunneling is inhibited with moderate lattice depths of a few

tens of kHz. From this geometry, we prepare several independent 2D Fermi gases that

are vertically stacked. The 2D gases shall next be adiabatically loaded in a 2D square

lattice to prepare several band insulators [Leb+18] that do not interact with each other.

This chapter is dedicated to the loading of the lowest band of the 1D lattice.

Chapter summary: first, I will discuss a critical limit set by the Pauli exclusion

principle at the loading of the lowest band only of the 1D lattice with large site spacing.

The Fermi energy of the 2D gases cannot exceed the lattice band gap, which limits the

number of atoms that can be loaded. However, in practice, the Fermi momentum of

our evaporated gases exceed the recoil momentum of the lattice, so that atoms connect

to excited bands when turning on the lattice. In this case, loading the lowest band of

the lattice requires a quasi-static transformation assisted by s-wave collisions [Ess10].

Then, I will present our loading experiment. I will describe two attempts to do so.

In the first, the gas is initially prepared at very low temperature, by strong evaporation

in the dimple. I show that we are able to load the 1D lattice with 93(2)% atoms

into the lowest band, using a Boltzmann approximation and a global analysis over

the entire cloud distributed in a few layers. It is even possible to extract information

that depends on the layers of the 2D lattice. From the Fermi statistics, I estimate the

chemical potential of each layer, as well as the temperature, based on an independent

measurement of the distribution of atoms between the layers.

Using this method, I find that the 2D gases have negative chemical potentials, in-

dicating that they are not degenerate, and the infered probability of occupation of the

lowest band is the same than the classical analysis. A comparison with the initial ther-

mal state of the gas prior to the loading shows that the high probability of occupation

of the lowest band is enabled by a deep evaporation prior to the lattice loading, until

our lower limit yet of measurable temperature T = 5± 5nK into the dipole trap with

approximately 5 000 atoms. However, the degeneracy of the loaded gases are higher

than expected for an isentropic loading. Hence, this measurement shows the quasi-

static behavior failed, and it suggests that the collisions were not sufficient. This study
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serves as a guideline for a preliminary result.

In a second attempt, improved adiabaticity is shown by holding sufficient dipole trap

compression prior to the loading into the lattice, ensuring sufficiently high collision rate.

This way, we are able to produce 4 independent 2D degenerate SU(10) Fermi gases with

µ/εF ⩾ 0.4 and approximately 99% atoms into the lowest band.

5.1 Limit to the atom number for fermions in the

lowest band

In our experiment, the site spacing of our 1D lattice is a ≃ 2µm with associated recoil

momentum kR = π/a. In this case, the recoil energy ER = ℏ2k2R/2m is as low as

ER ≃ kB × 7 nK ≃ h × 150Hz, which is much lower than in typical retroreflected

optical lattices. Consequently, the site to site tunneling t ∼ exp
(
−2
√
V0/ER

)
[BDZ08]

is negligible for a lattice depth V0 of a few tens of kHz, and in our experiment we

measure V0 ≃ 1800ER (see chapter 1), so that the motional degree of freedom along the

lattice eigen axis is practically frozen. The phase space is then restrained to the on-site

2D motion, with associated phase-space cell d2rd2p/h2, and to the band excitation n.

Assuming that only the lowest band n = 0 is populated, every site of the 1D lattice is

reduced to 2D dimensionnality (r, p) = (rx, ry, px, py).

In the T = 0K limit, fermions occupy all energy states below the Fermi energy,

and for non zero temperature, higher energy states are accessible. This sets a critical

limit to the number of atoms that can be loaded into the lowest band of a 1D lattice.

Assuming that the transverse confinement of the lattice sites can be approximated to

harmonic traps of frequency ω⊥, and that the tunneling is negligible, the limit reads

εF − ε0 = ℏω⊥(2N)1/2 < ℏω∥ (5.1)

where ℏω∥ = 2
√
V0ER is the lattice band gap, and ε0 the energy of the lowest band.

This result can be shown by derivating the Fermi energy εF of a gas trapped into a 3D

harmonic trap, tightly confined along one direction only and with zero band excitation

(see appendix A). It is simply the Fermi energy of a 2D gas shifted by the energy of
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the lowest band. In our experiment, ℏω∥ ≃ 12 kHz and ℏω⊥ ≃ 80Hz, so that the Fermi

energy is lower than the energy of the first excited band only if N < 10 000 atoms per

spin state. If the transverse harmonic confinement can be adjusted without changing

the lattice depth, for instance by using a a combination of a red and blue detuned dipole

traps, the maximum number of atoms in the lowest band can be practially adjusted

[Sch+08].

5.2 Adiabatic loading of the lowest band : collision

requirements

Typically, lattice loading requires adiabaticity in the single particle sense. It relies

on the adiabatic theorem that implies that atoms follow the eigenstates of the time

dependent Hamiltonian if it is modified suficiently slowly [Den+02]. This way, an atom

in a plane wave state katom evolves into a Bloch state, that will be the ground state

if katom < kR. The momentum recoil kR = π/a of the lattice defines the limit of the

first Brillouin zone (FBZ), and momenta exceeding the FBZ connect to the excited

bands of the lattice. In the case of a Fermi gas, the loading of the lowest band only

thus implies, in the single particle limit, that kF < π/a. In our case, the recoil energy

ER ≃ kB×7 nK ≃ h×150Hz is much lower than in typical retroreflected optical lattices,

and this is cause for concern. First, cooling a thermal gas of strontium 87 fermions in

this limit is difficult as collisions are inhibitted by Pauli blocking at deep evaporation

stages [DeS+10], and closed shell strontium 87 atoms do not benefit from Feschbach

resonances to favorably tune the collision rate. Second, even if we did, the average

distance between atoms would scale as the site spacing a. In the prospect of next

loading a 2D lattice with site spacing a/8 (see chapter 1) to realize a band insulator,

such low densities are not favorable. Therefore, the idea of adiabatic following at the

single particle level is not fruitful. Fortunately, there is also the possibility to be quasi-

static in the thermodynamic sens, if collisions are allowed, and this approach is typically

used to prepare Mott insulators [CHU09; Fuk+09; Jör+08].

This second possibility for loading the ground band of the lattice relies on collisions,

which means that the adiabadicity of the process is not an eigenstate following which
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Boltzmann approximation

relies on single particle physics, but an adiabatic process in the sense of remaining at

thermal equilibrium relying on s-wave collisions [Ess10]. Furthermore, this many-body

transformation requires a mixture of fermionic species. When the lattice is turned on,

the initial thermal state of the transformation is a 3D gas in a 3D harmonic trap with

Fermi energy ε3DF ∝ ℏ(ω2
⊥ω∥)

1/3 ≫ ℏω∥, where ℏω∥ is the band gap of the lattice. Hence,

atoms populate excited bands. When the depth of the lattice is increased, the band

gap increases faster than the Fermi energy, and collision assisted relaxation permits

to empty the band excitations. In the final thermal state, the gas can be 2D only if

ε2DF < ε1, as discussed in the previous section, where ε2DF = ℏω⊥(2N)1/2 is the 2D Fermi

energy and ε1 = ℏω∥ the excitation energy of the first vibrationnal state. Therefore, the

lattice loading can be seen as an adiabatic trap compression assisted by collisions along

the 1D lattice eigen-axis so that ω∥ ≫ ω⊥, which permits a dimensionality cross-over

from 3D to 2D.

While the single-particle approach is limited by εF < ER, the collision assisted

loading of the lowest band is limited by εF < ε1, where ε1 ≫ ER. Hence, loading

the lowest band of the lattice with a mixture of fermions allowing for s-wave collisions

permits to produce much more dense 2D gases. However, the adiabaticity criterion

is very different between the two schemes. In the single-particle approach, which can

be realized with only one fermionic species, the timescale associated with the lattice

depth variations is in the order of a ms for band gaps in the order of 1 kHz, which

is more favorable than the timescale associated with the inter atomic collisions, that

require a mixture of fermionic species, and that is in the order of the hundreds of ms

for degenerate Fermi gases of strontium.

5.3 Loading experiments and measurement of the

band populations with a Boltzmann approxima-

tion

In this section, I present our protocole to produce a 2D Fermi gas of 87Sr. From time

of flight absorption images of the loaded gases, the kinetic energy of the gas expanding
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transversaly to the lattice eigen axis is used as a thermometer, and the probability of

occupation of the lowest band r0, that I will refer to as loading efficiency, is infered

from a Boltzmann approximation. While the kinetic energy along the lattice eigen

axis converges to that one of the lowest Wannier state and the temperature of the gas

decreases, the aspect ratio measured on the time of flight images increases, indicating

that the Fermi gas reaches the 2D regime. Our measurement shows that we are able to

produce 2D gases with 93(2)% atoms into the lowest band of the 1D lattice.

Experimental procedure: we produce a spin mixture mF = +9/2,−5/2,−9/2 of 87Sr

with a sequence of spin selective optical pumping, as presented in chapter 3, and the

relative populations are respectively nearly 10%, 70% and 20% due to the sequence of

the mixture preparation (see section 3.2.2). The gas is cooled by forced evaporation,

with final number of atoms Nat and degeneracy T/TFODT tunable with respect to the

final depth of the 3D optical dipole trap. Then, the 1D lattice is slowly ramped up in

two steps. First, while the collision rate per atom is as low as approximately γcol ≃ 3 s−1,

inhibitted by the Pauli exclusion principle after reaching low T/TFODT , the lattice is

slowly turned on from zero depth to V0 ≃ 270ER, i.e. h × 40 kHz, in 600 ms. During

this stage, the gas is split in different layers of the 1D lattice as pictured on figure 5.1,

and for such depth, the tunneling is negligible. Here we assume that the gases in every

layer remain at thermal equilibrium, and it is discussed later in section 5.4.2. Then

in a second stage, the lattice is ramped up to its maximal depth V0 ≃ 1780ER, i.e.

255 kHz, in 600 ms. The measurement of the depth of the low recoil lattice is presented

in section 1.2.1, and at full depth, the band gap ℏω∥ = 2
√
V0ER is 12 kHz. During this

stage, the optical dipole trap is slowly turned off such that the geometry of the trap is

completly determined by the lattice laser. After loading the lattice, there is 250ms hold

time. Then, the lattice is abruptly shut off and the atoms are imaged with absorption

imaging after a time of flight of 10ms. The result of the experiment is shown on figure

5.2.

After time of flight of the loaded gas, the imaged densities, shown on figure 5.2, (a.1)

and (a.2) for different number of atoms and respective final depth of the dipole trap, are

analysed in the classical approximation, and fitted with Gaussian distributions. The
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Figure 5.1: Depth of the lattice with respect to the time of ramp. The loading is done
in two stages, split by the dashed line on the plot at V0 ≃ 40 kHz. The insets are
illustrations of the loading at different stages, the black curve is the density and the
red curve is the 1D lattice potential. At 0ms, the lattice is off and the gas is bulk, at
40 kHz the lattice depth is deep enough such that the thermal gas is split into different
2D layers, at 255 kHz the depth is maximal and the atoms shall occupy the ground
band only, i.e. the lowest Wannier state, with a Gaussian density distribution.

kinetic energy < Ek >=< p2 > /2m = kBT/2 measured along Or, i.e. along the 2D

layers, is presented on figure 5.2, (b), empty squares, as a function of the number of

atoms. Assuming that the gas is at thermal equilibrium, we use the measurement of the

momentum distribution < p2r > as a thermometer for this experiment, the temperature

drops linearly with respect to the number of atoms, from approximately 450 nK to 200

nK in this data. The momentum distribution measured along Oz, i.e. along the lattice

eigenaxis, (filled circles on figure 5.2), converges towards that one of Wannier state of

the lowest band with momentum spread ∆p2/2m = ℏω∥/2 (dashed line). Atoms in

the lowest Wannier state of the lattice have their momentum distribution defined by

the harmonic oscillator length only: considering the Heisenberg uncertainty principle

∆x∆p = ℏ/2, where ∆x = aho/
√
2 for the lowest Wannier state, then ∆p2 = mℏω∥/4.

It shows that obviously, fewer atoms occupy excited bands for deeper evaporations prior
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Figure 5.2: Classical analysis from tof images, with 10ms time of flight. (a.1) and (a.2):
Absorption images of gases with respectively 93(2)% and 73(1)% atoms in the lowest
band, with indicated RMS radius in red dashed line. (b) Kinetic energy, along Or,
i.e. along the 2D layers (empty squares), and along Oz, i.e. along the lattice eigenaxis
(filled circle), as a function of the number of atoms. The horizontal dashed line indicates
the kinetic energy of the lowest Wannier state. (c), probability of occupation of the
lowest band p0/ptot, as a function of the number of atoms. (d) probability of occupation
of the lowest band as a function of the aspect ratio σz/σr. On (b) and (c), the grey
filled slope are linear fits, filled at ±1σ fit uncertainty.

to the loading.

