DIMENSIONS OF “SELF-AFFINE SPONGES” INVARIANT UNDER THE ACTION OF MULTIPLICATIVE INTEGERS - Université Sorbonne Paris Nord
Pré-Publication, Document De Travail Année : 2021

DIMENSIONS OF “SELF-AFFINE SPONGES” INVARIANT UNDER THE ACTION OF MULTIPLICATIVE INTEGERS

Résumé

Let $m_1 \geq m_2 \geq 2$ be integers. We consider subsets of the product symbolic sequence space $(\{0,\cdots,m_1-1\} \times \{0,\cdots,m_2-1\})^{\mathbb{N}^*}$ that are invariant under the action of the semigroup of multiplicative integers. These sets are defined following Kenyon, Peres and Solomyak and using a fixed integer $q \geq 2$. We compute the Hausdorff and Minkowski dimensions of the projection of these sets onto an affine grid of the unit square. The proof of our Hausdorff dimension formula proceeds via a variational principle over some class of Borel probability measures on the studied sets. This extends well-known results on self-affine Sierpinski carpets. However, the combinatoric arguments we use in our proofs are more elaborate than in the self-similar case and involve a new parameter, namely $j = \left\lfloor \log_q \left( \frac{\log(m_1)}{\log(m_2)} \right) \right\rfloor$. We then generalize our results to the same subsets defined in dimension $d \geq 2$. There, the situation is even more delicate and our formulas involve a collection of $2d-3$ parameters.
Fichier principal
Vignette du fichier
ETDS_V5.pdf (871.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02958411 , version 1 (06-10-2020)
hal-02958411 , version 2 (02-10-2021)
hal-02958411 , version 3 (09-11-2021)

Identifiants

Citer

Guilhem Brunet. DIMENSIONS OF “SELF-AFFINE SPONGES” INVARIANT UNDER THE ACTION OF MULTIPLICATIVE INTEGERS. 2021. ⟨hal-02958411v3⟩
217 Consultations
171 Téléchargements

Altmetric

Partager

More