OPTIMIZED SCHWARZ WAVEFORM RELAXATION METHOD FOR INCOMPRESSIBLE STOKES PROBLEM * - Université Sorbonne Paris Nord
Pré-Publication, Document De Travail Année : 2023

OPTIMIZED SCHWARZ WAVEFORM RELAXATION METHOD FOR INCOMPRESSIBLE STOKES PROBLEM *

Résumé

We propose and analyse the optimized Schwarz waveform relaxation (OSWR) method for the unsteady incompressible Stokes equations. Well-posedness of the local subdomain problems with Robin boundary conditions is proved. Convergence of the velocity is shown through energy estimates; however, pressure converges only up to constant values in the subdomains, and an astute correction technique is proposed to recover these constants from the velocity. The convergence factor of the OSWR algorithm is obtained through a Fourier analysis, and allows to efficiently optimize the space-time Robin transmission conditions involved in the OSWR method. Then, numerical illustrations for the two-dimensional unsteady incompressible Stokes system are presented to illustrate the performance of the OSWR algorithm.
Fichier principal
Vignette du fichier
BJO_OSWR_Stokes.pdf (3.37 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04105538 , version 1 (24-05-2023)

Identifiants

  • HAL Id : hal-04105538 , version 1

Citer

Duc-Quang Bui, Caroline Japhet, Pascal Omnes. OPTIMIZED SCHWARZ WAVEFORM RELAXATION METHOD FOR INCOMPRESSIBLE STOKES PROBLEM *. 2023. ⟨hal-04105538⟩
107 Consultations
105 Téléchargements

Partager

More