From the measurement of the temperature of the gas loaded into the 1D lattice, we

infer the bands populations from the Boltzmann factor:

pn(T ) = e−ε/kBT (5.2)

and the probability of occupation of the band n is defined as pn/Z where Z is the

partition function. For a given temperature, it is defined in the canonical ensemble

as Z(T ) =
∑

n pn(T ) = ptot. The probability of occupation of the lowest band in this
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classical approximation r0
∣∣
C
, that I here define as the efficiency of the loading:

r0
∣∣
C
= p0(T )/ptot (5.3)

is shown on figure 5.2, (c), as a function of the number of loaded atoms Nat. We

are able to load up to 93(2)% atoms into the lowest band of the 1D lattice, with

approximately 5000 atoms.

The aspect ratio of the loaded gas is compared to the infered p0/ptot on figure 5.2,

(d), which shows the strong correlation, C = 0.85, between the two quantities. Indeed,

the lower bound of the momentum distribution < p2z > along the eigen axis of the

lattice is the momentum spread of the lowest Wannier state. Considering a gas cold

enough so that all excited bands are empty, which reads with the Botzmann factors

e−(ε1−ε0)/kBT ≪ 1 ⇐⇒ kBT ≪ ε1 − ε0 = ℏω∥ (5.4)

the kinetic energy within the 2D layers decreases as much as the temperature while

it remains constant along the lattice eigen axis. Hence, the increase of the aspect ratio

is a good signature that the band excitation degree of freedom is vanishing and the gas

reaches a 2D regime.

This measurement shows that we are able to produce 2D gases of strontium 87 with

93(2)% atoms into the lowest band. However, this classical approach doesn’t account

for the Fermi statistics. Differently populated sites have different chemical potentials,

and hence different probabilities of occupation of the lowest band. Indeed, with sites

spacing a = 2µm, the atomic cloud extends over a few sites only, where aho ≃ 1µm prior

to the loading, and the tunneling rapidly decays when the lattice depth is increased so

that the populations are not redistributed between the sites. An accurate description

of the loaded gases then requires to consider different chemical potentials at every site,

and it cannot be accounted for in the classical analysis of the time of flight images

since the density of a classical gas does not depend on the chemical potential. Hence, I

will now disccuss a semi-classical approach that I use to accuratly describe the thermal

state of degenerate fermions loaded in several layers of a low recoil 1D lattice with a



Chapter 5. 2D Fermi gases in the lowest band of a low recoil 1D lattice 146

non uniform distribution of the number of atoms.

5.4 Band populations in the semi classical approx-

imation for a 2D gas of Fermions

In this section, I first derive the analytic equations from the Fermi statistics that permit

to infer the probability of occupation of the lowest band of a deep 1D lattice. Accounting

for the non uniform population in every site of the 1D lattice, I derive a formula that

relates the chemical potentials of every site, to the relative populations. The fitting

function used to analyse absorption images after time of flight of the Fermi gas trapped

into the 1D lattice is then derived, accounting for the several layers with different

number of atoms.

5.4.1 Derivation of the number of atoms in each band

In the following derivations, I consider that the sites of the 1D lattice are 2D harmonic

oscillators with quasi-classical phase space cells d2rd2p/h2. In the deep 1D lattice ap-

proximation, with V0 ≃ 1800ER ≫ ER, the bands of the lattice are considered as

vibrationnal states of a quantized harmonic oscillator [BDZ08] with degree of freedom

n, which I will next consider equivalently. In this case, the Hamiltonian with no inter-

actions reads

Hn(r, p) =
p2

2m
+

1

2
mω2

⊥r
2 + (n+

1

2
)ℏω∥ (5.5)

This hamiltonian is separable, such that the in plane physics and axial quantized

physics can be treated separately, and εn(r, p) = ε2D(r, p)+εn, where εn = (n+1/2)ℏω∥,

and the associated Fermi Dirac occupation number reads

fn(r, p) =
1

exp
(
β(ε2D(r, p) + εn − µ)

)
+ 1

(5.6)

The band energies εn can be injected into the chemical potential µn = µ−εn, which
is a similar approach to the Thomas-Fermi approximation [GPS08], here associated to

the vibrationnal degree of freedom of the quantized harmonic oscillator. In this case,
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the phase space density of each band n is the same except that the chemical potential

is shifted by exactly the energy of the band. It is then possibly to directly derive the

density n(r) as the sum of 2D densities over all populated bands:

n(r) =
∑
n

n2D(r, µn) (5.7)

where n2D(r, µn) is the local density of each vibrationnal state n:

n2D(r, µn) =
−1

Λ2
DB

Li1
(
− eβ(µn−V (r))

)
(5.8)

It is calculated by integrating the phase space density over the 2D momentum (see

appendix A), and using the definition of polylogarithm for the integral of the Fermi

Dirac distribution at T ̸= 0, according to equation A.18. The number of atoms Nn in

the band n is then computed by integrating the density according to the integration

rule for the polylogarithm:

Nn(T, µn) = −
(
kBT

ℏω⊥

)2

Li2
(
− eβµn

)
(5.9)

The probability of occupation of the lowest band n0 is then:

r0(T, µ) =
N0∑
nNn

(5.10)

This is consistent with the fact that occupation of energy states is defined by the

Fermi Dirac distribution, as a function of the temperature and chemical potential. The

numerical result of equation 5.10 is presented on figure 5.3. Obviously, the probability

of occupation of the lowest band increases at lower temperature, as the occupation

number of high energy states is lower than at high temperature. Moreover, for any

fixed temperature, a lower chemical potential implies a higher fraction of atoms in the

ground band. Let’s focus on the T = 0K regime where the chemical potential is the

Fermi energy, which is pictured as the thick dashed line on figure 5.3. Until Fermi

energy εF reaches the energy of the first excited band, pictured as the filled region at

ε = 3
2
ℏω∥, all atoms occupy energy states lower than εF , which is the ground band
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Figure 5.3: Ratio of atoms in the ground band of the 1D lattice, with respect to the
temperature T and the chemical potential mu. The red fills indicate the energy of the
first two vibrationnal states at ε0 = ℏω∥/2 and ε1 = 3ℏω∥/2. The chemical potential
read at T = 0 is the Fermi energy, and the ratio of atoms in the first band at T = 0 with
respect to the Fermi energy is plotted in dashed line. The ratio has been computed
with equation 5.10 by taking into account the populations into the first 10 vibrationnal
states. Here, µ > 0, assuming that the gas is degenerate with T/TF < 0.6.

only, and r0 = 1. As soon as εF ⩾ ε1 atoms can populate the first excited band. As

introduced in section 5.1, this sets a limit in the maximum number of atoms Nmax that

can populate the ground band only, such that εF ⩽ ε1. Using the definition of εF from

equation 5.1, this limit reads

Nmax =
1

2

(
ℏω∥

ℏω⊥

)2

(5.11)
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Regarding the experiment this limit is very important. Considering there are 25%

atoms in the most populated 2D layer, where ω⊥/2π ≃ 80Hz and ω∥/2π ≃ 12 kHz,

then the 1D lattice could not be loaded with a gas which has initially more than

approximately 10 000 atoms per spin state and per lattice site at T = 0K if we want

the first band only to be populated in order to prepare a 2D gas. Obviously, the

T = 0K limit can’t be reached. At T ̸= 0K, the wings of the Fermi Dirac distribution

are enlarged, such that probability of occupation of the first excited states is enlarged

and the chemical potential has to be lowered, hence the number of atoms, in order to

maintain a high r0.

5.4.2 Accounting for multiple layers in the lattice

The site spacing a of the 1D lattice is approximately 2µm, which means that the gas

can extend over several sites just before loading the 1D lattice. In our experiment, we

measure the number of atoms in each site with a magnification of the loaded lattice (see

section 1.2.1 of chapter 1), and the result is recalled on figure 5.4. Our measurement

shows that approximately 8 sites are significantly loaded with different populations. To

account for this feature to measure the number of atoms in each band, I assume the

following assertions.

First, the recoil momentum associated with the lattice kR = π/a is very low, as a

consequence of the large site spacing, and therefore the tunneling t ∝ exp
(
−2
√
V0/ER

)
[BDZ08] rapidly vanishes when the lattice depth V0 is increased, up to V0 ≃ 1800ER in

our experiment. Hence, the inter layer coupling is negligible and we do not assume inter

layer equilibrium. It is then possible to assign a different chemical potential to each

site i, according to a local chemical potential of the gas binned around site i, making

use of the local density approximation (LDA). This means that each layer of the 1D

lattice must have a different degeneracy, chemical potential, and entropy per particle,

depending on the number of atoms Ni which have been initially loaded in each lattice

site i.

Then, before loading the lattice, the initial gas is at thermal equilibrium, with a
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Figure 5.4: Magnification of the sites of the 1D lattice using the quantum magnifier
scheme [Ast+21] along the vertical axis. Left: experimental absorption image of the
magnification of the sites. The color bar represents the optical depth. Right: fit of
the integrated optical depth to measure the populations into the different 2D layers.
The relative population measured in each layer is noted as a percentage above each
peak picturing a layer, in red, big font. The bins represent a guess of the populations
with respect to the size σ of the initial gas and the sites spacing a of the lattice. Here,
σ ≃ 3.1µm and a ≃ 2µm. The relative population guessed in each layer is noted as a
percentage above each peak picturing a layer, in dark blue, small font

well defined temperature. Temperature is an intensive thermodynamic quantity, such

that when the gas is separated into the different sites, each fraction of the gas must

have the same temperature, since the potential is the same for each fraction of the

gas. Then the lattice depth is slowly increased, and assuming that the trap curvature

is negligible over a few sites of the lattice (8 in our case), the adiabatic theorem for

dipole trap compression T/ω = T ′ω′ holds, and the compression is the same at each

site. Therefore, the temperature is the same in every site of the deep 1D lattice.

Now I use these assertions to define the chemical potential for each site. Each site,

or 2D layer, is independent and at thermal equilibrium, so that the relation between

the number of atoms and chemical potential defined in equation 5.9 can be used in-

dependently for each layer. Since the temperature and confinement frequency are the

same in each layer, it possible to link the chemical potential of two layer i and j with

respect to the ratio of the number atoms only:
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Li2
(
− eβµi

)
=
Ni

Nj

Li2
(
− eβµj

)
(5.12)

With the distribution of atoms into the different layers known, that can be mea-

sured with the magnification of the lattice sites, all the chemical potentials are then

infered from a single free parameter µ0, and it is then possible to determine all of the

thermodynamic and statistical quantities of the independent gases loaded in several 2D

layers of the 1D lattice.

5.4.3 Fit function with time of flight imaging

Let’s now derive the fitting function to measure the thermodynamics quantities from

the expanded density after time of flight, assuming that the mean-field energy can be

neglected and that ballistic expansion is a good approximation. From this measurement,

it is then possible to infer the bands populations in every site of the 1D lattice. It is an

application of the fitting functions for the imaged densities of expanding Fermi gases

[KZ08; DeM01] to the Hamiltonian defined in 5.5, accounting for the vibrationnal degree

of freedom n and the different 2D layers i.

The Hamiltonian 5.5 is separable, and the expansion during the time of flight can

be treated separately along the layers and along the axis of the lattice.

First, along the lattice eigen-axis, atoms occupy the localized Wannier states, which

expand as the harmonic oscillator eigenstates in the deep-lattice approximation. As-

suming that most atoms are in the lowest Wannier state, the momentum distribution

along the lattice eigenaxis can be considered Gaussian as a first-order approximation.

Then, along the 2D layers, we want to derive the expansion of the density of atoms

defined in equation 5.8. Let’s consider a single layer first. The expanded density

n(r, t) after time of flight of duration t is derived from the initial phase space density

distribution fn(r0, p0) in the trap, respecting energy conservation so that r(t) = r0 +

p0t/m:
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ntof (r, t) =
∑
n

∫
d2r0

∫
d2p0
h2

fn(r0, p0)δ(r − (r0 + p0t/m))

=
2mkBT

h2b2

∑
n

∫
d2q

−1

eq2/z − 1

(5.13)

where b2(t) = 1+ω̄2t2 is the scaling factor [KSS96; CD96], and the change of variable

q2 = βb2p20/2m has been made. Here, z = β(µn−V (r)/b2(t)), where εn is the excitation

energy of band n. Using the formula for the integration of the polylogarithm, the 2D

density after time of flight reads:

ntof (r, t) =
−1

Λ2
DBb

2(t)

∑
n

Li1(−eβ(µ−εn)e−βV (r)/b2(t)) (5.14)

In our experiment, we image by the side of the 1D lattice, i.e. along one of the axis

of the 2D confinement. The integrated density profile along the imaging axis is then:

nintegrated
tof (x, t) =

−2πa2ho
Λ3

DBb(t)

∑
n

Li3/2(−eβ(µ−εn)e−βV (x)/b2(t)) (5.15)

which depends on the free parameters (ω⊥, ω∥, T, µ). The depth of the lattice can

be measured independently (see section 1.2.1 of chapter 1), so that the lattice band

gap ℏω∥ is known. Moreover, the harmonic confinement of frequency ω⊥/2π within the

2D layers can be infered from a measurement of the size of the gaussian laser beams.

Accounting for the different 2D layers i, the fit function used on time of flight images

of gas loaded in the 1D lattice is then:

nintegrated
tof (x, T, µ0) =

∑
i

nintegrated
tof,i (x, T, µi) (5.16)

where

nintegrated
tof,i (x, T, µi) =

−2πa2ho(ω⊥)

Λ3
DB(T, ω⊥)b(ω⊥)

∑
n

Li3/2(−eβ(µi−εn(ω∥))e−βV (x,ω⊥)/b2(ω⊥)) (5.17)

with free parameters T and µ0, and the other µi’s are infered from µ0 using equation

5.12 and the relative number of atoms in every layer, that is measured independently.
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This concludes the derivation of the fit function with the semi-classical approach, and

now, it can be applied to our data.

5.5 Semi-classical measurement of the bands popu-

lations of several independant 2D layers

In this section, I present the application of the semi-classical approach to analyse the

time of flight images of the gases loaded in the 1D lattice. The procedure of loading is

detailed in section 5.3. The gases are loaded after evaporation, and the initial temper-

ature, number of atoms, and degeneracy, before loading the lattice, are set by tuning

the depth of dipole trap prior to the loading. The gas are released 250ms after loading,

and imaged with absorption imaging after 10ms time of flight. Using the semi-classical

analysis, I show that we are able to prepare several independent 2D Fermi gases with

93(2)% atoms in the lowest band of the 1D lattice, which is the same result than the

classical analysis, and the measurement of the chemical potentials further shows that

the 2D gases are not degenerate with µ < 0. Then I will discuss the efficiency of the

loading as a function of the evaporation depth. With deep evaporation, our experiment

reaches its lower limit of measurable temperatures 5 ± 5 nK, and the efficiency of the

loading of the lowest band is further improved by pursuing the evaporation.

5.5.1 Analysis of a single image

To apply the semi-classical analysis, I assume that the temperature is well defined and

equal in all the sites, and that the inter-site tunneling is negligible. Moreover, the

distribution of atoms in the sites of the lattice is well known, with 8 populated sites,

from the magnification measurement (see figure 5.4). The fit function 5.16 can then

be used to measure the temperature T and a reference chemical potential µ0, that I

attribute to the most populated site. The chemical potentials of all other sites can then

be infered from equation 5.12. Note that the three spins mixture is accounted for by

considering three independent population distributions in every layer, that are weighted

by the relative populations in every spin state. The chemical population of each spin

state in every layer is then infered from equation 5.12. The fitted chemical potential is
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Figure 5.5: Semi classical analysis of time of flight absorption images of a gas loaded
in several sites of a deep 1D lattice. (a) Absorption image (b) Integrated optical depth
along the lattice eigenaxis Oz (dots) and result of the fit using equation 5.16 (solid line).
(c) Fit residuals, and measured temperature T and 2D chemical potential µ0 = µ− ε0
of the most populated layer for this image. (d) Artificial split of the optical depths
of every site, and associated local chemical potential infered from µ0. (e) Fermi Dirac
occupation number fFD(ε, µ, T ) for every site. The energy axis is in bang gap ℏω∥ units,
and the population of the lowest band is indicated above each site.

that of the most populated spin in the most populated layer, from which the chemical

potnetials for the different spin states in the different layers are deduced.

The fit function 5.16 can be used with two free parameters only, T and µ0. The

parameters T , µ0, ω⊥, and ω∥, are highly correlated, so that the fit uncertainty is

strongly increased if all parameters are free. It is then convenient to infer ω∥ and ω⊥
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from independent measurements, so that they are fixed and the uncertainty of the fits

is drastically reduced.

The band gap ℏω∥ = 2
√
V0ER is directly infered from the measurement of the depth

V0 of the 1D lattice (see chapter 1). In this run, V0 ≃ h × 255 kHz, which sets the

associated band gap frequency to ω∥/2π ≃ 12 kHz. The radial confinement within each

layer of the 1D lattice can be approximated as a harmonic potential in the bottom of

the sites:

V0e
−2r2/w2

∣∣∣∣
r→0

≃ V0(1− 2
r2

w2
) ≃ V0 +

1

2
mω2

rr
2 (5.18)

where w is the waist of the laser beam. Hence, the radial frequency ωr can be

directly infered from the depth V0 and waist w as:

ω2
x,y ≃

4|V0|
mw2

x,y

(5.19)

In our experiment, |V0| ≃ 255 kHz, and the measured waists are wx ≃ 170µm and

wy ≃ 105µm. The geometric mean of the radial frequency ω2
⊥ = ωxωy is then:

ω⊥

2π
≃ 80Hz (5.20)

For the analysis, ω⊥ and ω∥ are then fixed to the respective values 2π × 80Hz and

2π × 12 kHz.

The result of the semi-classical analysis of a time of flight absorption image is pre-

sented on figure 5.5. The optical depth, shown on (a), is integrated along the eigen axis

of the lattice (Oz), and it is fit using the fit function 5.16. For this gas, the measured

temperature is T = 210± 14 nK, and the measurement of the chemical potential of the

most populated layer µ0/kBT = −0.40(5) is then used to infer the chemical potential of

the other layers using relation 5.12. Figure 5.5, (d), shows an artifical split of the sites

and their respective chemical potentials. The thermodynamics properties are known in

every site, and the Fermi Dirac occupation number fFD is well determined, and it is

plotted on figure (e). The band populations can be infered from equation 5.9, and the

probability of occupation of the lowest band r0, defined in equation 5.10, here measured

r0 = 93± 1%, is shown on figure (e) for every site.
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Figure 5.6: (a) Population in the lowest band as a function of the Fermi energy εF
in units of the energy of the first excited band ε1 = 3/2ℏω∥, into the most populated
layer. (b) Population in the lowest band as a function of the measured temperature
into the lattice. (c) Number of atoms into the most populated layer as a function of
the temperature.

This result shows that it is possible to infer the thermodynamic properties of inde-

pendent sites of the 1D lattice with the distribution of atoms known, even if they are not

distinguishable on a single absorption image, assuming a uniform adiabatic compression

in every site and negligible tunneling. With this method, we measure that we are able

to prepare a set of independent 2D Fermi gases with r0 > 90% that can be analysed

simultaneously. The semi-classical analysis is made easier with independent measure-

ments of the lattice depth, and the harmonic confinement within each site. Note that

here the signal to noise ratio (SNR) of the integrated density profile is slightly lower

than 10. With a better SNR, the independent measurements on the lattice geometry

should not be required to have significant measurements.

The joint measurement of the chemical potential of the most populated layer µ0/kBT =

−0.40(5) and temperature T ≃ 210 nK gives a measurement of the Fermi energy, which

is lower than the energy of the first excited vibrational state εF/ε1 ≃ 0.3, where

ε1/kB ≃ 870 nK. Hence, the population of the lowest band is not satured by the number

of atoms, and assuming thermal equilibrium, the residual band excitations are then due

to the non zero temperature. Figure 5.6, (a) shows the increase of r0 = N0/Ntot as a

function of the Fermi energy εF , which approximately amounts to the number of atoms,

and (b) as a function of the temperature T into the lattice. This measurement shows
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that our production of multiple 2D degenerate gases with best r0 ≃ 93(1)% is due as

much to a reduced number of atoms, i.e. chemical potential, as to a low temperature.

Comparison with the classical analysis: both the classical and semi-classical provide

the same measurement of the probability of occupation of the lowest band, and this

shows that the degeneracy of the 2D gas is not sufficient for the density to significantly

deviate from a Gaussian distribution. This is further confirmed by the measurement of

negative chemical potentials. However, the semi-classical approach provides an accurate

description of the loading of several independent 2D Fermi gases which are not uniformly

populated, and this approach can be applied on further degenerate gases. Moreover,

the chemical potentials and degeneracies of every layer can be measured from a single

absorption image, with the distribution of atoms known.

5.5.2 Systematic study as a function of the evaporation depth,
for SU(3) and SU(10) gases

The efficiency of the lattice loading with a three spins mixture with populations 10%,

20% and 70%, and an equipopulated SU(10) gas, are here compared as a function of

the evaporation depth prior to the loading, read as the geometric mean frequency of

the dipole trap ω̄. It is infered from an independent calibration of the trap geometry.

Note that in this study, the evaporation approaches spilling, so that the estimation of ω̄

is uncertain. Hence, the value of ω̄ has to be read with caution, and its use only intends

to give a reading of the depth of the evaporation, else than the numeric command that

we use on our experiment.

The probability of occupation of the lowest band is plotted on figure 5.7, (a), as

a function of ω̄ at the end of the evaporation, and the tendency is a regular increase

towards 100% for both mixtures, however a slight increase of the slope can be observed

for ω̄/2π < 50Hz. In this measurement, the efficiency of loading with a SU(10) gas is

larger by approximately a multiplicative factor 1.05. Figure 5.7, (b), and (c), respec-

tively show the number of atoms in a single spin state, here the most populated of the

SU(3) preparation, and temperature of the gases prior to the loading as a function of
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Figure 5.7: SU(3) (empty squares) and SU(10) (filled circles) loading of the lowest band
as a function of the evaporation depth. (a) Probability of occupation of the lowest band
r0 as a function of the geometric mean frequency ω̄ of the dipole trap, which is infered
from independent measurements. (b) Number of atoms Nat in mF = −5/2, into the
dipole trap before loading as a function of ω̄ It represents 70% of the total number of
atoms into the SU(3) gas, and 10% into the equipopulated SU(10) gas. (c) Temperature
of the gas before loading as a function of ω̄.

ω̄. Ultra-cold temperatures T ≃ 10 nK are reached from ω̄/2π ≃ 50Hz, and further

evaporation results in atom depletion only. These measurements show that deep evap-

oration prior to the lattice loading increases the probability of occupation of the lowest

band after loading, and this is associated with very low initial temperatures as well as

low chemical potentials.

On figure 5.8, the degeneracy of the 2D gas T/TF after loading is compared to the

depth of evaporation, for both SU(3) and SU(10) gases. In both cases, the measurement

shows that deeper evaporation prior to the loading doesn’t permit to produce more

degenerate 2D gases. A possible explanation is that in this experiment, we reach very

low temperatures at the end of the evaporation by reducing simultanously the horizontal

and vertical confinements of the dipole trap, which reduces significantly the collision

rate. Consequently, when the lattice is turned on, adiabatic following of the lattice

depth compression is made very difficult, which is already challenging for degenerate

fermions due to Pauli blocking.
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layers

Figure 5.8: Degeneracy T/TF for SU(3) (left) and SU(10) (right) gases after loading of
the lowest band as a function of the evaporation depth.

5.5.3 Preparation of degenerate Fermi 2D gases with improved
adiabaticity

To enhance the loading efficiency, we experienced two modifications to the previous

protocole.

First, we compensated for the low collision rate when the lattice depth is increased.

Closed shell 87Sr atoms do not benefit from Feschbach resonances to tune the interaction

strength. Hence, we rather hold a strong transverse harmonic confinement compared

to the previous experiment, with the vertical laser beam of the optical dipole trap

(ODT), that propagates mostly along the lattice eigenaxis. In the previous experiment,

its power was lowered to reach deep evaporation, until the transverse frequency ωODT
⊥

reached approximately 2π × 30Hz, and it is now held at approximately 2π × 85Hz.

Second, the lattice depth is increased to only h × 70 kHz in 500ms, which reduces

the band gap from ω∥ ≃ 2π×12 kHz to ω∥ ≃ 2π×6.4 kHz. Consequently, the transverse

harmonic confinement of the lattice is also reduced. However, the vertical ODT beam

is not turned off, and the total transverse frequency after loading is now approximately

ω⊥ ≃ 2π × 95Hz.

The result of the lattice loading with a SU(10) gas of 12 000 atoms initially at

T ⪅ 20 nK and T/TF ⪆ 0.15 is shown on figure 5.9. With this preparation, the
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Figure 5.9: Degenerate 2D SU(10) Fermi gas loaded in several sites of a deep 1D
lattice. (a) Absorption image (b) Integrated optical depth along the lattice eigenaxis
Oz (dots) and result of the fit using equation 5.16 (solid line). (c) Fit residuals, and
measured temperature T and 2D chemical potential µ0 = µ− ε0 of the most populated
layer for a single spin state. (d) Artificial split of the optical depths of every site, and
associated local chemical potential infered from µ0. (e) Fermi Dirac occupation number
fFD(ε, µ, T ) for every site. The energy axis is in bang gap ℏω∥ units, and the population
of the lowest band is indicated above each site. In every figure, unwritten errorbars are
below 0.5% of the fit value.

probability of occupation of the lowest band is increased to approximately 99% in every

layers, and the 2D gases are degenerate with µ0/εF ⩾ 0.4 in the four most populated

layers, with approximately 300 atoms per spin state per layer.

This shows that while the collision rate of 87Sr suffers from a lack of tunability, it can

be compensated for by increasing the trapping frequencies. Furthermore, these two ex-
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periments indicate that it is much more favorable to hold sufficiently high harmonic con-

finement for isentropic transformations with degenerate alkaline-earth fermions, than

to reach ultra deep evaporation where collisions are strongly inhibited. Also, the final

depth of the lattice can be an important parameter that has to be investigated. Further

systematic study for this protocole is planned.

5.6 Conclusion and outlook

In this chapter, I have shown the production of several independent 2D Fermi gases

of 87Sr atoms with populations ranging from 1 000 to 1 700 atoms in a three spins

mixture with relative populations 10%, 70% and 20%. In a first set of experiments,

the probability of loading of the lowest band of the 1D lattice is 93(2)% with a band

gap ω∥ = 2π × 12 kHz and Fermi energy εF one third of the energy of the first excited

band. Improved adiabaticity is shown in a second experiment by holding sufficient

dipole trap compression prior to the loading into less deep lattice. This way, we are

able to produce 4 independent 2D degenerate SU(10) Fermi gases with µ0/εF ⩾ 0.4 and

approximately 99% atoms into the lowest band. This preparation will be the starting

point for the loading of 2D lattices to realize a SU(1) band insulator. The 2D gases shall

be adiabatically loaded in a 2D square lattices to prepare several non interacting band

insulators [Leb+18]. The independent 2D Fermi gases can be later used as independent

realizations of a same experiment in a 2D geometry [Fel+11], similarly to wire arrays

experiments [Gre+01; Par+04].
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Conclusion

In this thesis, I reviewed my contributions to the various protocols required for the

realization of the 2D Fermi-Hubbard model with enlarged SU(N) symmetry with stron-

tium 87. These key protocols are now sufficient to reach the short term objectives of the

experiment, i.e. an adiabatic following to the lowest energy states of a SU(2) quantum

magnet, with a full control and monitoring over the spin dynamics in 2D lattices that

will provide a first demonstration of super-exchange dynamics on our experiment.

Summary

In chapter 2, I presented our method to measure local densities with absorption imaging

of objects smaller than the resolution limit of our imaging setup. I have shown that

the fast variations of the local density are averaged over the resolution limit, and this

results in non-linear errors on the imaged density. This correction is demonstrated on

elongated Fermi gases, from which we infer the unresolved transverse size, as small as

one fourth of our imaging resolution limit. The density profile along the longitudinal

axis, distorted by the non linear error, is also recovered with our method. This work

was first motivated by an experiment to measure the enhanced mean-field interaction

in the weakly interacting regime of a SU(10) degenerate Fermi gas. For this, we wanted

to further enhance the mean-field signal with a 1D expansion, i.e. by allowing the gas

to expand along direction axis only, so that the full mean-field energy is converted to

kinetic energy into this axis only. Altough this investigation was not conclusive due

to thermalization failure, it yielded the establishement of the demonstrated method,

which was required for the analysis of the tightly confined gas expanding in 1D.

In the last chapter, I have shown that we can prepare 2D Fermi seas with µ/εF ⩾

163
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0.4 and approximately 99% atoms in the lowest band of the 1D lattice. With spin

selective blast, the Fermi gases will next be polarized, as demonstrated in chapter 3,

and adiabatically loaded in the 2D square lattices to prepare several band insulators

with a single spin component.

In chapter 4, I demonstrated a method to selectively flip the nuclear spins of stron-

tium 87 with Raman adiabatic passages and a tensor light shift associated with the

intercombination line, with actual approximately 80% efficiency. Next, using a spin

dependent optical superlattice realized by simply retroreflecting the tensor light shift

beam, a Néel spin order shall be written from the band insulators, with approximately

97% fidelity according to my simulations. It will then be possible to adiabatically ap-

proach the regime where many-body physics are driven by super-exchange interactions,

by slowly reducing the depth of the spin dependent superlattice.

The alternate magnetization along the quantization axis will be measured by first

reversing the texture writting protocole, then measuring the spin populations as demon-

strated in chapter 3. The dynamics of the spin ordering, that shall deviate from the

initial preparation, will provide a first measurement of the super-exchange dynamics.

Short-term prospects

The spin correlations, that can result effectively in squeezing of the alternate magneti-

zation, will be detected using the same spin dependent optical superlattice. However,

this measurement requires supplementary implements, not discussed in this thesis, and

yet to be investigated. The squeezing detection requires a measurement of the variance

of the alternate magnetization associated with the SU(2) rotation generators Ŝx, Ŝy,

and Ŝz. Practically, these rotations will be engineered with π/2 light pulses, which

notably require a stabilization of the intensity of the laser realizing the tensor light

shift.

Moreover, the detection of quantum correlations require to reduce the detection

noises and fluctuations as close as possible to the standard quantum limit (SQL) [Ala22].

For this, the implementation of a high resolution imaging system with diffraction limit

1.25µm and reduced noise sensitivity is ongoing. Note that the ground state of stron-

tium 87 with zero angular momentum is very weakly sensitive to magnetic fields, which
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is a strong advantage for minimal systematic noise on the measurement of quantum

correlations.

Also, the current setup is planned to include a 2D spin independent supperlattice at

1064 nm. It will permit to isolate 2x2 clusters on the 2D lattice at 532 nm, to prepare

local singlet states. By reducing the depth of the superlattice, either abruptly or slowly,

this setup will provide an original measurement of the dynamics from local to global

correlations.

Improvement suggestions

I would like to propose some easy implements that could improve the detection efficiency

of the spin populations and facilitate statistical measurements of the spin correlations,

as last contribution.

In chapter 3, I have discussed the limitation of our method to measure the spin

populations, which is almost entirely due to the laser intensity. In our experiment,

we use the retroflected vertical MOT beam to realize the measurement, which has a

very large waist of approximately 1 cm and approximately 8mW power. I suggest to

use a dedicated laser setup with a beam of much smaller waist. For instance, a waist

of 100µm with only 80µW power would increase the light intensity by two orders of

magnitude, which would significantly increase the efficiency of measurement of the spin

populations to approximately 99%, and hence increase the reliability of the detection

of quantum correlations. Furthermore, the simultaneous measurement of multiple spin

populations, currently limitated by the efficiency of a single adiabatic passage, would

be facilitated.

Using a dedicated laser setup, it is possible to change the direction of the momentum

transfer, which is presently along the 1D lattice eigen axis. I suggest that the momentum

transfer should be orthogonal to the lattice eigen axis. In chapter 1, I demonstrated

that we are able to spatialy separate the sites of the 1D lattice with the quantum

magnifier method. Combined with an orthogonal spin dependent momentum transfer,

it would be possible to simultaneously measure the spin populations of every layer in
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a single shot. Furthmore, I demonstrated in chapter 5 that we are able to prepare at

least 4 independent degenerate 2D gases, that are good candidates to prepare Mott

insulators. Hence, it would be possible to realize at least 4 independent experiments,

simultaneously measurable.

Considering the required statistical measurements to detect quantum correlations

close to the SQL, such a setup would permit to both criticaly enhance the reliability

of the spin populations measurement, and dramaticaly reduce the average time per

experiment to approximately 5 s.

Outlook

This experiment is designed to study SU(N) quantum magnetism with strontium 87.

The ongoing demonstration of the method to prepare spin textures in SU(2) is easily

generalized to SU(N), N > 2, by realizing consecutive spin flips. Very interesting

investigations will then be lead on the growth of correlations, with tunable N. For

instance, frustrated spin ordering is expected [HGR09], and this experiment will offer

a unique platform for this study in square lattices with N as high as 10.

Taking advantage of enhanced large-spin Pomeranchuck cooling [Tai+12], this ex-

periment shall produce strongly correlated 2D spin ensembles. With a control on the

filling factor, a possible implementation of the fermionic t-J model [And87] can be con-

sidered, in SU(2) symmetry, and possibly generalized, in enlarged SU(N) symmetry,

with tunable N.

Remarkably, this experiment makes use of protocoles, notably the artificial magnetic

field, very similar to the ones used to implement topological lattices. Accounting for the

lattice geometry, and the spatially dependent spin orbit coupling associated with the

intercombination line, already implemented on the experiment, artificial gauge fields

could be engineered [Sch+20].



Appendix A

Basic theory for d-dimensional
Fermi gases in harmonic traps

A.1 Density of states and Fermi energy

Let’s consider a shallow d-dimensional (1D, 2D or 3D) harmonic trap. In the semi-

classical limit kBT ≪ ℏω̄, the Hamiltonian reads

H(r, p) =
d∑

i=1

1

2
mω2

i r
2
i +

p2i
2m

(A.1)

The density of states is then derived from Thomas-Fermi rule, which reads in the

semi-classical limit

ρ(ε) =

∫
ddrddp

hd
δ(ε−H(r, p)) (A.2)

ρ(ε) =
1

(d− 1)!

εd−1

(ℏω̄)d
(A.3)

From the density of states, it is then possible to derive the number of atoms with

integration over the density of states and Fermi-Dirac occupation number fFD

N =

∫ ∞

0

dερ(ε)fFD(ε, µ, T ) (A.4)
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at T = 0K, fermions condensate in the energy states lower than the Fermi energy

which is defined as εF = µ|T=0, such that the Fermi-Dirac distribution reduces to the

heaviside distribution and the number of atoms becomes

N =

∫ εF

0

dερ(ε) (A.5)

Using the definition of the density of states A.3, the d-dimension Fermi energy can

be computed directly, with respect to the number of atoms and mean trap frequency

ω̄ = (
∏

i ωi)
1/d

εF = ℏω̄(d!N)1/d (A.6)

On lower dimensions, the density of states is lowered, such that for a fixed number

of atoms, fermions have to occupy higher energy states, and thus the Fermi energy is

increased, and this is embedded in the N1/d scaling of the Fermi energy.

A.1.1 3D harmonic trap tightly confined along one direction
only

In the following derivation, I consider a gas trapped into a 3D harmonic trap tightly

confined along one direction only. The transverse shallow confinement is a shallow 2D

harmonic trap with associated phase-space cell d2rd2p/h2, and the tight confinement is

a quantized harmonic trap with associated degree of freedom n, the band excitations.

In this case, the Hamiltonian with no interactions reads

Hn(r, p) =
p2

2m
+

1

2
mω2

⊥r
2 + (n+

1

2
)ℏω∥ (A.7)

This hamiltonian is separable, such that the in plane physics and axial quantized

physics can be treated separately. In this geometry, the density of states ρ(ε) of the 2D

harmonic confinements within each site of the lattice reads:

ρ(ε) =
∑
n

∫
d2rd2p

h2
δ
(
ε− (ε2D(r, p) + εn)

)
(A.8)

Picturing ε−εn as a shift of the 0 energy state, where εn = (n+1/2)ℏω∥, it amounts

to assign an independent 2D density of state ρn for each energy band εn:
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ρn(ε) =
ε− εn
(ℏω⊥)2

(A.9)

and then the total density of states is the sum over all bands:

ρ(ε) =
∑
n

ε− εn
(ℏω⊥)2

(A.10)

One can consider the local density of states as defined in equation A.9 for each band,

so that the number of atoms in each band n can be computed as follows:

Nn =

∫ εn+1−δε

εn

dερn(ε)fn(ε, µ, T ) (A.11)

where the Fermi-Dirac occupation number fn(ε, µ, T ) is defined as

fn(ε, µ, T ) =
1

exp
(
β(ε2D(r, p) + εn − µ)

)
+ 1

(A.12)

In the T = 0 limit of a 2D Fermi gas with εF < ε1, the number of atoms into the

lowest band is then infered from

N

∣∣∣∣
T=0

=

∫ εF

ε0

dερ0(ε)fFD(ε, µ, T ) (A.13)

and by replacing ρ0 by its expression given in equation A.9 and fFD|T=0 by the

heaviside distribution, the Fermi energy reads

εF = ℏω⊥(2N)1/2 + ε0 (A.14)

This result shows that by taking into account the vertical confinement which allows

to engineer a 2D Fermi gas by populating the ground band only of a 1D lattice, the 3D

Fermi energy is simply the Fermi energy of the gas living in a 2D layer, c.f. equation

A.6, shifted by the energy of the ground band.
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A.2 Density and chemical potential, exact deriva-

tion in the semi-classical regime

The in-situ density of a Fermi gas is obtained from momentum integration the Fermi-

Dirac phase space density

n(r) =

∫
ddp

hd
f(r, p) (A.15)

where d is the dimensionality. To derive this integral with the Fermi-Dirac distri-

bution, it requires to use the polylogarithm functions, which can be definied as follows

[KZ08]:

Lin(z) =
1

πn

∫
d2nq

1

eq2/z − 1∫ +∞

−∞
dxLin(ze

−x2

) =
√
πLin+ 1

2
(z)

(A.16)

Equation A.15 has to be rewritten in order to apply the definition of the polyloga-

rithm integral. This is easily done by isolating the kinetic energy p2/2m and multiplying

by −1:

n(r) = −
∫
dnp

hn

[
eβp

2/2m

−eβ(µ−V (r))
− 1

]−1

(A.17)

with change of variable y2 = βp2/2m and replacing n = d/2, the identification with

polylogarithm is straightforward and the density reads:

n(r) =
−1

Λd
DB

Lid/2
(
− eβ(µ−V (r))

)
(A.18)

where ΛDB = h/
√
2πmkBT is the DeBroglie wavelength. It is interesting to see

here that the fugacity q = βµ defines the shape of the cloud, while the potential

βV (r) = 1
2
mωr2 defines the size of the cloud. Indeed, the fugacity is an homogeneous

prefactor to the potential term in the highly non linear polylogarithm function, which

distorts the density profile defined by βV (r) = 1
2
mωr2, for high positive values when
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µ/εF → 1 and T/TF → 0. On the other hand, the phase space density tends to a

gaussian distribution for a Boltzmann gas if µ/kBT → −∞.

The number of atoms of atoms can then be computed through integration successive

integrations of the density and use of the polylogarithm integration defined in equation

A.16:

Nd = −
(
kBT

ℏω̄

)d

Lid(−eβµd) (A.19)

This result is important because it directly shows how the number of atoms is linked

to the temperature, the trap, and the chemical potential. This makes sens because the

chemical potential is the energy cost to add a new particle to the degenerate gas, whose

energy and degeneracy is defined by the trap, the temperature, and the number of

atoms. Finally, the chemical potential can be derived from equation A.3 by injecting

the definition of Fermi energy A.6.

Lid(−eβµd) = d!

(
T

TF

)d

(A.20)

This derivation requires to invert the polylogarithm, which can easily be done nu-

merically with an interpolation. Note that this result shows that the fugacity only

depends on the degeneracy of the Fermi gas and on the dimensionality.

A.3 Thermodynamics and entropy, derivation in the

semi-classical regime

In a statistical ensemble at equilibrium, thermodynamics are defined from the first

principle of thermodynamics:

dU = ∂SUdS + ∂VUdV + ∂NUdN (A.21)

where the thermodynamic potential U is the internal energy for an isolated system.

Conjugated thermodynamic quantities (µ,N), (S, T ) and (p, V ) can be seen as canonical

variables connected by the thermodynamic potential U . In this picture, one quantity
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is a generalized force F⃗ deriving from the thermodynamic potential U , through its

derivative from a generalized displacement X⃗, i.e. F⃗ = −∇X⃗U . This is embedded in

the well known definitions

T = ∂SU

p = −∂VU

µ = ∂NU

(A.22)

The choice of the thermodynamic ensemble doesn’t actually change the average

values of the thermodynamic quantities [Hua87], but working in the proper ensemble

is mandatory to derive the fluctuations. For instance, a gas of ultra-cold atoms in a

dipole trap is an isolated system, so it requires that the fluctuations are derived in the

micro-canonical ensemble. In our case, we are mainly interested at the average values.

For this reason, I will next derive entropy and chemical potential in the grand-canonical

ensemble, which is more convenient regarding the study of degenerate fermions. (the

chemical potential is properly defined by the degeneracy of the gas, the temperature is

properly defined by the cooling procedure (MOT then evaporative cooling (open system

here), need to explain it briefly). In the grand-canonical ensemble, the thermodynamic

potential is the free energy of Landau J = U − TS − µN . In this ensemble, the first

principle of thermodynamics becomes:

dJ = ∂TJdT + ∂V JdV + ∂µJdµ (A.23)

The chemical potential µ and entropy S can then defined from the free energy of

Landau as

S = −∂TJ
∣∣
µ,V

N = −∂µJ
∣∣
T,V

(A.24)

Those relations are conveniant for fermions in the grand canonical ensemble since

J is well defined for degenerate gases, with respect to the number of occupations fFD.

In the semi-classical limit for fermions, the grand potential reads:
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J = −kBT
∫
dερ(ε)log(1− fFD(ε, µ, T )) (A.25)

The density of states can be replaced by equation A.3, and after injecting the Fermi

energy derived in equation A.6, one gets

Jd = −NkBTd
∫

dε

εF

( ε
εF

)d−1
log(1− fFD(ε, µ, T )). (A.26)

It is then convenient to rewrite all energies in Fermi energy units ε/εF , as well as

temperature in Fermi temperature units T/TF . This permits to have a universal reading

of the results with respect to a single variable T/TF which can be read as the degeneracy

of the Fermi gas. Also, the chemical potential expressed in Fermi energy units gives in

a direct reading of the degeneracy, since εF ≡ µ|T=0, such that µ/εF has to saturate to

1 at low temperature. This makes sens because all low energy states are occupied and

the energy cost to add a new particle converges to the Fermi energy. Hence, reading

the saturation of µ/εF gives a direct reading on the energy states occupation. This can

be convenient for instance when looking at the sites occupation of the ground band of

a lattice. If the Fermi energy is lower than the first excited band, a saturating chemical

potential indicates that the occupation number tends to 1 per site. For those reasons,

I strongly recommend students to get used to be working on normalized units, such as

T/TF and ε/εF in this case. And more practicaly, it makes the derivations easier.

In normalized units, the Fermi-Dirac distribution is simply rewritten as follows:

fFD(ε, µ, T ) =
1

eβ(ε−µ) + 1

=

[
exp
( 1

T/TF
(
ε

εF
− µ

εF
)
)
+ 1

]−1 (A.27)

and then with a change of variable x = ε/εF , the free energy of Landau can be

defined in Fermi energy units, with respect to the degeneracy T/TF :

J

εF
(T/TF ) = −N T

TF
d

∫
dx xd−1log(1 + exp(− 1

T/TF
(x− µd

εF
))) (A.28)
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This equation might look complicated but it is in fact very simple since it depends

only on the number of atoms N and the degeneracy T/TF , such that J can be simply

written as

J

εF
(T/TF ) = −NI(T/TF ) (A.29)

where the integral I depends only on T/TF .

I(T/TF ) =
T

TF
d

∫
dx xd−1 log

(
1 + exp(− 1

T/TF
(x− µd

εF
))

)
(A.30)

Using definition A.24, the entropy per particle can be finally calculated by derivating

I(T/TF ) with respect to T/TF :

S

N
= kB

[
∂I(T/TF )

∂(T/TF )

]
µ

(A.31)

The entropy per particle can then by computed numerically. In order to have a nu-

merical result in the semi-classical regime with no further approximation, the chemical

potential can be computed by using equation A.20. Note that µ/εF = βµ T
TF

.

A.4 Thermodynamics, entropy and chemical poten-

tial, degenerate approximations

Previous derivations allow to compute the chemical potential and entropy per particle

numerically, but it can be interesting to derive analytic formulas for better insight.

In the degenerate regime, the so called Sommerfield expansion or low temperature

expansion is commonly used to approximate integrals dependent on the Fermi Dirac

distribution function.

I =

∫ ∞

0

dεh(ε)fFD(ε, µ, T )

= H(µ) +
π2

6
(kBT )

2h′(µ) +O(kBT
2)

(A.32)
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where H is a primitive of h and h′ its derivative. To take advantage of the low tem-

perature expansion, it is convenient to used the grand potential definition in equation

A.25 without injecting the Fermi energy expression:

J = − kBT

(d− 1)!(ℏω̄)d

∫
dεεd−1log(1− fFD(ε, µ, T )) (A.33)

First integrating by part εd−1 and ln(1 + e−β(ε−µ)), the Sommerfield expansion for

the free energy of Landau reads in a d-dimensional harmonic trap reads:

J(µ, T ) = − µd+1

(d+ 1)!(ℏω̄)d
(
1 +

π2

6
d(d+ 1)

(
kBT

µ

)2

+O(kBT
2)
)

(A.34)

The derivation of entropy S is then straightforward by directly derivating J with

respect to T :

S

N
= d

π2

3
kB

T

TF
(A.35)

The chemical potential is obtained by first computing the number of atoms by

derivating J with respect to µ

N =
µd

d!(ℏω̄)d

(
1 + d(d− 1)

π2

6

(kBT
µ

)2)
(A.36)

Then by injecting the d-dimensional Fermi energy equation A.6, and by using a low

temperature approximation kBT/µ ≃ T/TF ≪ 1, the chemical potential finally reads

[BR97]:

µ

εF
≃
(
1− (d− 1)

π2

6

( T
TF

)2)
(A.37)

The analytic formulas obtained for entropy in equation A.35 and chemical potential

in equation A.37 are interesting because they show that for stronger degeneracy, i.e.

when T/TF → 0, Fermi gas in low dimension tend to condensate faster than in a higher

dimension. This can be seen from the chemical potential that saturates faster to 1

for fixed T/TF in low dimension, which means that the low energy states, which have

indeed lower density in lower dimension as shown by equation A.3, are faster saturated.

The resulting entropy is then obviously lower. The numerical results shown in figures
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Figure A.1: 2D and 3D Chemical potential for degenerate fermi gases. Comparaison
between low and high temperature analytic approximations with numerical resolution.

A.1 and A.2 compare the analytical results for low temperature expansion with the

numerical computation of the exact solution in the semi-classical regime. First, they

show that the low temperature approximation reach about 10% error from T/TF ≃ 1

Figure A.2: 2D and 3D entropy for degenerate fermi gases. Comparaison between low
and high temperature analytic approximations with numerical resolution.
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for 2D gases while the same error is already reached for T/TF ≃ 0.5 for 3D gases. This

is consistent with the fact that in low dimension, Fermi gases condense faster because

of the lower density of states, and hence the degeneracy in the sens of µ/εF → 1 is

reached faster for low dimension gases, such that the low temperature expansion holds

better at higher T/TF in 2D than in 3D.

A.5 Thermodynamics, entropy and chemical poten-

tial, classical gas approximations

Finally, it can be interesting to have a glance at the high temperature approximations

to bring more insight into the intermediate state from classical to degenerate gas for

fermions. Indeed, the condensation of fermions is not a phase transition contrary to

bosons, and there is no critical point to define that fermions reach a degenerate state.

Hence, it can be convenient to compare the classical gas approximation with the fermi

regime in order to better characterize the emergence of degeneracy, when the Boltzmann

description doesn’t hold anymore.

To derive the average thermodynamic quantities for a Boltzmann gas, it is conve-

nient to work in the canonical ensemble. The relevant thermodynamic potential is the

free energy F defined as:

F = E − TS (A.38)

where the constraint over the entropy is released with respect to an isolated system.

In this case, the first principle of thermodynamic reads:

dF = ∂TFdT + ∂V FdV + ∂NFdN (A.39)

The averages of S and µ are then derived from the free energy with respect to the

conjugated variables T and N :

S = −∂TF

µ = −∂NF
(A.40)



Appendix A. Basic theory for d-dimensional Fermi gases in harmonic traps 178

The free energy is computed from the total number of configurations of the system

of N particles ZN , also called the partition function.

F = −kBT log(ZN) (A.41)

The partition function for N indiscernable particles is directly related to the partition

function for 1 particle Z by ZN = ZN/N !, where

Z =

∫
ddrddp

hd
e−βH(r,p)

=

(
kBT

ℏω̄

)d (A.42)

The entropy S and chemical potential µ can then be derived from the free energy,

and in the classical approximation they read [BR97]:

S

N
= kB(d+ 1 + log

(
d!

(
T

TF

)d)
)

µ

εF
= − T

TF
log(d!

(
T

TF

)d

)

(A.43)

The analytical result for the Boltzmann gas in d-dimension are plotted in figures A.1

and A.2 and compared to the derivation in the degenerate regime. For low dimensional

gas, it is clear that the Boltzmann description doesn’t hold for T/TF < 1. For 3D

gases, it is possible to identify a smooth transition from the Boltzmann to the Fermi

description at T/TF ≃ 0.5, which corresponds to a transition from negative to positive

values for µ/εF , and S/N ≃ 4.
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Basic theory for optical lattices

B.1 Eigenstates and energy bands

Let’s consider a periodic 1D dipole trap Va(x) = V0sin
2(kLx), of period a such that

Va(x + a) = Va(x), where kL = π/a is the recoil momentum of the lattice and V0 the

depth of the trap, resulting from the interference pattern of a retroflected far off detuned

laser beam. The hamiltonian reads:

H(x, p) =
p2

2m
+ Va(x) (B.1)

Since this hamiltonian is invariant by spatial translation, the Bloch theorem can be

applied, such that the eigenstates of this hamiltonian are bloch states

ψq(x) = uq(x)e
iqx (B.2)

where the quasi-momentum is a quantum number in the reciprocal space used to

define each bloch state, and uq are definied as periodic functions such that uq(x+ a) =

uq(x). It is convenient to rewrite the hamiltonian according to the bloch states definition

for diagonalization:

eiqx
[
(p+ ℏq)2

2m
+ Va(x)

]
unq(x) = εn(q)unq(x)e

iqx[
(p+ ℏq)2

2m
+ Va(x)

]
unq(x) = εn(q)unq(x)

(B.3)
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where the relation p(eiqxuq(x)) = eiqx(p + ℏq)uq(x) has been used. The discrete

index n stands for each eigenvector of the eigen sub space corresponding to a single

value of the real valued quasi-momentum q. We can see here that the spectrum of

the hamiltonian is completly determined by the functions uq. It is then relevant to

decompose the a-periodic uq functions on the plane wave basis as a Fourier sum:

uq(x) =
∞∑

j=−∞

Cj(q)e
2iπjx/a (B.4)

where j indicates the Fourier component along the plane wave of momentum |2jkL⟩.
The periodic potential can be rewritten as follows

Va(x) = V0/2− V0/4(e
2ikLx + e−2ikLx) (B.5)

By injecting the fourrier decomposition of the uq functions and the linearised po-

tential Va(x) into equation B.3, we obtain the equation used to compute the spectrum

of the Hamiltonian:

(
(2j − q

kL
)2 +

V0
2ER

)
Cj(q)−

V0
4ER

(
Cj−1(q) + Cj+1(q)

)
=
εn(q)

ER

Cj (B.6)

where ER = ℏ2k2L/2m is the recoil energy of the lattice. The spectrum is defined

with respect to two variables, discrete n standing for the energy levels and continuous

q standing for the quasi-momentum. We can clearly see here that lattice potential

couples plane waves |2jkL⟩ to |2((j ± 1)kL⟩, which corresponds to an absorption of

one photon and emission of one counter-propagating photon into the lattice photons

modes. It is important to note here that the bloch states are periodic with respect to

the quasi-momentum q, which periodicity which is exactly twice the recoil momentum

kL in the case of simple lattices such as this case. Hence, a 2kL translation in the

Bravais lattice doesn’t change the state of the particle. For this reason, the spectrum

of the hamiltonian has to be defined over one period of the Bravais lattice, which has

a width δq = 2kL. It is then convenient to define a momentum space [−kL; kL], which
is the so-called the First Brillouin zone, where the eigen states and eigen energies are

properly defined. Equation B.6 can be numerically computed. The result is plotted on
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Figure B.1: Band structure computed from equation B.6 in a 1D lattice for different
depth V0. Energies are in ER recoil units. The hatched region represent the gap between
bands n=0 and n=1.

figure B.1. Energy bands are flattened in deep lattices, and this is mostly visible on

the ground band n = 0. The energy difference between the ground band and the first

excited band εbg = min(ε1(q)) − max(ε0(q)) where bg stands for band gap increases

with the depth of the lattice, as shown by the hatched region. The band gap opens in

the border of the FBZ where the two bands are degenerate at V0 = 0, i.e. q = ±kL,
such that actually εbg = ε1(±kL)− ε0(±kL). In the shallow lattice regime, the coupling

between plane waves j ↔ j ± 1 which is ensured by the lattice potential with strength

−V0/4, as shown in equation B.6 can be reduced to first order, such that the hamiltonian

developed in equation B.6 reduces to:

H =

(
ER + V0/2 −V0/4
−V0/4 ER + V0/2

)
(B.7)

The diagonalisation of this hamiltonian allows to compute the band gap in the

shallow lattice regime:

εbg =
V0
2

(B.8)
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B.2 Adiabatic lattice loading with fermions

On ultra-cold atoms experiment with lattices, we typically want to study the lowest

energy states of the system by loading only the ground band. This is done by first

cooling a gas to degeneracy, until the temperature is close to T = 0K. In this regime,

the momentum distribution peaks around ℏk = 0, and the atoms lay in the lowest

energy states. In this low energy states, if the momentum distribution doesn’t exceed

the lattice recoil, then the atomic wave function maps on the ground Bloch states only.

By ramping up the lattice depth slower than the coupling between the bands, which

can be considered as the band gap, atoms follow the ground Bloch states and remain on

the ground band. The condition on the initial momentum distribution, can be quickly

shown as follows.

Let’s first consider the condition on initial momentum distribution for loading the

ground band only. The atomic wave function expands over the eigenstates of the lattice

as:

|Φ⟩ =
∑
n

∫ kL

−kL

dq ⟨n, q|Φ⟩ |n, q⟩ (B.9)

where |n, q⟩ are the Bloch states ψn,q(x) = un,q(x)e
iqx in the momentum basis. From

equation B.4, the decomposition of the Bloch states over the plane wave basis reads:

|n, q⟩ =
∑
j

Cj(q) |q + 2jkL⟩ (B.10)

The atomic wave function can then be rewritten in the plane wave basis with a

relation de fermeture

|Φ⟩ =
∑
n

∫ kL

−kL

dq
∑
j

C∗
j (q) ⟨q + 2jkL|Φ⟩ |n, q⟩ (B.11)

If we consider the V0 = 0 case, then the Bloch states are simply plane waves, such

that |n, q⟩ = |q + 2nkL⟩ and then the atomic wave function reduces to:
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|Φ⟩
∣∣∣∣
V0=0

=
∑
n

∫ kL

−kL

dq ⟨q + 2nkL|Φ⟩ |n, q⟩ (B.12)

Here we can clearly read that if the momentum distribution of the atoms exceeds

the first Brillouin zone, then the projection of the atomic wave function on excited

bands n ̸= 0 is non zero. Adiabatic following relies on the fact that the initial state

of the atom is colinear to the followed eigenstate. Hence, if excited bands are initially

populated, it is not possible that after loading atoms lay on the ground band only.

Then the momentum distribution of the initial atomic wave function has to not exceed

the first Brillouin zone.

In the case of bosons, even at non zero temperature, Bose-Einstein condensation

ensures that atoms are all in the lowest momentum state corresponding to q = 0, n = 0

and hence loading the ground band of the lattice presents no difficulty. Regarding

fermions, the chemical potential and temperature define the momentum distribution.

At T = 0K, atoms occupy all momentum states k < kF where ℏkF is the Fermi

momentum. This means that to ensure adiabatic loading of the ground band of a

lattice, kF has to be lower than kL, giving an upper limit on the number of atoms that

can be loaded in the ground band. If the temperature is non zero, then the momentum

distribution acquires wings and the characterization of bands occupation is no more

trivial. This discussion is developed in section 6.4.



Appendix B. Basic theory for optical lattices 184



Appendix C

Adiabatic passages in Λ scheme

Optical or radio-frequency (RF) pulses are commonly used to swap the populations of

the two coupled quantum states. These schemes rely on the control of Rabi oscillations,

requiring a perfect stabilization of the strength of the couplings as well as the duration

of the pulse. The advantage of adiabatic passages over pulses is their robustness against

experimental fluctuations, e.g. of laser frequencies and amplitudes. While a Raman

pulse would require a timed pulse to swap the populations between two spin states,

an adiabatic passage requires a time dependent transformation fulfilling the so-called

Landau-Zener condition. These conditions can be accuratly described and quantified in

the dressed-states basis of atom-light interaction. First I will summarize the conditions

for adiabatic passage in a three level scheme with 2 photons coupling. Then I will

extend the scheme for a 3 spin states manifold.

C.1 Two ground states

Let’s first consider two degenerate ground states |g1⟩, |g2⟩, and an excited state |e⟩.
Two photon fields E1, E2 of angular frequency ω1, ω2 couple the ground and excited

states as following :

ℏΩ1 = −⟨e| D̂ · E1 |g1⟩

ℏΩ2 = −⟨e| D̂ · E2 |g2⟩
(C.1)

where Ω1 and Ω2 are the Rabi frequencies, and ℏ = h
2π

the reduced planck constant.
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The scheme for this three level system is shown on figure C.1, left. If both photons

are sufficiently detuned from the |g1⟩ ↔ |e⟩ and |g2⟩ ↔ |e⟩ resonnance ω0, the excited

state can be ruled out using second order perturbation. In the dressed states basis

{ ˜|g1⟩, ˜|g2⟩}, the effective hamiltonian can then be written as :

Ĥeff (δ) =
ℏ
2

(
δ Ω
Ω∗ −δ

)
(C.2)

where Ω = Ω1Ω
∗
2/∆e is the effective two-photons coupling between |g̃1⟩ and |g̃2⟩,

while δ = ω2 − ω1 is the detuning between the the angular frequencies of two photons

from the fields E1 and E2. ∆e stands for the detuning ω0−ω1 ≃ ω0−ω2. The spectrum

of the effective hamiltonian is obtained by direct diagonalization. Figure C.1, middle,

shows the energies of eigenstates |+⟩, |−⟩, which read:

E|−⟩(δ) = −ℏ
2

√
Ω2 + δ2

E|+⟩(δ) = +
ℏ
2

√
Ω2 + δ2

(C.3)

with respect to the Raman detuning δ. Far of the Raman resonance δ = 0, i.e.

when δ ≪ Ω, the eigenstate |−⟩ (|+⟩) is colinear to the dressed state |g̃1⟩ (|g̃2⟩), which
corresponds to the bare atomic state |g1⟩ (|g2⟩), as shown on figure C.1, right. When

ramping up the frequency of ω2, the detuning δ between the two photons gets closer to

zero and so to the Raman resonance, where the effective coupling Ω lifts the degeneracy

by exactly Ω at resonance.

To realize an adiabatic passage, atoms in state |ψ⟩ can be prepared in |g1⟩, which
is colinear to |−⟩ far of Raman resonnance, δ ≪ Ω. If the rate of the detuning ramp

is slow enough with respect to the avoided crossing, i.e. δ̇ ≪ Ω2, then the state |ψ⟩
adiabatically follows the eigenstate |−⟩ all along the ramp. Far of the other side of the

Raman resonance, toward the right of figure C.1, right, the dressed state |−⟩ is now

colinear to |g2⟩, so is |ψ⟩. The population has then been transfer from |g1⟩ to |g2⟩. The
occupation probabilities, initially at | ⟨g1|ψ⟩ |2 = 1, swap at the Raman resonance such

that | ⟨g2|ψ⟩ |2 = 1 at the end of the passage.
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Figure C.1: Two photons coupling with respect to Raman detuning δ. Left: atomic
states |g1⟩ and |g2⟩ coupled to excited state kete with off resonant electric dipole interac-
tion with respective Rabi frequencies Ω1 and Ω2. The detuning between the frequencies
of the two electric fields is noted δ. Middle: energy spectrum of the dressed states and
eigenstates with respect to δ, where the excited state has been rule out. At Raman
resonance δ = 0, the degeneracy if lifted by exactly twice the effective rabi coupling 2Ω.
Right: projection of the eigenstate |−⟩ along dressed states |g̃1⟩ and |g̃2⟩ with respect
to δ.

Adiabatic passage can be seen in the frame of nuclear magnetic resonance. A spin in

precession will stay colinear to a rotating magnetic field if the rotation is speed is slow

with respect to the larmor frequency, such that the axis of precession stays in phase

with the magnetic field. This condition is analog to δ̇ ≪ Ω2 regarding Raman adiabatic

passage. In this discussion, the two ground states are considered degenerate. If they

are not, it is all the same but that the Raman resonance happens at δ = ε2 − ε1 where

ε1,ε2 are the eigenergies of the bare atomic states |g1⟩, |g2⟩.

In order to maximize the probability of success of the adiabatic passage, three

conditions must be respected. First, the initial conditions of the passage must be so that

the initial atomic state is colinear to the followed eigenstate, i.e. δ ≪ Ω ⇒ |g1⟩ ≃ |−⟩.
Second, the final conditions of the passage must be so that the final atomic state is

colinear to the same followed eigenstate, i.e. δ ≫ Ω ⇒ |g2⟩ ≃ |−⟩. These two first

similar conditions ensure that the connexion between the atomic states and eigenstates
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is smooth, preventing Rabi oscillations. The third condition is that the rate of the

adiabatic transfer must be slow with respect to the effective coupling between the atomic

states, i.e. δ̇ ≪ Ω2. This last condition is embded in the Landau Zener condition for

adiabatic passage, which is that the probability of success of the adiabatic passage is

given by:

PL.Z.(Ω, δ̇) = 1− exp

(
−2π

Ω2

4δ̇

)
(C.4)

and this equation highlights the high sensitivity in Ω2/δ̇ as it is exponential.

C.2 Three states manifold

Let’s now consider a more complicated case: three degenerate |mF ⟩ spin states |−1⟩,
|0⟩, |1⟩, two photon fields Eπ, Eσ+ with respective angular frequencies ωπ, ωσ+ and

polarizations π,σ+, and an excited states manifold. Obviously, |mF ⟩ ↔ |mF ± 1⟩ are

coupled by absorption of a π (σ+) photon and spontaneous emission of a σ+ (π) photon.

In the dressed state basis, the energy difference between two consecutive dressed spin

states, i.e.
∣∣−̃1

〉
,
∣∣0̃〉, and ∣∣0̃〉, ∣∣1̃〉 is the energy difference between the absorbed and

emitted photons ℏδ = ℏ(ωπ − ωσ+). Hence, dressed states
∣∣−̃1

〉
and

∣∣1̃〉 have energy

difference 2ℏδ, which corresponds to a four photons transition. This is consistent with

conservation of energy which imposes that the energy difference between any two dressed

states is equal to the remaining energy of the corresponding photon exchanges. This

principle can be extended to more than three states and is discussed in chapter 4. To

fully determine the effective hamiltonian in the dressed state basis, we need the effective

couplings between the spin states. Similarly to the previous case in C.1, the excited

state manifold can be ruled out using second order perturbation if the photon fields are

sufficiently detuned from resonance with the excited states. In this case, the effective

couplings |mF ⟩ ↔ |mF + 1⟩ couplings read:

Ω−1,0 = ⟨−1| D̂ · E∗
σ+

|e⟩ ⟨e| D̂ · Eπ |0⟩ /∆e

Ω0,1 = ⟨0| D̂ · E∗
σ+

|e⟩ ⟨e| D̂ · Eπ |1⟩ /∆e

(C.5)
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where ∆e is the detuning with the transition ω0 − ωπ ≃ ω0 − ωσ+ . Now, all the

matrix elements of the effective hamiltonian in the dressed state basis are known, and

it reads:

Ĥeff (δ) = ℏ

 δ Ω−1,0/2 0
Ω∗

−1,0/2 0 Ω0,1/2
0 Ω∗

0,1/2 −δ

 (C.6)

where δ = ωπ − ωσ+ is the Raman detuning. In this derivation, the three states are

degenerate. Actually, even if they are not degenerate, the physical arguments hold if

the energy difference between the ground states is much lower than ∆e = ω0−ω, where
ω ≃ ωπ ≃ ωσ+ . In this case, the effective hamiltonian obvioulsy reads:

Ĥeff (δ) = ℏ

 δ Ω−1,0/2 0
Ω∗

−1,0/2 0 Ω0,1/2
0 Ω∗

0,1/2 −δ

+ ℏ

ε−1 0 0
0 ε0 0
0 0 ε1

 (C.7)

where ε−1, ε0, ε1 are the eigenergies of respective bare atomic states |−1⟩, |0⟩, |1⟩.
Hence, the degeneracy lift is simply propagated into the energies of the associated

respective dressed states. In this case, the 2 photon Raman resonnances happen at

δ = ε−1 − ε0 and δ = ε0 − ε1, which can be non-zero.

The spectrum of this hamiltonian, obtained after diagonalization, is presented on

figure C.2, (a). The crossing between dressed states
∣∣−̃1

〉
,
∣∣0̃〉 at the Raman resonance

δ = −6 kHz is avoided by the two photon effective coupling Ω = 400Hz, as well as

the
∣∣0̃〉, ∣∣1̃〉 crossing at δ = +2 kHz. The four photons cCaptionoupling between

∣∣−̃1
〉

and
∣∣1̃〉 at δ = −2 kHz is zoomed in the bottom right inset, highlightening that the

four photons coupling, scaling as Ω2, is much lower than the two photons coupling, and

hence is the degeneracy lift.

Adiabatic state following is simulated in this manifold and the result for different

simulations is presented on figure C.2, (b). The atomic state |ψ⟩ is initially along
∣∣0̃〉 at

δ = −14 kHz, and the detuning is ramped up tp δ = 11 kHz for a total chirp of 23 kHz.

In this simulation, we follow the projection of |ψ⟩ onto each of the three dressed states

all along to the detuning ramp, for different rates of the ramp. Figure (b.1) shows a
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Figure C.2: Adiabatic state following in a three level manifold. For this computation,
the energies of the bare atomic states are ε−1 = −6 kHz, ε0 = 0 kHz, and ε1 = −2 kHz,
and Ω = 400Hz. The Clebsch-Gordan coefficients are neglected. (a) Colored dashed
lines: energies of the dressed states, and solid black lines: eigenenergies of hamiltonian
defined in equation C.7, both with respect to the Raman detuning δ. Bottom right
inset shows the avoided crossing between

∣∣−̃1
〉
and

∣∣1̃〉 by four photons coupling at
δ = −2 kHz. (b) Simulations for adiabatic following of the yellow eigenstate in (a),
from initial state |ψ⟩ along

∣∣0̃〉 at δ = −14 kHz, up to δ = 11 kHz. Solid lines represent

the projection of the atomic state along the dressed states |
〈
d̃
∣∣∣ψ〉 |2, d = −1, 0, 1, with

respect to the detuning δ, with colors respective to (a). The detuning is ramped up to
δ = 11 kHz, and each simulation corresponds to a different chirp rate. (b.1) Frequency
ramp in 30ms. (b.2) Frequency ramp in 200ms. (b.3) Frequency ramp in 10000ms.

fast ramp during 30ms which corresponds to Ω2/δ̇ ≃ 1. Even though the atomic state

seems to flip from
∣∣0̃〉 to

∣∣−̃1
〉
at the avoided crossing at δ = −6 kHz, there remains
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strong rabi oscillations and the final projection onto
∣∣−̃1

〉
doesn’t converge to 1, which

illustrates that the rate of the ramp is too high. The four photon transition is crossed

without following, and hence the final population in
∣∣1̃〉 is negligeable, even though

a slight increase of the population in
∣∣1̃〉 is visible. With such a fast ramp, it is then

possible to cross the whole spectrum with the frequency ramp and target the
∣∣0̃〉⇒ ∣∣−̃1

〉
transition with 95% efficiency. Figure (b.2) shows a slower ramp of duration 200ms,

which corresponds to Ω2/δ̇ ≃ 8. Obviously, the two photons transition at δ = 6 kHz is

now properly followed, and the four photons transition at δ = −2 kHz is also initiated,

such that the population in
∣∣1̃〉 initially at zero grows to nearly 15%. The last two

photon transition at δ = 2 kHz is also properly followed with same conditions than

the first one, and populations in
∣∣0̃〉 and ∣∣1̃〉 are properly exchanged. This simulation

illustrates that whith Ω2/δ̇ ≃ 8, it is enough to maximize the efficiency of the two

photon adiabatic following, while the efficiency of the four photon transition is as low

as 15%. Figure (b.3) shows a simulation with frequency ramp duration of ten seconds.

This corresponds to a much slower rate such that Ω2/δ̇ ≃ 400. This is the maximum

ramp rate such that the probability of succes of the four photons transition reachs

almost 100%, and the eigenstate is properly followed all along the ramp.

This eigenstate following, althgouh useless since the initial and final states are the

same, illustrates the different situations that can be encountered in a three levels man-

ifold. The efficiency of a targeted two photon transition for a
∣∣0̃〉 ⇒

∣∣−̃1
〉
transition

can be easily reduced by the near four photons transition as shown by the simulation

(b.2), while maximizing the efficiency of the four photon transition requires very low

chirp rates compared to the two photons transitions, as shown by simulation (b.3).

Actually, even with multiple crossing of the dressed states energies along the frequency

ramp, it is possible to achieve maximal efficiency for targeted transitions while avoiding

non-wanted transitions.

C.3 Experimental optimization of adiabatic passage

On experiments, multiple crossing of the dressed states energies are often met. In

this case, it is might be possible to tune the rate of the frequency ramp to minimize
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the probability of the success of the non-wanted transitions, such as four photons,

while keeping the targeted transition at maximal efficiency. In section C.2, such a

situation is presented, as well as its limits: with a chirp rate fast enough to suppress

the four photons transition, the following of the targeted two photons transition is not

perfect, and a slight decrease of the rate is enough to start the four photons transition.

Actually, the four photons transition can be easily avoided by choosing initial and final

frequencies of the ramp such that it is not crossed. Such a case is presented in figure

C.3, left, where the spectrum is computed from hamiltonian defined in equation C.7.

The black arrow shows the narrow frequency ramp centered around the
∣∣−̃1

〉
⇒
∣∣0̃〉

two photons transitions at δ = −6 kHz, for an adiabatic state following to flip atomic

state from initial |0⟩ to final |−1⟩. On figure C.3, center, the result of the simulation

for adiabatic following with a ramp duration of 20ms shows that by narrowing the

frequency ramp, the smooth connexions between dressed states and eigenstates is not

ensured. Indeed, at δi, dressed state and eigenstate are not colinear, and hence quickly

turning on the coupling light results in Rabi oscillations. Hence, even at the end of the

ramp, oscillations remain and the final state is a superposition of
∣∣0̃〉 and

∣∣−̃1
〉
, the

adiabatic following has failed. To circumvent this issue, it is possible to smoothly turn

on and off the intensity of the coupling light simultaneously to the frequency ramp.

This way, atoms smoothly connect to the eigenstate at the beginning of the ramp, and

then smoothly reconnect to the atomic state at the end of the ramp. Figure C.3, right,

shows such a simulation, where the intensity ramp is plotted in the inset. The Rabi

oscillations are completly suppressed and atoms end in |−1⟩ with probability 1, the

adiabatic following is successfuly achieved.
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Figure C.3: Left: diagonalization of hamiltonian defined in equation C.7, with respect
to Raman detuning δ. Green(red) dashed line: dressed state

∣∣0̃〉(∣∣−̃1
〉
). Dressed state∣∣1̃〉 is not involved in this scheme and greyd. Black vertical lines: initial and final

frequencies of the ramp, indicated by the large black arrow. Blue solid line: followed
eigenstate. Center and right : simulation of adiabatic state following with δi = −8 kHz
and δf = −4 kHz, with ramp duration 20ms. Center: square intensity window. Right:
gaussian intensity window with standard deviation σ = 5ms. The intensity windows
are shown in respective insets.
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Appendix D

Guided expansion - parallaxe -
anticonfinement

This appendix is dedicated to the following problem: we let a thermal Boltzmann gas

expand while channeled in a far red detuned laser beam. The gas is tightly confined

in two directions, and is allowed to expand in the axial direction of the laser beam.

The motion of each individual atom is determined by gravity and the atom-light dipole

force. Along the longitudinal extension of the channeling atomic gas, the dipole force

can be locally approximated as a mean force acting on the center of mass of the atoms,

and a local curvature acting on the spread of the atomic gas. The red-detuned trapping

beam at λ = 1070 nm is focused at 4 Rayleigh lenghts above the initial position of the

gas, with a 25 µm waist. Therefore, the atoms lay after the inflexion point of the dipole

potential, such that the atoms feel an anharmonic trapping. The position dependant

local curvature can then be associated with an imaginary frequency ω. Furthermore,

the laser beam has angle θ with respect to the vertical direction. Gravity is then affected

by parallax θ, and the sizes and center of mass positions of the atomic gas during its

channeled expansion are imaged with the same parallax, θ. The goal is to measure the

frequency associated with the anharmonic trapping, and the parallax.

195
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Figure D.1: Geometry of the problem. Atoms (black ball) expand while falling along
the far red detuning laser beam whose direction, here noted Oz makes angle θ with the
gravity axis. The waist of the beam is located above the atoms, resulting in a axial
attractive force Fdip. Absorption images are realized with parallaxe θ.

D.1 Derivation

D.1.1 Effective gravity

Let’s consider a single atom trapped by an isotropic and non-astigmatic laser beam,

and falling along the axis of the laser beam. The dipole force associated with the atom-

light interaction along the axis of the beam can be written as

Udip(z) =
U0

w(z)2

w(z) = w0

√
1 + (

z − z0
zR

)2
(D.1)

where U0 is depth of the dipole potential, zR the Rayleigh length, and w(z) the

width of the laser beam at I0e
−2. The mean force Fdip = −∂zUdip can be derived from

the potential.

Fdip(z) = −2
U0

w2
0

(z − z0)/z
2
R

(1 + (z − z0)2/z2R)
2

(D.2)
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Since the atoms start at 4zR from the focus of the beam, we can approximate

z − z0 >> zR such that

Fdip(z) ≃ −2
U0

w2
0

1

z̄3
. (D.3)

We write z − z0 = z̄ for simplicity. For a short time of channeling into the laser

beam with low initial velocity, the dipole force can be approximated as a uniform force

field along the trajectory of the atoms, and then associated with an effective gravity

geff

Fdip(z) ≃ −mgeff (D.4)

The local curvature can then be associated with a frequency ω such that

∂zFdip = −mω2 (D.5)

Using eq. D.3, D.4 and D.5, we can link the effective gravity geff with the frequency

ω such that −mω2 = −3
z̄
(−mgeff ) and

geff = −1

3
ω2z̄. (D.6)

The atoms lay after the inflexion point of the dipole potential, such that the atoms

feel an anharmonic trapping. The position dependant local curvature can then be

associated with an imaginary frequency ω. Thus we define ω = i
√
α ⇔ α = −ω2 > 0.

Finally

geff =
1

3
αz̄. (D.7)

D.1.2 Center of mass

The atoms fall along the axis of the beam with a slope θ, see fig.D.1. Furthermore, the

channelled fall of the atoms is slowed down by an effective anti-gravity coming from the

dipole attraction of the focus of the beam. The motion of the atoms is then given by

z̈ = g cosθ − geff (D.8)
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The positions of the atoms are imaged by absorption imaging at different times of

channelled fall. The camera chip, supposed to be orthogonal to the imaging beam and

parallel to gravity, the atoms are imaged with parallax θ. Thus in the camera frame,

the motion zM is imaged with parallax θ such that

zM(t) = cos(θ)
(1
2
g cos(θ)t2 − 1

2
geff t

2
)

(D.9)

The integration constants v0 and z0 can be neglected since the measurement is made

on the center of mass of the thermal gas. A direct measurement of fall acceleration gM

without taking into account the effective gravity and parallax would be zM(t) = 1
2
gM t

2,

such that the measurement can be linked to the parallax θ and effective gravity geff .

Using eq.D.7

gM = gcos(θ)2 − 1

3
αz̄cos(θ) (D.10)

We now need a second measurement to solve the system.

D.1.3 Cloud width

The gas is initially trapped at thermal equilibrium with distribution

f(z, v) ∝ exp
(
− 1

2

mω2
0z

2

kBT

)
exp
(
− 1

2

mv2

kBT

)
(D.11)

with ω0 the frequency of the harmonic trapping potential, and T the temperature

of the gas. Assuming that an atom is isolated into the laser beam, its motion along the

axis of the beam depends only on the dipole force. Using the anharmonic trap local

approximation and ω = i
√
α, the equation of motion can be written as z̈ = α(t)z, and

then integrated to

z(t) = z0 cosh(
√
αt) +

v0√
α
sinh(

√
αt) (D.12)

The position probability distribution P (x0, t) =
∫
dxdvf(x, v)δ(x(t) = x0) can then

be computed from eq.D.11 and eq.D.12. The width of the probability distribution σz is

σ2
z(t) =

kBT

m

(sinh2(√αt)
α

+
cosh2(

√
αt)

ω2
0

)
(D.13)
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The measurement of the size σz with parallax θ gives σM = cos(θ)σz. Furthermore,

the temperature is infered from the measurement of the size σ2
3D = kBT/m after a

time of flight of a gas totally released from the trap. For a long enough time of flight,

σ2
3D(t) ≃ kBT

m
t2, such that

σ2
M

σ2
3D

(t) ≃ cos2(θ)

t2

(sinh2(√αt)
α

+
cosh2(

√
αt)

ω2
0

)
(D.14)

With the two equations D.10 and D.14, we define a set of two equations with two

unknowns α and θ, and dependent on two experimentally measurable quantities, the

fall of the center of mass and the expansion of the channelled thermal gas. Hence, it is

now possible to infer the anticonfinement parametrized by α and the parallaxe θ.

D.2 Measurements

The measurements of the centers of mass and sizes, shown on figure D.2, are made on

hot thermal gas T > 2 TF , and for time of flights ttof ≥ 14ms long enough such that the

approximation σ2
3D(t) ≃ kBT

m
t2 holds. The channelling gas is imaged with absorption

imaging, while inside the beam, and this in-situ absorption imaging requires to correct

the imaged densities such that the size σz is correctly measured, see chapter 2.

On figure D.2, (a), the effective gravity geff ≃ 7.2m/s2 is inferred from the mea-

surement of the channeled fall, and the gravity is calibrated from time of flight mea-

surement. The agreement between the measured effective gravity, and its expected

value from equation D.10, for all values of (α,θ), is shown on figure D.2, (b). All sets of

(α,θ) values which verify equation D.10, so that the expected value match the measured

value, are obtained and plotted on the white dotted line. The sizes of the channelled gas

and the freely expanding gas are measured and plotted on figure D.2, (c), with respect

to time. The agreement between the measured effective gravity, and its expected value

from equation D.10, for all values of (α,θ), is shown on figure D.2, (d). All sets of (α,θ)

values which verify equation D.14 and so that the expected value is in agreement with

the size measurement (c), are obtained and plotted on the white dotted line.

The two sets of (α,θ) values obtained from the center of fall measurements and size
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Figure D.2: (a) Measurement of the position of the center of mass, for the channeled
expansion (squares) and time of flight experiment (dots), with respect to the time.
(b) 2D resolution of equation D.10 with respect to α and θ. The white line (closest
to zero) indicates the values with best agreement with the data shown on (a). (c)
Measurement of the size of the gas, for the channeled expansion (squares) and time of
flight experiment (dots), with respect to the time. (d) 2D resolution of equation D.14
with respect to α and θ. The white line (closest to zero) indicates the values with best
agreement with the data shown on (c). For (a) and (c), the size of a pixel is 6.45µm.

expansion measurements are put together, see figure D.3. The 2D system is then solved

as only one tuple (α, θ) is solution, here (22Hz2, 30.21◦). On figure D.4, we compare
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Figure D.3: Combination of the resolutions of equations D.14 and D.10 shown on figures
D.2 (b) and (d). The crossing reveals the unique solution (α,θ)=(22,30.21◦).

Figure D.4: Curvature of the axial dipole potential in (Hz). The atoms start the
channeled fall at position 0 and are imaged at 15 mm away from initial position after
20 ms of channeled fall. This expectation is obtained from the known focus, size and
depth of our optical dipole trap, which were calibrated from center of mass oscillations
and beating of the cloud size.
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the obtained anti-confinement with expected value (geometry optimization of the trap

with oscillation frequencies). After 20 ms of channeled fall, the atoms are 1.5 mm away

from the initial position. At this position, the anti-confinement is expected to be a

little below 2 Hz, which is in good agreement with the measurement measurement.

Furthermore, the parallax has been measured directly on the experiment with a ruler,

θruler = 29.5± 1.5◦, also in good agreement with this method.
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Manipulation of the nuclear spin states of 87Sr in degenerate
SU(N)-symmetric Fermi gases

Abstract

This thesis reviews our implementation of a quantum simulator for the Fermi-Hubbard model
with strontium 87. Closed-shell 87Sr with large nuclear spin I=9/2 benefits from a 7.4 kHz narrow
intercombination line that played a central role in this thesis. It offers ideal conditions for the realization
of spin orbit coupling schemes to coherently manipulate the 10 nuclear spin states with minimal
spontaneous emission. First, we demonstrated a method to measure local densities smaller than the
resolution limit of our imaging system. We overcome the limits due to aberrations and fast variations
of the density profiles. Derived from the Beer-Lambert law, the non-linear correction lets us infer sizes
as small as 1/4 pixel. Then, we prepare polarized Fermi seas of 87Sr at T/TF ≃ 0.25, with a spin
purification by optical pumping. The spin populations are measured with a spin orbit coupling scheme
associated with the narrow line, realizing a spin dependent momentum transfer. We then demonstrate
a method to coherently and selectively flip the spin states. The degeneracy of the ground state is lifted
with a quadratic light shift. With a Raman adiabatic passage, the spins are flipped with 80% efficiency
that will be improved up to 95%. Designed as an optical super lattice, this scheme will permit to write
deterministic spin textures that will be the initial state for the quantum simulator. Finally, we study
the loading of Fermi gases into the ground band of a 1D lattice with large sites spacing 2µm. Our
experiment highlights the critical importance of maintening a sufficient collision rate to adiabatically
follow the 3D to 2D dimensionnality cross-over, and we simultaneously produce four 2D Fermi seas.

Keywords: nuclear spins, strontium 87, spin orbit coupling, Raman adiabatic passage, degenerate
Fermi gas, SU(N) symmetry, optical lattices.

Manipulation des états de spin nucléaire du 87Sr dans des gaz de Fermi
dégénérés en symmétrie SU(N)

Résumé

Cette thèse présente notre implémentation d’un simulateur quantique pour le modèle de Fermi-
Hubbard avec des atomes de strontium 87. Le 87Sr de grand spin nucléaire I=9/2 bénéficie d’une raie
d’intercombinaison étroite de 7.4 kHz jouant un rôle central dans cette thèse. Elle offre un cadre idéal
pour manipuler les 10 états de spin nucléaires par couplage spin-orbite avec une émission spontanée
minimale. D’abord, nous démontrons une méthode pour mesurer des densités locales non résolues par
notre système d’imagerie. Nous surpassons les limites dues aux abbérations et variations rapides du
profile de densité, par une correction non-linéaire établie à partir de la loi de Beer-Lambert. Nous
déduisons des tailles jusqu’à 0.25 pixel. Ensuite, nous préparons des mers de Fermi de 87Sr polarisées
à T/TF ≃ 0.25 en utilisant une purification de spin par pompage optique. Les populations de spin
sont mesurées par des transferts d’impulsion sélectifs en spin grâce au couplage spin orbit. Nous
démontrons de plus une méthode pour retourner les spins de manière cohérente et sélective. La
dégénéréscence de l’état fondamental est levée par un déplacement lumineux quadratique. Par passage
Raman adiabatique, les spins sont retournés avec une efficacité de 80% qui sera améliorée à 95%.
Conçu comme un réseau optique, cette méthode pemettra l’écriture deterministe d’une texture de spin
qui sera l’état initial du simulateur quantique. Enfin, nous étudions le chargement d’un gaz de Fermi
dans la bande fondamentale d’un réseau 1D de grande période 2µm. Nous montrons l’importance de
maintenir un taux de collision suffisant pour suivre le cross-over de géométrie de 3D à 2D, et nous
produisons simultanément 4 mers de Fermi 2D.

Mots clefs: spins nucléaires, strontium 87, couplage spin-orbit, passage adiabatique Raman, gas de
Fermi dégénérés, symmétrie SU(N), réseaux optiques.
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